Prediction Model for Low Birth Weight and its Validation

Avantika Singh*, Sugandha Arya**, Harish Chellani***, K.C. Aggarwal****, R.M. Pandey*****

Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India E-mail: avantika.sjh@gmail.com

Background

Despite the enormous role of Low Birthweight in neonatal mortality and morbidity as well as adolescent and adult morbidity, no clinical attempt is made to predict the possibility of a LBW neonate. A study conducted in Cleveland, Ohio proposed a Four-factor scale (low family functioning, stressful events, Quetelet's Index, cigarette smoking) which predicted LBW with 65% sensitivity, 84% specificity and 42% positive predictive value. The need for such a scale in the Indian context was strongly felt and the present study undertaken.

Aims & Objectives

To assess the factors associated with LBW and formulate a scale to predict the probability of having a LBW infant.

Material & Methods

Cases were defined as all live neonates weighing <2500g at birth and controls as those e"2500g. Maternal and neonatal data for various risk factors was collected by personal interview(structured questionnaire) and from hospital records. Data for a total of 250 cases and 250 controls were gathered out of which 200 cases and 200 controls were selected using a table of random numbers and were used to study the risk factors and to arrive upon a prediction model. Validation of the prediction model was then done on the rest of 50 cases and 50 controls. Various statistical tests were employed including Goodness-of-fit test and ROC curve obtained for the prediction model.

Results

Mean weight of cases was 1.99±.41kg vs. controls

3.03±.39kg. 39.6% of the cases were preterm and 63.2%SGA. Factors significantly associated with LBW by multivariate analysis were: weight gained by mother during pregnancy <8.9 kg(OR, 6.1 [95%CI, 1.3 -27.8]; P=0.02), inadequate proteins in diet (<47 g/day) (OR,6.1 [95%CI, 1.2 -36.1]; P=0.04), female sex of baby (OR,4.2 [95%CI, 1.1 -16.4]; P=0.04), anaemic mother(Hb<11.0g/dL)(OR,20.0 [95%CI, 1.6 -246.5]; P=0.02), passive smoking (by father)(more than 5 cig/bidi per week) (OR,5.6 [95%CI, 1.1 -29.4]; P=0.04), previous preterm baby (OR,6.9 [95%CI, 1.4 -33.8]; P=0.02) and previous LBW baby(OR,6.2 [95%CI, 1.7 -23.3]; P=0.01).On univariate analysis: primigravida, nulliparity, pre-pregnancy BMI<20.621, mother's height<1.5324 metre, inadequate calories(<1667.1 kcal/ day), Educational Status (less than or equal to intermediate), ANC visits <4, pre-pregnancy weight<45 kg, multiple births(twins), hypertension (chronic/ gestational), proteinuria, acute serious infections, recurrent UTI, inadequate spacing(<24 months) and inadequate calories in diet (<1667.1 kcal/day) were also found significant. Having a single live issue appeared protective. Previous abortion did not increase risk for LBW neonate. Using above data, a prediction model was then formulated and scores were given to each of the factors: weight gain by the mother during pregnancy <8.9 kg, proteins in diet <47 g/day, previous preterm baby, previous LBW baby, Hb <11.0g/dl in mother and smoking e"5 cig/bidi by father. A cut-off score was chosen which gave this model a sensitivity of 71.58% & specificity of 66.98%. Validation of the model was done and it revealed a sensitivity of 72.0% & specificity 64%.

Conclusions

Prevalence of LBW can be reduced by addressing the specific risk factors many of which are preventable. Based on above results, a simplified scale has been developed and validated as a prediction model for LBW.