STUDY OF THE IMPACT OF LEUCOCYTE REDUCTION ON THE COAGULATION FACTORS IN FRESH FROZEN PLASMA

ORIGINAL ARTICLE

Study of the Impact of Leucocyte Reduction on the Coagulation Factors in Fresh Frozen Plasma

Vijayashree Raghavan¹, Femela Muniraj²

ABSTRACT

Introduction: Plasmatransfusionis required to arrest or prevent bleeding, for various congenitalandacquiredcasesofcoagulopathiessuchasinheritedfactordeficiencies, disseminatedintravascularcoagulation, liverdisease, postmajortrauma, etc. Leukocyte reducedbloodcomponentsareindicatedtopreventthefebrilenonhemolytictransfusion reactions, Human Leukocyte Antigen (HLA) alloimmunization, transmission of infections such as cytomegalovirus (CMV), and adverse transfusion reactions due to storagelesion.Inthepresentstudy,theeffectofplasmafiltrationoneightcoagulation factorsviz.fibrinogen,factorsII,V,VII,VIII,IX,XandXIhasbeenstudied.Materials and Methods: The plasma separated from the whole blood donation from each of 25donorswasseparatedintotwoaliquots.Group-1includedunfilteredfreshfrozen plasma; group-2 included fresh frozen plasma which was subjected to pre-storage leukocytereductionbyfiltration. Thelevels of the coagulation factors Fibrinogen, II, V, VII, VIII, IX, X, XI were estimated in each sample in both the groups. **Results:** There wasnostatisticallysignificant difference in the levels of any of the coagulation factors included in this study, between the unfiltered and the leukocytered uced plasma. Group Opositive individuals were found to have higher levels of all the coagulation factors. Conclusion: Filtration of plasma has no effect on the coagulation factors. This is the firststudywheretheeffectofplasmafiltrationoneightcoagulationfactorshasbeen studied.BloodgroupOpositiveindividualswerefoundtohavehigherlevelsofallthe eight coagulation factors.

Keywords: Blood coagulation factor; Blood component transfusion; Filtration, Leukocyte reduction; Fresh frozen plasma.

INTRODUCTION

lasma is required for transfusion in various congenital and acquired cases of coagulopathies such as inherited factor deficiencies, disseminated intravas cular coagulation, liver disease. The major cause of death following major trauma, in 10-25% patients is a cute traumatic coagulopathy. Among the treatment options for various causes of a cutebleeds, factor replacement is considered as the main stay of treatment.

Author's Credentials:

¹Professor & Head, ²Professor, Department of Pathology, Chettinad Hospital and Research Institute, Kelambakkam, Tamilnadu 603103, India.

Corresponding Credentials:

Femela Muniraj,

Professor, Department of Pathology, Chettinad Hospital and Research Institute, Kelambakkam, Tamilnadu 603103, India.

e-mail: fppathology@ gmail.com

Received on: 07.10.2021 **Accepted on:** 31.12.2021

How to cite this article

Vijayashree Raghavan, Femela Muniraj/Study of the Impact of Leucocyte Reduction on the Coagulation Factors in Fresh Frozen Plasma /Indian Journal of Forensic Medicine and Pathology/2021;14(4):819-824

Among the inherited bleeding disorders in Indianpopulation, Hemophilia Aisthecommonest comprising 42.4% of cases, followed by platelet function defects comprising 39.2% of cases. Von Willebrand disease is relatively uncommon in Indians, comprising 8.5% of cases. The deficiencies offactorsIX,X,XIII,V,VII,XI,XII,afibrinogenemia comprise 5.1%, 1.8%, 0.8%, 0.6%, 0.2%, 0.2%, 0.1%, 0.5% of cases respectively.2

Bioactive substances in Fresh frozen plasma (FFP) are considered to be responsible for the transfusion-related adverse events, especially in patients with sepsis and trauma. Leukocyte reduced(LR) blood components are indicated to prevent the febrile nonhemolytic transfusion reactions, Human Leukocyte Antigen (HLA) alloimmunization,transmissionofinfectionssuch ascytomegalovirus(CMV), and adverse transfusion reactions due to storage lesion.6

TransfusionofleucocytereducedFFPreduces theallogenicimmunogenicityinducedbyresidual leucocytes.7 The leukocytes in the plasma are clearedmainlybyfiltration.7Leukocytereduction preventstheaccumulationofcytokinesreleasedby theleukocytesintothestoragebag.6Theactivitiesof coagulation factors were not found to be affected by wholebloodfiltrationbeforecomponentseparation. However, the activation of the coagulation system by the filter material cannot be excluded.8

Previous studies have compared the levels of some of the coagulation factors/anticoagulants, betweentheunfiltered(UF)andleucocyte-reduced (LR) whole blood and plasma, wherein plasma filtration and its effect on the coagulation factors have been studied only by a few researchers. In the present study, the effect of plasma filtration on eightcoagulationfactorsviz.fibrinogen,factorsII, V, VII, VIII, IX, X and XI has been studied.

Efficient utilization of blood components with a good knowledge about their quality and maintenancehelpusimprovethemanagementof thebloodbankinventoryandefficientintervention with strategic transfusion therapy prevents the death in case of major trauma. 1,3

Abbreviations Used

FFP: Fresh frozen plasma

UF: Unfiltered

LR: Leukocyte reduced/Leukocyte reduction CI: Confidence interval

Objectives

The objectives of this study are to compare the levels of factors I, II, V, VII, VIII, IX, X, XI between unfilteredFFPandLRFFP,andbetweendifferent bloodgroups. This helps us to find out the effect of filtration on the factors and thus its impact on the management of patients with coagulopathies.

MATERIALS AND METHODS

The study was commenced aftergetting approval from the Institutional Human Ethics Committee. Whole blood collected from 25 healthy donors who consented for participation in the study and fulfilled the eligibility criteria were separated into components. The donors who participated in this study belonged to blood groups Apositive, B positive and O positive. The plasma from each donorwasseparated into two aliquots, so that there aretwogroupseachof25plasmaaliquots.Group-1 included unfiltered FFP, that is, plasma freshly separated within 6 hours and frozen immediately after separation; group-2 included FFP which was subjected to pre-storage leukocyte reduction by filtration with Terumo Penpol Imugard III polyurethanefilterwithin6to8hoursafterblood collection.

The aliquots were frozen at a temperature between -30 and -40° cuntil analysis. Analysis of coagulation factors was carried out within 24 hours after blood collection. Before analysis, they were thawed and the levels of the coagulation factors Fibrinogen, II, V, VII, VIII, IX, X, XI were estimated ineachsample, with the fully automated coagulation analyzer ACL Elite/Elite Pro (Instrumentation LaboratoryCo.)inboththegroups.Thebiological referencerangeforplasmaFibrinogen,FactorsII,V, VII, VIII, IX, X, XI are 180-360 mg/dl, 79 to 131%, 62 to 139%, 50 to 129%, 50 to 150%, 65 to 150%, 77 to 131% and 65 to 150% respectively (8–16).

Statistical analysis was done using GraphPad Prism software. Descriptive statistics including mean, standard deviation, range, confidence intervalwasperformed.Comparisonbetweenthe unfilteredandLRsampleswasdonewithmultiple t test and Wilcoxon signed rank test. The results were considered to be statistically significant if

Table 1: Comparison of the levels of coagulation factors between unfiltered and leukocyte reduced plasma.

Coagulation factor	Unfiltered			Range		Leukocyte reduced			Range		
	Mean	SD	95% C.I.	Min	Max	Mean	SD	95% C.I.	Min	Max	Pvalue
Fibrinogen	298.2	73.56	30.36	189	447	280.6	51.98	21.45	196	427	0.33
Factor II	94.54	11.93	4.93	68.2	113	95.62	12.8	5.28	66.4	125	0.76
Factor V	86	16.1	6.66	57.1	113	92.07	19.29	7.96	53.3	123	0.24
Factor VII	90.62	22.63	9.33	50.6	129	93.49	21.86	9.02	48.5	129	0.65
Factor VIII	116	34.4	14.19	21.8	150	98.7	29.5	12.18	58.3	150	0.07
Factor IX	115.8	43.69	18.03	35.2	150	119	38.4	15.86	48.2	150	0.78
Factor X	84.9	13.46	5.56	54.4	105	91.6	14.5	6.01	65.3	120	0.10
Factor XI	72.34	37.43	15.45	12.6	147	67.9	37.4	15.44	27.9	171	0.68

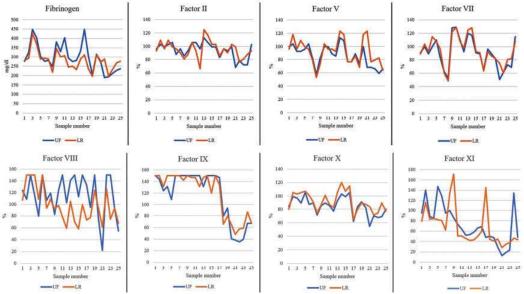


Fig.1: Comparison of the levels of coagulation factors between unfiltered and leukocytered uced FFP.

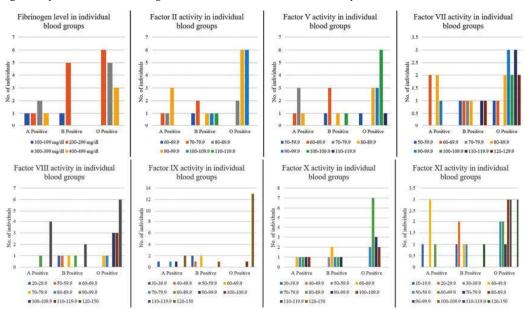


Fig. 2: Coagulation factors activities in UF-FFP in individual blood groups.

the 'p' value is < 0.05. Quality control was ensured with routine quality assurance methods such as periodiccalibration of the equipment, processing of commercial QC samples, participation in EQAS, quality control checking of blood bags.

RESULTS

The results of the analysis are given in Table 1 and Figure 1. In the unfiltered plasma, the level of Fibrinogen ranged from 189 mg/dl to 447 mg/ dl and the mean value was $298.2 \,\text{mg/dl} (95\% \,\text{CI} =$ 30.36);theactivitiesofFactorIIrangedfrom68.2% to 113% with a mean of 94.54% (95% CI = 4.93); Factor V ranged from 57.1% to 113% with a mean of 86% (95% CI = 6.66); Factor VII ranged from 50.6% to 129% with a mean of 90.62% (95% CI = 9.33); Factor VIII ranged from 21.8% to 150% with ameanof116%(95%CI=14.19);FactorIXranged from 35.2% to 150% with a mean of 115.8% (95% CI = 18.03); Factor X ranged from 54.4% to 105% with a mean of 84.9% (95% CI = 5.56); Factor XI rangedfrom 12.6% to 147% with a mean of 72.34% (95% CI = 15.45).

In the leucocyte reduced plasma, the level of Fibrinogen ranged from 196 mg/dl to 427 mg/dl and the mean value was 280.6 (95% CI = 21.45) mg/dl;theactivitiesofFactorIIrangedfrom66.4% to 125% with a mean of 95.62% (95% CI = 5.28); FactorVranged from 53.3% to 123% with a mean of 92.07% (95% CI=7.96); Factor VII ranged from 48.5% to 129% with a mean of 93.49% (95% CI = 9.02); Factor VIII ranged from 58.3% to 150% with ameanof98.7%(95%CI=12.18);FactorIXranged from 48.2% to 150% with a mean of 119% (95% CI =15.86); FactorXrangedfrom65.3% to 120% with amean of 91.6% (95% CI = 6.01); Factor XI ranged from 27.9% to 171% with a mean of 67.9% (95% CI = 15.44).

There was statistically significant difference in the levels of coagulation factors Fibrinogen, FV, FVIII, FX between the unfiltered and leukocyte reduced plasma. The difference in the levels of FII, FVII, FIX, FXI were not significant.

The individuals included in the study belonged to blood groups A positive, B positive and O positive. When the individual blood groups were compared for the activities/ levels of coagulation factors, in blood group 'A

positive', most of the individuals had Fibrinogen levels in the range of 300 - 399 mg/dl; Factor II activity in the range of 90 - 99.9%; Factor V in the range of 70 - 79.9%; Factor VII in the range of either 60 - 69.9% or 80 - 89.9%; Factor VIII in the range of 120 - 150%; Factor IX in the range of 120 - 150%; Factor XI in the range of 40 - 49.9%. All ranges of Factor X activity were equally distributed among the A positive individuals.

In blood group 'B positive', most of the individuals had Fibrinogen levels in the range of 200 - 299 mg/dl; Factor II activity in the range of 70 - 79.9%; Factor V in the range of 60 - 69.9%; Factor VIII in the range of 120 150%; Factor IX in the range of either 30 -39.9% or 60 - 69.9%; Factor X in the range of 60 - 69.9%; Factor XI in the range of 20-29.9%. All ranges of Factor VII activity were equally distributed among the B positive individuals.

In blood group 'O positive', most of the individuals had Fibrinogen levels in the range of 200-299mg/dl;FactorIIactivityintherangeof90 - 109.9%; Factor V in the range of 100 - 109.9%; Factor VII in the range of either 90 - 99.9% or 110 -119.9%; Factor VIII in the range of 120 - 150%; Factor IX in the range of 120 - 150%; Factor X in the range of 80 - 89.9%; Factor XI in the range of either 80 - 99.9% or 120 - 150%. (Figure 2).

DISCUSSION

In July 1998, UK Transfusion services implemented universal leucodepletion, that is, leucodepletion of all blood units, to prevent the risk of transmission of variant Creutzfeldt-Jakob disease via blood transfusion. Though filtration of red cells has already been in practice in the UK, this new guideline initiated the process of filtration of FFP.9

The incidence of congenital bleeding disorders may vary depending on the ethnic origin.2 While Von Willebrand disease is the most common inherited bleeding disorder in the industrialized world, Hemophilia A is found to be the most common and qualitative platelet defect is the second most common inherited bleeding disorder in India.² In the study by Gupta M et al, platelet function defects were more prevalent among females,

whereas the coagulation defects were rare.2 The incidence of VWD is lower in India, as compared to the west, because of the fact that only symptomatic patients presented to the outpatient department.2 Factor X deficiency is a very rare hereditary bleeding disorder and it is found to be more common in communities accepting consanguineous marriages.¹⁰

Leukocyte reduction prevents the release of cytokines by the leukocytes into the storage bag.6 Theconcentrationsofbioactivesubstancessuchas Histamine, Myeloperoxidase, Eosinophilcationic protein were found to be higher in unfiltered FFP thawed after storage, compared to FFP samples whicharefilteredbeforestorage, and FFP samples which are unfiltered and tested before freezing and storage.5 LR filters have a variable effect on the activities of coagulation factors which may be attributed to the possibility of adherence of the coagulationfactorstothesurfaceofthefilterwhich is made of either polyester or polyurethane. 11,12

Management of coagulopathy in patients post major trauma is difficult and FFP transfusion should be started during the primary survey phase of resuscitation, instead of considering as a product for volume replacement, during massive transfusion.3

In our study, none of the coagulation factors showed any significant difference between the unfiltered and leukocyte reduced plasma. Various studies have analyzed the effect of filtration over the coagulation factors. In the study by Alhumaidan et al, PT, APTT, activities of factors V, VII, VIII, X, XI, fibrinogen, antithrombin III, protein C and free protein S were compared between filtered and unfiltered plasma.11

Thepairedplasmaaliquotswerestoredat-18°c untilassessment. Then the aliquots were thaw ed and the coagulation as says were performed. They were stored at 1 to 6°c until further analysis on days 5 and 7. Factors VII, VIII, IX showed decrease whereas factors V, X, fibrinogen showed no difference between the filtered and unfiltered plasma.¹¹ Shooshtari et al studied sixty units of plasma separated from whole blood for the activities of coagulation factors V, VII, VIII, IX, XI, Fibrinogen, Antithrombin, Antitrypsin. The filtration had been done between 4 and 20 hours of blood donation.

Except for the negligible change in the activity of factorVII, there was no significant difference in the activities of the coagulation factors and inhibitors involved in this study, between the filtered and unfiltered plasma. 12 Williamson et al studied the effectofwholebloodfiltrationonthecoagulation factorsinplasmaseparated from the whole blood. Therewas decrease in factor VIII, increase in factor V, and no changes in factors IX, X, fibrinogen during 12 months of storage, but without statistical significance.¹³ In the study by Cardigan et al, the coagulation factors in filtered FFP were evaluated, employing either whole blood or plasma filters. Significant reduction in factors V, VIII, IX, XI, XII was observed after filtration.9

In the study by Heiden M et al, there were no significant differences between the coagulation factoractivitiesofunfilteredFFPandFFPobtained from whole blood filtration.¹⁴ In the study by Solheimetal, pre-storageleukocytefiltration had been done with whole blood filter and the levels of coagulation factors were found to be improved with it. 15 In the study by Chabanel et al, the levels ofcoagulationfactorshadbeenmaintainedwithin thenormalreferencerangeintheplasmasstoredat -30°c for 6 months.16

In our study, the filtration of plasma was done within 6 to 8 hours after blood collection, immediately after separation into components, that is, before storage. Separation by centrifugation was done within 6 hours after blood collection. In the study by Cardigan et al, whole blood or plasma were filtered within 8 hours of blood collection. Neutrophils get activated and elastase is released if whole blood is filtered after storage at room temperature.12 Hence pre-storage leukocyte reduction is preferable.

Factor VIII is affected by ABO blood group.¹⁷ Blood from group A individual contains higher amounts of factor VIII activity and antigen than that from a group O individual.¹⁸ But in our study, higher levels of all the coagulation factors were found in group O positive individuals.

CONCLUSION

Filtration of plasma does not have any effect on the coagulation factors. Hence leucocyte reduction can be done in the plasma for patients who need it. This is the first study where the effect of plasma filtration on eight coagulation factors has been studied. Blood group O positive individuals were found to have higher levels of all the eight coagulation factors.

Funding

The authors have funded themselves to undertake this research. This research did not receive any specific grant from funding agencies in the public, commercial, or not-forprofit sectors.

Conflicts of Interest: None

REFERENCES

- 1. Dogra M, Sidhu M, Vasudev R, Dogra A. Comparative analysis of activity of coagulation Factors V and VIII and level of fibrinogen in fresh frozen plasma and frozen plasma. Asian J Transfus Sci. 2015;9(1):6.
- 2. Gupta M, Bhattacharyya M, Choudhry VP, Saxena R. Spectrum of Inherited Bleeding Disorders in Indians. Clin ApplThromb. 2005 Jul:11(3):325-30.
- 3. Mitra B, Cameron P, Mori A, Fitzgerald M. Acute coagulopathy and early deaths post major trauma. Injury. 2012;43:22-5.
- 4. 'Consensus in Diagnosis and Management of Hemophilia' Committee, Indian Academy of Pediatrics, Sachdeva A, Gunasekaran V, Ramya HN, Dass J, Kotwal J, et al. Consensus Statement of the Indian Academy of Pediatrics in Diagnosis and Management of Hemophilia. Indian Pediatr. 2018 Jul;55(7):582-
- 5. Nielsen HJ, Reimert C, Pedersen AN, Dybkjoer E, Brünner N, Alsbjørn B, et al. Leucocyte-derived bioactive substances in fresh frozen plasma. Br J Anaesth. 1997 May;78(5):548-52.
- 6. Quinley ED, editor. Immunohematology: principles and practice. 3rd ed. Baltimore, MD: Lippincott Williams & Wilkins; 2011. 411 p.

- 7. Hiruma K, Okuyama Y. Effect of leucocyte reduction on the potential alloimmunogenicity of leucocytes in fresh-frozen plasma products. Vox Sang. 2001;80(1):51-6.
- 8. Li D-Y, Zhang H-W, Feng Q-Z, Zhao H. Impacts of leukocyte filtration and irradiation on coagulation factors in fresh frozen plasma. Exp Ther Med. 2015 Feb;9(2):598-602.
- 9. Cardigan R, Sutherland J, Garwood M, Krailadsiri P, Seghatchian J, Beard M, et al. The effect of leucocyte depletion on the quality of fresh-frozen plasma: Effect of Leucodepletion on FFP. Br J Haematol. 2001 Jul;114(1):233-40.
- 10. Annual report 2019. Hemophilia Federation India. 2019;
- 11. Alhumaidan HS, Cheves TA, Holme S, Sweeney JD. The Effect of Filtration on Residual Levels of Coagulation Factors in Plasma. Am I Clin Pathol. 2013 Ian 1:139(1):110-6.
- 12. MahmoodianShooshtari M, Mousavi Hosseini K. Evaluation of the plasma quality after filtration. DARU. 2010;18(2):114-7.
- 13. Williamson, Rider, Swann, Winter, Ali, Pamphilon. Evaluation of plasma and red cells obtained after leucocyte depletion of whole blood. Transfus Med. 1999 Jan;9(1):51-61.
- 14. Heiden M, Salge U, Henschler R, Pfeiffer H-U, Volkers P, Hesse J, et al. Plasma quality after whole-blood filtration depends on storage temperature and filter type. Transfus Med. 2004 Aug;14(4):297-304.
- 15. Solheim BG, Flesland O, Brosstad F, Mollnes TE, Seghatchian J. Improved preservation of coagulation factors after pre-storage leukocyte depletion of whole blood. TransfusApher Sci. 2003 Oct:29(2):133-9.
- 16. Chabanel A. Sensebé I. Masse M. Maurel IP. Plante I. Hivet D. et al. Quality BlackwellPublishingLtd. assessment of seven types of fresh-frozen plasma leucoreduced by specific plasma filtration. Vox Sang. 2003;10.
- 17. Downes K, Wilson E, Yomtovian R, Sarode R. Serial measurement of clotting factors in thawed plasma stored for 5 days. Transfusion (Paris). 2001;41:570.
- 18. Alakech B, Miller B, Berry TH, Ambruso DR. Coagulation Profile for Cryoprecipitate Produced From 24-Hour Stored Whole Blood. Lab Med. 2009 Sep;40(9):540-3.

