T. Sowmyya Assistant Professor, Forensic Science Unit, Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana,, India
Suraj Sundaragiri Assistant Professor, Department of Forensic Medicine and Toxicology, Gandhi Medical College, Secunderabad, Telangana,, India
Chaitanya Mittal Assistant Professor, Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, Patna, India
Rajesh Balkath Part time Faculty, Forensic Science Unit, Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana, India
Ayesha Siddiqua Student, University College for Women, Koti, Hyderabad, Telangana, India
Address for correspondence: T. Sowmyya, Assistant Professor, Forensic Science Unit, Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana,, India E-mail: dr.sowmyya@osmania.ac.in
This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator.
Sowmyya T., Sundaragiri S., Mittal C., et al. Bloodstain Pattern Analysis on Various Surfaces Using Simulated
Blood: A Forensic Approach. Indian J Forensic Med Pathol. Oct-Dec; 18(4): 263-270
Timeline
Received : July 07, 2025
Accepted : September 05, 2025
Published : December 30, 2025
Abstract
Background: Bloodstains are commonly encountered biological evidence at the crime scenes. Bloodstain pattern analysis provides crucial information about height of fall, angle and force of impact assisting in crime scene reconstruction. Objective: The present study was conducted to evaluate the influence of surface characteristics and height of drop of fall of blood drop on various porous and nonporous surfaces on bloodstain pattern analysis for forensic purpose. Methodology: In the present study, simulated blood was prepared using red water color and corn flour homogenized with distilled water to attain the consistency and appearance of real blood avoiding ethical implications associated in using real blood. The experiment was conducted to examine the bloodstain patterns formed on various porous (paper, cardboard and soil) and non-porous (glass, metal and tile) surfaces when simulated blood was dropped passively from various heights with a constant impact angle of 90º. The experiment was carried out in triplicate. The bloodstains were analyzed for the shape, size and distribution. Results: The results showed an increase in size of the stain with increase in height of fall across all surfaces. Depending on point of impact, soil showed different bloodstain patterns while paper and cardboard due to their absorbent nature displayed larger stains with prominent satellite stains and spikes on the edges of the central stain. Non-porous surfaces displayed more uniform smaller stains with no spikes on the edges and few secondary stains. Conclusion: Simulated blood can be used as an effective, ethical and safer substitute to real blood for employing in training, research and forensic experimentations.
References
1. James S.H., Kish P.E., Sutton T.P. Principles of Bloodstain Pattern Analysis. Boca Raton (FL): CRC Press; 2005. doi:10.1201/9781420039467.
2. Erbisti P.C.F., Gardner R.M. Bloodstain Pattern Analysis with an Introduction to Crime Scene Reconstruction. Boca Raton (FL): CRC Press; 2008. doi:10.1201/9781420052725.
3. Dror I.E. Bloodstain Pattern Analysis (BPA): Validity, reliability, cognitive bias, and error rate. Sci Justice. 2025; 65(3): 101245. doi:10.1016/j.scijus.2025.02.002. Sowmyya T., Sundaragiri S., Mittal C., et al. Bloodstain Pattern Analysis on Various Surfaces Using Simulated Blood: A Forensic Approach.270 Indian Journal of Forensic Medicine and Pathology IJFMP/Volume 18 Number 4 October–December 2025
4. Hook E., Fieldhouse S., Flatman-Fairs D, Williams G. Bloodstain classification methods: A critical review and a look to the future. Sci Justice. 2024; 64(4): 408–20. doi:10.1016/j. scijus.2024.06.004.
6. Attinger D., Moore C., Donaldson A., Jafari A., Stone H.A. Fluid dynamics topics in bloodstain pattern analysis: Comparative review and research opportunities. Forensic Sci Int. 2013; 231(1-3): 375–96. doi:10.1016/j. forsciint.2013.04.018.
7. Singh P., Gupta N., Rathi R. Blood pattern analysis—a review and new findings. Egypt J Forensic Sci. 2021; 11(1): 9. doi:10.1186/s41935- 021-00224-8.
8. Adam C.D. Fundamental studies of bloodstain formation and characteristics. Forensic Sci Int. 2012; 219(1-3): 76–87. doi:10.1016/j. forsciint.2011.12.002.
9. Laan N., de Bruin K.G., Bartolo D., Josserand C., Bonn D. Maximum Diameter of Impacting Liquid Droplets. Phys Rev Appl. 2014; 2(4): 044018. doi:10.1103/ PhysRevApplied.2.044018.
10. Taylor M.C., Laber T.L., Kish P.E., Owens G., Osborne N.K.P. The Reliability of Pattern Classification in Bloodstain Pattern Analysis, Part 1: Bloodstain Patterns on Rigid Nonabsorbent Surfaces. J Forensic Sci. 2016; 61(4): 922–7. doi:10.1111/1556-4029.13091.
11. Taylor M.C., Laber T.L., Kish P.E., Owens G., Osborne N.K.P. The Reliability of Pattern Classification in Bloodstain Pattern Analysis — PART 2: Bloodstain Patterns on Fabric Surfaces. J Forensic Sci. 2016; 61(6): 1461–6. doi:10.1111/1556-4029.13191.
12. Buck U., Kneubuehl B., Näther S., Albertini N., Schmidt L., Thali M. 3D bloodstain pattern analysis: Ballistic reconstruction of the trajectories of blood drops and determination of the centres of origin of the bloodstains. Forensic Sci Int. 2011; 206(1-3): 22–8. doi:10.1016/j.forsciint.2010.06.010.
13. Comiskey P.M., Yarin A.L., Kim S., Attinger D. Prediction of blood back spatter from a gunshot in bloodstain pattern analysis. Phys Rev Fluids. 2016; 1(4): 043201. doi:10.1103/ PhysRevFluids.1.043201.
14. Kunz S.N., Brandtner H., Meyer H.J. Characteristics of Backspatter on the Firearm and Shooting Hand—An Experimental Analysis of Close-range Gunshots. J Forensic Sci. 2015; 60(1): 166–70. doi:10.1111/1556- 4029.12572.
15. Sonia R. Investigation of Stain Patterns from Diverse Blood Samples on Various Surfaces. J Forensic Sci Res. 2024; 8(1): 028–34. doi:10.29328/journal.jfsr.1001061.
16. Bergmann T., Labudde D., Thomas A., Grabherr S. Chronology of forensic bloodstain age estimation using UV–Vis spectroscopy—A comprehensive review. Forensic Sci Int. 2025; 374:112530. doi:10.1016/j.forsciint.2025.112530.
17. Wang F., Gallardo V., Michielsen S., Fang T. Dynamics of blood falling on three types of cotton fabrics and resulting bloodstains. Forensic Sci Int. 2025; 374: 112543. doi:10.1016/j. forsciint.2025.112543. 18. Jung H., Jo Y.S., Ahn Y., Jeong J, Lim S.K. A first step towards a machine learning-based framework for bloodstain classification in forensic science. Forensic Sci Int. 2024; 365: 112278. doi:10.1016/j.forsciint.2024.112278.
19. Rough R., Batchelor O., Green R., BainbridgeSmith A. An automated method for the generation of bloodstain pattern metrics from images of blood spatter patterns. Forensic Sci Int. 2024; 363: 112200. doi:10.1016/j. forsciint.2024.112200.
20. Dicken L., Knock C., Carr D.J., Beckett S. The effect of the digital printing of fabric on the morphology of passive bloodstains. Forensic Sci Int. 2022; 341: 111515. doi:10.1016/j. forsciint.2022.111515.
21. Zou T., Stern H.S. Towards a likelihood ratio approach for bloodstain pattern analysis. Forensic Sci Int. 2022; 341: 111512. doi:10.1016/j. forsciint.2022.111512.
22. Dicken L., Knock C., Carr D.J., Beckett S. The effect of reactive dyeing of fabric on the morphology of passive bloodstains. Forensic Sci Int. 2022; 336: 111317. doi:10.1016/j. forsciint.2022.111317.
23. Bastide B., Porter G., Renshaw A. The effects of heat on the physical and spectral properties of bloodstains at arson scenes. Forensic Sci Int. 2021; 325: 110891. doi:10.1016/j. forsciint.2021.110891.
24. Lee S.Y., Seo Y.I., Moon B.S., et al. Study on development of forensic blood substitute: Focusing on bloodstain pattern analysis. Forensic Sci Int. 2020; 316: 110461. doi:10.1016/j. forsciint.2020.110461.
25. Miles H.F., Morgan R.M., Millington J.E. The influence of fabric surface characteristics on satellite bloodstain morphology. Sci Justice. 2014; 54(4): 262–6. doi:10.1016/j. scijus.2014.04.002.
26. Hulse-Smith L., Mehdizadeh N., Chandra S. Deducing Drop Size and Impact Velocity from Circular Bloodstains. J Forensic Sci. 2005; 50(1): JFS2003224–10. doi:10.1520/JFS2003224
Data Sharing Statement
There are no additional data available. All raw data and code are available upon request.
Funding
This research received no funding.
Author Contributions
All authors contributed significantly to the work and approve its publication.
Ethics Declaration
This article does not involve any human or animal subjects, and therefore does not require ethics approval.
Acknowledgements
We would like to express our gratitude to the patients, their families, and all those who have contributed to this study.
Conflicts of Interest
No conflicts of interest in this work.
About this article
Cite this article
Sowmyya T., Sundaragiri S., Mittal C., et al. Bloodstain Pattern Analysis on Various Surfaces Using Simulated
Blood: A Forensic Approach. Indian J Forensic Med Pathol. Oct-Dec; 18(4): 263-270
This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator.
This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator.