Full Text (PDF)
Review Article

Recent Advance in Transdermal Patch

Sandhiya , N Deepa, Salma R, Rajavignesh S, Santhanalakshmi K, Shanmuga Sundaram S, Sharon Mahim

Author Information

Licence:

Attribution-Non-commercial 4.0 International (CC BY-NC 4.0)

This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator


RFP Journal of Dermatology 9(1):p 25-29, January–June 2024. | DOI: NA

How Cite This Article:

Sandhiya, Deepa N, Salma R, et al. Recent Advance in Transdermal Patch. RFP Jr of Drea. 2024;9(1):25-29.

Timeline

Received : March 28, 2024         Accepted : April 23, 2024          Published : June 30, 2024

Abstract

Drug administration with transdermal patches is a non-invasive technique. It is an adhesive patch that is intended to penetrate the skin and enter the bloodstream, distributing a precise dosage of medication throughout the body. Compared to other administration methods, transdermal medication delivery is less intrusive, more patient-friendly, and able to avoid first-pass metabolism and the harmful acidic environment of the stomach that arises from oral drug absorption. Transdermal patches have garnered interest and been used for many years to treat a variety of illnesses and ailments. These medications include nitroglycerin, clonidine, nicotine, and fentanyl. This approach has also been investigated recently for the delivery of biologics in several applications. Here, we examine the body of research on the design


References

  • 1.   Dull P. Transdermal oxybutynin (oxytrol) for urinary incontinence. Am. Fam. Physician. 2004;70:2351–2352.
  • 2.   Ho C. Transdermally-delivered oxybutynin (Oxytrol(R) for overactive bladder. Issues Emerg. Health Technol. 2001;24:1–4.
  • 3.   KurzA.,FarlowM.,LefevreG.Pharmacokinetics of a novel transdermal rivastigmine patch for the treatment of Alzheimer’s disease: A review. Int. J. Clin. Pract. 2009;63:799–805. doi: 10.1111/j.1742-1241.2009.02052.x.
  • 4.   Lefevre G., Pommier F., Sedek G., Allison M., Huang H.L., Kiese B., Ho Y.Y., Appel-Dingemanse S. Pharmacokinetics and bioavailability of the novel rivastigmine transdermal patch versus rivastigmine oral solution in healthy elderly subjects. J. Clin. Pharmacol. 2008;48:246–252. doi: 10.1177/0091270007312154.
  • 5.   (Neupro) for the treatment of Parkinson’s disease. Issues Emerg. Health Technol. 2008;112:1–6.
  • 6.   Jessen L., Kovalick L.J., Azzaro A.J. The selegiline transdermal system (emsam): A therapeutic option for the treatment of major depressive disorder. P T Peer-Rev. J. Formul. Manag. 2008;33:212–246.
  • 7.   Johnson P., Hansen D., Matarazzo D., Petterson L., Swisher C., Trappolini A. Transderm Scop for prevention of motion sickness. N. Engl. J. Med. 1984;311:468–469. doi: 10.1056/ NEJM198408163110713.
  • 8.   Swaminathan S.K., Strasinger C., Kelchen M., Carr J., Ye W., Wokovich A., Ghosh P., Rajagopal S., Ueda K., Fisher J., et al. Determination of Rate and Extent of Scopolamine Release from Transderm Scop(R) Transdermal Drug Delivery Systems in Healthy Human Adults. AAPS PharmSciTech. 2020;21:117. doi: 10.1208/ s12249-020-01658-4.
  • 9.   Bhasin S., Storer T.W., Asbel-Sethi N., Kilbourne A., Hays R., Sinha-Hikim I., Shen R., Arver S., Beall G. Effects of testosterone replacement with a nongenital, transdermal system, Androderm, in human immunodeÀciency virus-infected men with low testosterone levels. J. Clin. Endocrinol. Metab. 1998;83:3155–3162. doi: 10.1210/jc.83.9.3155.
  • 10.   De Sanctis V., Vullo C., Urso L., Rigolin F., Cavallini A., Caramelli K., Daugherty C., Mazer N. Clinical experience using the Androderm testosterone transdermal system in hypogonadal adolescents and young men with beta-thalassemia major. J. Pediatr. Endocrinol. Metab. 1998;11((Suppl. 3)):891–900.
  • 11.   Buch A., Shen L., Kelly S., Sahota R., Brezovic C., Bixler C., Powell J. Steady-state bioavailability of estradiol from two matrix transdermal delivery systems, Alora and Climara. Menopause. 1998;5:107–112. doi: 10.1097/00042192-199805020-00009.
  • 12.   Rozenbaum H., Birkhauser M., De Nooyer C., R., Pornel B., Schneider H., Studd J. Comparison of two estradiol transdermal systems (Oesclim 50 and Estraderm TTS 50). I. Tolerability, adhesion and efÀcacy. Maturitas. 1996;25:161– 173. doi: 10.1016/S0378-5122(96)01068-7.
  • 13.   Youngkin E.Q. Estrogen replacement therapy and the estraderm transdermal system. Nurse Pract. 1990;15:19–26, 31. doi: 10.1097/00006205- 199005000-00005.
  • 14.   Wokovich A.M., Prodduturi S., Doub W.H., Hussain A.S., Buhse L.F. Transdermal drug delivery system (TDDS) adhesion as a critical safety, efÀcacy and quality attribute. Eur. J. Pharm. Biopharm. 2006;64:1–8. doi: 10.1016/j. ejpb.2006.03.009.
  • 15.   Kim Y.C., Park J.H., Prausnitz M.R. Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev. 2012;64:1547–1568. doi: 10.1016/j.addr.2012.04.005.
  • 16.   Li W.Z., Huo M.R., Zhou J.P., Zhou Y.Q., Hao B.H., Liu T., Zhang Y. Super-short solid silicon microneedles for transdermal drug delivery applications. Int. J. Pharm. 2010;389:122–129. doi: 10.1016/j.ijpharm.2010.01.024.
  • 17.   Permana A.D., Tekko I.A., McCrudden M.T.C., Anjani Q.K., Ramadon D., McCarthy H.O., Donnelly R.F. Solid lipid nanoparticlebased dissolving microneedles: A promising intradermal lymph targeting drug delivery system with potential for enhanced treatment of lymphatic Àlariasis. J. Control. Release. 2019;316:34–52. doi: 10.1016/j. jconrel.2019.10.004.
  • 18.   Cheung K., Das D.B. Microneedles for drug delivery: Trends and progress. Drug Deliv. 2016;23:2338–2354. doi: 10.3109/10717544.2014.986309.
  • 19.   Ita K. Transdermal Delivery of Drugs with Microneedles-Potential and Challenges. Pharmaceutics. 2015;7:90–105. doi: 10.3390/ pharmaceutics7030090.
  • 20.   Ashraf M.W., Tayyaba S., Nisar A., Afzulpurkar N., Bodhale D.W., Lomas T., Poyai A., Tuantranont A. Design, fabrication and analysis of silicon hollow microneedles for transdermal drug delivery system for treatment of hemodynamic dysfunctions. Cardiovasc. Eng. 2010;10:91–108. doi: 10.1007/s10558-010-9100-5.
  • 21.   O’Mahony C., Sebastian R., Tjulkins F., Whelan D., Bocchino A., Hu Y., O’Brien J., Scully J., Hegarty M., Blake A., et al. Hollow silicon microneedles, fabricated using combined wet and dry etching techniques, for transdermal delivery and diagnostics. Int. J. Pharm. 2023;637:122888. doi: 10.1016/j. ijpharm.2023.122888.
  • 22.   Ma Y., Gill H.S. Coating solid dispersions on microneedles via a molten dip-coating method: Development and in vitro evaluation for transdermal delivery of a water-insoluble drug. J. Pharm. Sci. 2014;103:3621–3630. doi: 10.1002/ jps.24159.
  • 23.   B.Z., He M.C., Zhang X.P., Fei W.M., Cui Y., Guo X.D. A novel method for fabrication of coated microneedles with homogeneous and controllable drug dosage for transdermal drug delivery. Drug Deliv. Transl. Res. 2022;12:2730– 2739. doi: 10.1007/s13346-022-01123-8.
  • 24.   Chen Y., Chen B.Z., Wang Q.L., Jin X., Guo X.D. Fabrication of coated polymer microneedles for transdermal drug delivery. J. Control. Release. 2017;265:14–21. doi: 10.1016/j. jconrel.2017.03.383.
  • 25.   Gill H.S., Prausnitz M.R. Coated microneedles for transdermal delivery. J. Control. Release. 2007;117:227–237. doi: 10.1016/j. jconrel.2006.10.017.
  • 26.   Dalvi M., Kharat P., Thakor P., Bhavana V., Singh S.B., Mehra N.K. Panorama of dissolving microneedles for transdermal drug delivery. Life Sci. 2021;284:119877. doi: 10.1016/j. lfs.2021.119877.
  • 27.   Dillon C., Hughes H., O’Reilly N.J., McLoughlin P. Formulation and characterisation of dissolving microneedles for the transdermal delivery of therapeutic peptides. Int. J. Pharm. 2017;526:125–136. doi: 10.1016/j.ijpharm.2017.

Data Sharing Statement

There are no additional data available

Funding

This research received no funding

Author Contributions

All authors contributed significantly to the work and approve its publication

Ethics Declaration

This article does not involve any human or animal subjects, and therefore does not require ethics approval

Acknowledgements

Information Not Provided

Conflicts of Interest

No conflicts of interest in this work


About this article


Cite this article

Sandhiya, Deepa N, Salma R, et al. Recent Advance in Transdermal Patch. RFP Jr of Drea. 2024;9(1):25-29.


Licence:

Attribution-Non-commercial 4.0 International (CC BY-NC 4.0)

This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator


Received Accepted Published
March 28, 2024 April 23, 2024 June 30, 2024

DOI: NA

Keywords

Transdermal patchTypesAdvance in transdermal patch

Article Level Metrics

Last Updated

Monday 26 January 2026, 18:54:47 (IST)


35

Accesses

0
4
00

Citations


NA
NA
NA

Download citation


Article Keywords


Keyword Highlighting

Highlight selected keywords in the article text.


Timeline


Received March 28, 2024
Accepted April 23, 2024
Published June 30, 2024

licence


Attribution-Non-commercial 4.0 International (CC BY-NC 4.0)

This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator


Access this article



Share