Fish Diversity and Water Quality Assessment of the River Damodar in and around Burdwan, West Bengal, India

Indranil Bhattacharjee*, Biplab Mandal**, Partha Sarathi Roy*

Abstract

The ichthyofauna in relation to water quality was studied on monthly basis from March 2014 to February 2015, in the Damodar River, Burdwan district, West Bengal. The result of present investigation reveals the occurrence of 35 species of fishes belonging to 6 Order, 15 families and 23 genera were recorded. Among the collected species Order Cyprinidontiforms constituting 41%, Order Perciformes constituting 37%, Order Siluriformes constituting 16%, of the total fish species. The highest richness was found in sampling site- 1– Krisak Setu. The maximum species richness (33) was recorded in site- 1 and low species richness (27) was recorded in site-2. The highest Shannon value was recorded to be (3.29) in site- 2. The low Shannon value was (2.68) in site- 3. Water parameters such as temperature, pH, alkalinity, dissolved oxygen, hardness, free CO_2 , salinity, total inorganic nitrogen, and phosphate were recorded and found suitable for fish production. Conductivity, transparency, and high chloride level are minor limiting factor that may needs rectification for improved fisheries management.

Keywords: Fish Diversity; Water Parameters; Biodiversity Indices; Damodar River; Burdwan; West Bengal.

Introduction

The aquatic ecosystem is highly dependent on water quality and biological diversity. Physicochemical parameters of water play a significant role in the biology and physiology of fish (Dhawan and Kaur, 2002). Fish is very rich source of protein as well as vitamins and other minerals. In addition, to this nutrient values fishes are used in several medical treatments, provide aesthetic beauty in aquariums. Due to these multiple uses of fisheries resources, fishing has become a major industry in country like India and provided livelihood for several families. These important biological resources are under threat of extinction due to habitat and environmental degradation has critically affected the fauna of fishes. Knowledge on available information and the biological characters of fish species are provide the first hand information for further conservation aspects.

Important work has been done on fish diversity during the last few decades (Day, 1958; Jayaram, 1981; Menon, 1992; Shaji, 1995; Arunachalum, 2000; Daniel, 2001; Sarkar and Banarjee, 2000; Bhat, 2002; Mishra et al. 2003; Bossuyt et al. 2004; Rajalakshmi and Author's Affiliation: *Department of Zoology, Dr. Bhupendra Nath Dutta Smriti Mahavidyalaya, Hatgobindapur, Burdwan-713407, West Bengal, India. **Department of Zoology, Vidyasagar University, Midnapore-721102, West Bengal, India.

Reprint's Request: Indranil Bhattacharjee, Department of Zoology, Dr. Bhupendra Nath Dutta Smriti Mahavidyalaya, Hatgobindapur, Burdwan, West Bengal, 713407, India.

E-mail: ibzoology@gmail.com; indra_c2007@yahoo.co.in

Sreelatha 2006; Saha and Patra 2013; Bera et al. 2014).

The river Damodar, the prominent tributary of the holy river Ganges, is the synergistic life-line of the coal belt dwellers (1.2 million approx.) of Jharkhand and West Bengal at an elevation of about 7-10 m above mean sea level (MSL). The river is the main water source to the industries that produces 310 million tonnes of coal, 80 million tonnes of steel and 2,000 MW of thermal and hydel power, which together distribute substantially to the country's economy. Aquatic ecosystem is facing also the distorting effect as they are used as waste releasing source as well as the assimilating sink of them. The river water is the source for agriculture, community and industrial activities, power generation, fisheries, mining activity, navigation and different activities Indranil Bhattacharjee et. al. / Fish Diversity and Water Quality Assessment of the River Damodar in and around Burdwan, West Bengal, India

including sand mining and disposal of industrial and domestic wastes. At present indiscriminate anthropogenic activity has disturbed the global natural ecosystem in the name of developmental activities. Aquatic organisms are strongly influenced by physicochemical properties and a majority of them play a role of good ecological indicators of water quality. The productivity of aquatic systems including the production of fish which depends on the quality and quantity of planktonic organisms present may be influenced. Many factors such as dissolved oxygen, transparency, salinity, pH and temperature influence the occurrence, abundance and distribution of planktonic organisms. The Damodar is seasonal and flood prone mainly on account of different reasons, which are physiographic and meteorological in nature. Frequent floods ravage the lower valley area, which is not only very fertile owing to its alluvial plain suitable for irrigation and agriculture but also used for various industrial activities. Modifications of river course always bring about a variation in the hydrobiology and fishery of the river concerned, both upstream and downstream. In most of the cases, its effect on fishery of the river is adverse. Construction of barrage and dam has adversely affected the fishery of river. Damodar in its upstream is especially recognized for the migrant fish population. But the fishery of downstream has shown a continued upsurge after the commissioning of the barrage. Freshwater is the major determining factor for hydrology and fishery of any freshwater riverine system. The increased flushing of the river Damodar, and consequently the Barakar, has naturally resulted in major changes in ecology and associated chemistry of water body. The total area of Burdwan district is 7028 sq. Km and the area of Damodar basin is 2113.61 sq. Km. The 30.07% area of the district in the basin of Damodar River (About the Region - Damodar Basin, 2012).

Our main aim was to evaluate the suitability of water to nurture fishery activity. We describe the fish diversity in Damodar along Burdwan district, in connection with the physicochemical parameters of water, in order to formulate future planning for the development of the socioeconomic status of fishermen.

Materials and Methods

Study Site

Samplings are done from three sites around Burdwan. They are Site I: Krisak setu (23°12′N and 87°51′E); Site II: Barsul (23°10′N and 87°58′E) and Site III: Palla (23°09′N and 87°59′E).

Collection of Fish Samples

The study was conducted every last week of each month, between 6.00 and 8.00 a.m. The fish samples were captured with the help of local skilled fishermen in three pre selected sampling sites. Dragnet, cast net, Scoop net, Basket trap, and so forth were used for capturing fish. Fish species available at the local market and caught by local fishermen. All fish species were preserved in 10% formaldehyde solution for identification to genus and species level using taxonomic keys and standard literatures (Day, 1958; Talwar and Jhingran, 1991; Jayaram, 1981, 1999). In addition various morphological characters, shape, colors etc were recorded. The IUCN red list of threatened species was followed to assign the conservation status. The species richness was simply estimated by variety of fish species in 3 different sampling stations.

Collection of Water Samples

Samples of subsurface water were collected monthly in clean plastic air tight bottles at three above mentioned sites from March 2014 to February 2015, from 8 to 9.30 a.m. The water and air temperature were recorded by hydrothermometer and minimummaximum thermometer, respectively; pH recorded by digital pH meter (Cystronics model 335); conductivity analyzed by conductivity meter (Labtronics model LT 16); dissolved oxygen examined by Winkler's method; photic depth measured by Secchi disc method; free $CO_{2'}$ alkalinity, chlorinity, phosphorus, total inorganic nitrogen and hardness were calculated as standard laboratory protocol (APHA, 2008).

Biodiversity Indices

Margalef richness index (M), Simpson's index (D), Simpson's Index of Diversity (1-D), Simpson's Reciprocal Index (1/D), Shannon's diversity index (H) and Pielou's evenness index (J), biodiversity indices were calculated.

Statistical Analysis

Pearson Correlation matrix was calculated together with scatterplots and histograms were done using *XLSTAT* (Addinsoft 2010).

Results

The seasonal variation of physicochemical parameters of the water in the Damodar River,

Table 1: Fish species collected, their local names, Human use, feeding habit and conservation status in Damodar River around Burdwan

3 Total	03	02	05	<i>cc</i>	84		44	16		90	20	16	11		15		91 11	:	36	90		08	10	18		57	80	8	07
nda nce Site	10	00	01	50	52		11	02		01	90	60	90		01	1	88	8	12	01		02	02	64		24	č	3	0
Abur Site 2	00	02	01	60	35		19	05		05	60	05	00		90		31	5	60	00		05	90	05		14	8	8	5
Site 1	03	8	03	80	24		14	60		00	05	02	05		08	;	8 E	5	15	05		10	02	60		19	R	3	E C
Feeding Habit	Omnivore	Herbivore	Herbivore	Herbivore	Herbivore		Herbivore	Herbivore		Herbivore	Herbivore	Herbivore	Omnivore		Herbivore		Herbivore Omnivore		Herbivore	Omnivore		Carniv ore	Omnivore	Omnivore		Carniv ore	Contribution		
Human Use	Ornamental	Comm ercia l Comm ercia l	Ornamental	Commercia l Ornamental	Ornamental	Comm ercia l	Ornamental Commercial	Ornamental	Comm ercia l	Ornamental Commercial	Aquaculture Commercial	Aquaculture Commercial	Comm ercia l	Aquaculture	Aquaculture	Comm ercia I	Commercia I Ornamental	Comm ercia l	Comm ercia l	Ornamental	Comm ercia l	Ornamental	Aquaculture Ornamental	Comm ercia l Ornamental	Comm ercia l	Ornamental	Aquaculture	Aquaculture	
IUCN Status	LC	DD	LC	NT	LC		LC	νυ		LC	LC	LC	LC		NE	(L C)	LC	EN		LC	NE	ΓC		LC	C I)	()
Local Name	Kenkle	Kanpona	Mourola	Techokha	Punti		Punti	Punti		Kalbose	Bata	Rui	Mrigel		Katla		Guntev		Khaira	Chital		Pholui	Chanda	Chanda		Lata	Col	3	1
Scientific Name	Xenentodon cancila	Aplocheilus panchax	Amblypharyngodon mola	Daniorerio	P untius tic to		Puntius sophore	Puntius conchonius		Labeo cal basu	Labe o bata	Labe or ohita	Cirrhinus mrigala		Catla catla		Amblypharyngodon mola I enidocen halichthus ountea	active of the control of the	Gu du sia chap ra	Notopte rus chitala		Notop te rus notopterus	Chanda ranga	Chanda nama		Channa punctata	Channa marulias		
S. No	1	7	3	4	ы		9	7		œ	6	10	11		12		13	:	15	16		17	18	19		20	ć	1 7	00
Family	Belonidae	Aplocheilid ae	Cyprinidae														Cohitid ae		Clupeidae	Noto pterida e			Am bassidae			Cha nni dae			
Order	Beloniformes	Cvprinidontiformes	4																Clu peiformes	Osteoglossiformes			Peraformes						

11

Indian Journal of Biology / Volume 3 Number 1 / January - June 2016

Duruwun		23	Channa striatus	Sol	NE	Ornamental	Carnivore	01	03	01	05
	Gobiidae	24	Glossogobius giuris	Bele	LC	Ornamental Commorcial	Omnivore	09	18	12	39
	Nandidae	25	Nandus nandus	Bheda	LC	Ornamental Commercial	Carnivore	04	00	01	05
	Osphronemidae	26	Colisa fasciata	Khalisa	LC	Ornamental	Omnivore	25	35	30	90
	1	27	Colisa lalia	Khalisa	NE	Ornamental	Omnivore	30	25	20	75
Siluriformes	Bagridae	28	Mystus cavassius	Tengra	LC	Commercial	Carnivore	25	10	19	54
	0	29	Mystus aor	Aard	VU	Ornamental Commercial	Carnivore	12	06	09	27
		30	Mystus seenghala	Tangra	NE	Commercial Aquaculture	Carnivore	02	00	01	03
	Clariidae	31	Clarias batrachus	Magur	LC	Ornamental	Carnivore	13	08	11	32
	Siluridae	32	Heteropneustes fossilis	Singi	LC	Ornamental Commercial	Carnivore	04	05	02	11
		33	Wallago attu	Boal	NT	Commercial	Carnivore	02	00	01	03
	Mastacembelidae	34	Macrognathus pancalus	Pankal	NT	Ornamental Commercial	Omnivore	02	02	00	04
		35	<i>Macrognathus armatus</i> Total	Ban	LC	Commercial	Carnivore	02 308	00 284	01 255	03 847

Table 1: Fish species collected, their local names, human use, feeding habit and conservation status in Damodar River around Burdwan

IUCN Red list: DD: Data Deficient, LC: Least Concern, VU: Vulnerable, NE: Not Evaluated, EN: Endangered, NT: Near Threatened.

Table 2: Biodiversity Indices of fish species at three different sites of the river Damodar around Burdwan

Index	Site I	Site II	Site III
Total No. of Species (S)	33	27	32
Total No. of Individuals (N)	308	284	255
Natural Log of Species (In S)	3.49	3.29	3.46
Natural Log of Individuals (In N)	5.73	5.64	5.54
Margalef's Index (M)	5.56	4.60	5.59
Simpson's Index (D)	0.05	0.06	0.06
Simpson's Index of Diversity (1-D)	0.95	0.94	0.93
Simpson's Reciprocal Index (1/D)	20	16.6	15.87
Shannon Index (H)	2.98	3.29	2.68
Pielou's Index (J)	0.856	0.82	0.77

Table 3: Correlation matrix (Pearson) representing the relationship of the environmental variables observed during study period (March 2014 to February 2015) study period. Note the values in bold represents significance at P < 0.001 level

Variables	at	wt	h	r	TR	con	pН	DO	ALK	CHOL	PHOS	In N	hard	SAL
at	1	0.867	-0.219	0.015	-0.345	0.887	0.278	-0.307	0.433	0.704	0.106	0.203	0.258	0.703
wt	0.867	1	0.097	0.362	-0.348	0.786	0.225	-0.357	0.270	0.578	0.313	0.479	0.397	0.585
h	-0.219	0.097	1	0.722	-0.015	-0.174	-0.265	-0.031	-0.144	0.007	0.333	0.607	0.331	-0.001
r	0.015	0.362	0.722	1	-0.231	-0.126	-0.294	-0.478	-0.389	0.056	-0.063	0.327	0.019	0.019
TR	-0.345	-0.348	-0.015	-0.231	1	-0.341	0.728	0.860	0.474	-0.060	0.143	0.235	0.544	-0.059
con	0.887	0.786	-0.174	-0.126	-0.341	1	0.203	-0.217	0.599	0.750	0.261	0.262	0.331	0.752
pН	0.278	0.225	-0.265	-0.294	0.728	0.203	1	0.713	0.636	0.186	0.315	0.403	0.655	0.213
DO	-0.307	-0.357	-0.031	-0.478	0.860	-0.217	0.713	1	0.492	-0.188	0.461	0.370	0.608	-0.152
ALK	0.433	0.270	-0.144	-0.389	0.474	0.599	0.636	0.492	1	0.733	0.236	0.279	0.635	0.741
CHOL	0.704	0.578	0.007	0.056	-0.060	0.750	0.186	-0.188	0.733	1	-0.111	0.081	0.310	0.988
PHOS	0.106	0.313	0.333	-0.063	0.143	0.261	0.315	0.461	0.236	-0.111	1	0.850	0.655	-0.081
In N	0.203	0.479	0.607	0.327	0.235	0.262	0.403	0.370	0.279	0.081	0.850	1	0.770	0.082
hard	0.258	0.397	0.331	0.019	0.544	0.331	0.655	0.608	0.635	0.310	0.655	0.770	1	0.345
SAL	0.703	0.585	-0.001	0.019	-0.059	0.752	0.213	-0.152	0.741	0.988	-0.081	0.082	0.345	1

at: Air Temperature (°C), wt: Water Temperature (°C), h: humidity (%), r: rainfall (mm), tr: Transparency (cm), con: Conductivity (μ mho/cm), pH, DO: Dissolved Oxygen (mg/L), alk: Alkalinity (mg/L), chol: Chloride (mg/L), phos: Phosphate (mg/L), inN: Inorganic Nitrogen (mg/L), hard: Hardness (ppm), sal: Salinity (ppt)

Fig. 1: Seasonal variation of physicochemical parameters of the water in the Damodar River, Burdwan district, West Bengal, March 2014 to February 2015

at: Air Temperature (°C), wt: Water Temperature (°C), h: humidity (%), r: rainfall (mm), tr: Transparency (cm), con: Conductivity (µmho/cm), pH, DO: Dissolved Oxygen (mg/L), alk: Alkalinity (mg/L), chol: Chloride (mg/L), phos: Phosphate (mg/L), inN: Inorganic Nitrogen (mg/L), hard: Hardness (ppm), sal: Salinity (ppt).

Fig. 2: Percentage representation of species at Order level in the exploited fishery in River Damodar (March 2014 to February 2015)

Fig. 3: Percentage representation of species at family level in the exploited fishery in River Damodar (March 2014 to February 2015)

Burdwan district, West Bengal, March 2014 to February 2015 is depicted in Figure 1, and the data on the fish community of the river Damodar is presented in Table 1. The periodical survey of the ichthyofauna revealed the occurrence of 35 species of fishes belonging to 6 Order, 15 families and 23 genera were recorded over a period of one year, from March 2014 to February 2015 (Figure 2 and Figure 3). Among the collected species Order Cyprinidontiforms constituting 41%, Order Perciformes constituting 37%, Order Siluriformes constituting 16%, of the total fish species. The data of Diversity Indices are presented in Table 2. Pearson Correlation matrix was calculated (Table 3) and scatterplots and histograms were plotted (Figure 4) which shows the correlations between environmental parameters affected in distribution of fish species. The highest richness was found in sampling site-1-Krisak Setu. The maximum species richness (33) was recorded in site-1 and low species richness (27) was recorded in site-2. The highest Shannon value was recorded to be (3.29) in site-2. The low Shannon value was (2.68) in site-3. Habitat loss and environmental degradation has seriously affected the fish fauna. Recent data regarding fish diversity of the study site, aiming to contribute a better knowledge of the fish diversity and a tool for conservation planning of aquatic environments in this region. To maintain fish biodiversity has an immense importance as it is not always possible to identify individual species critically to sustain aquatic ecosystem.

Discussions

Ichtyofaunal diversity is affected by aquatic habitat and water quality parameters. Temperature is the important factor for the aquatic biota. According to FAO report (FAO, 2010), the increase of temperature directly or indirectly impacts species distribution and the seasonality of production in fishes. According to the guidelines for water quality management for fish culture, the suitable water temperature for carp culture ranges between 24°C and 30°C. So, the water temperature of the river Damodar was suitable, except a minute fall during the winter season. Transparency helps to assess the quality of water. According to (Bhatanagar et al. 2004) a turbidity ranging from 30 to 80 cm is good for fish health. High transparency value means that enough light penetrates and encourages macrophytes growth, so that less plankton is available as food for fish. Water transparency in the study sites was not completely satisfactory.

4	-								
period (Marcl	40 35 35	ع 25 م 28 م 28 م	8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	900 ***			9 9 11 11 0 0 0 0 0 0 0 0 0 0	₩ ₩ ₩ ₩ ₩ \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2	
year study	hard	30 20 254 1 10 160 20	8 8 8 16 10 10 10 10 20	90 210 70 210 50 110 150 210	30 F 20 F 10 10 100 210	300 pc	10 10 10 10 10 10 10 10 10 10 10 10 10 1	86 مرمر - 80 200 8 مومر - 10 - 10 - 10 - 10	8 √ √ - 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
during one	and the second s	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	۲ م ۲ م ۲ م ۲ م ۲ م ۱۵۲ م ۱۵۲ م ۱۵۲ م	00 × 10 × 10 × 10 × 10 × 10 × 10 × 10 ×		200		8.5 y 4 y 4 y 4 y 4 y 4 y 4 y 4 y 4 y 4 y	2
ers observed	1400 3000 3000	۲ ۲ ۲ ۲ ۲ ۲	35 300 1 1 25 20 1 20 1 20 15	90 4 70 8 80	8 8 8 6 4 4 6 4 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1	ao zon bo		86 - 8 8 - 8 7 - 2 7 - 2 0 - 1 - 2	
ater paramete	end 35 35	25 *	36	88 100 200 300	30 20 20 20 20 20 20 20 20 20 20 20 20 20		17 A	8.5 T	13 7 7 100 200 300
c as well as w	alk 40 ± 1	25 40 90	8 6 6 6 6 6 6 6 6 6 6	90 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	30 A A A A A A A A A A A A A A A A A A A	00 00 00 00 00 00 00 00 00 00	8 8 1 1 1 1 1 1 1 1 1 1 1 1 1	00 00 00 00 00 00 00 00 00 00	
atmospheri	8	25 *	36 20 20 25 25 25 25 25 25 25 25 25 25 25 25 25			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		8.5 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	* * * * *
al variables lia	40 H	25 A - r	81/ 82 16- 16- 7 7 8	00 10 10 10 10 10 10 10 10 10	8 8 5 0 4 K 1 6	800 A A A A A A A A A A A A A A A A A A	17 16 13 7 7 8	* *	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
environment st Bengal, Inc	40 35	30 ⁶ 25 1 11 16 16	36 30 AK KA		20 20 0 0 1 0 1 1 0		4 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 - 2 8 - 2 8 8 - 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	13 9 1
ttionship of the an district, Wea	40 38	25 1 + + + + + + + + + + + + + + + + + +		90 1 1 1 1 1 1 1 1 1 1	20 200 400			80 20 200 400	8 1 1 1 1 1 1 1 1 1 1 1 1 1
nting the rela iver, Burdwa	49 458	25 0 20	ی کلو کر در مرب ا در مرب ا مرب ا مرا مرا مرا مرا مرا مرا مرا مرا مرا مرا	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °			85. 16. 11. 1. 20.		23 × 1
ogram represei he Damodar R	40 40 35 x x	30 30 30 30 55 ¥ →	8 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4 3 1 50 70 50 70 80	8 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	800 1		887 - 1 8 7 80 70 80	
terplots, hist ry 2015) in t	8.8	8 8 8 8 8 9 - 10 8	° + ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	80 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30 20 m / 1 20 m / 1 15 m m	30°	1 1 1 1 1 1 1 1 1 1 1 1 1 1	85 8 4 4 4 4 7 5 7 5 7 1 7 1 7 1 7 2 5 8	
ig. 4: The scat 2014 to Februa	at 5			8 8 8 8 8 8 8 8 8 8	8 2 8 8		8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	85 гг А 8 8 7 4 7 4 1 7 25 35 25 35	2 2 28 8 8 7 8 8

Indranil Bhattacharjee et. al. / Fish Diversity and Water Quality Assessment of the River Damodar in and around Burdwan, West Bengal, India

Indian Journal of Biology / Volume 3 Number 1 / January - June 2016

Nitrogen (mg/L), hard: Hardness (ppm), sal: Salinity (ppt)

alk: Alkalinity (mg/L), chol: Chloride (mg/L), phos: Phosphate (mg/L), inN: Inorganic]

at:

	60 60 60 60 60 60 60 60 60 60 60 60 60 6	phos	100 00 00 00 00 00 00 00 00 00 00		4 2 3 1 0 0 8 1 8 1 8	vgen (mg/L)
100	000 000 000 000 000 000 000 000		15 15 15 10 10 10 10 10 10	^{1,5} % المالي (1,1) % 1,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00	8 8 8 19 18 16 20 8 8 8 8 16 20	issolved O
		25 15 05 7 7 7 00 7 2 0 1 2	**** °	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	pH, DO: D
88 88 8 8 8 8 8 8 9 9 9 1 9	200 200 0 0	0 0 0 0 0 0	2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 100 100 100 100 100 100 100 100 100	800 844 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(µmho/cm),
100 100 100 100 100 100 100 100	2 2 100 2 a 3 a	2 15 05 00 200 300	2 15 15 15 15 15 10 100 2 00 30 0	18 173 185 186 110 10 10 10 10 10 10 10 10 10 10 10 10	00 013 013 013 013 013 013 013 013 013 0	Conductivity
	200	2 x x x x x x x x x x x x x x x x x x x	2 Ar 1 3 Ar 1 4 Ar	80 / 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	00 00 00 00 00 00 00 00 00 00 00 00	/ (cm), con: C
100 مح 80 م م 60 م م م 40 م	300 200 7	2 15 0 0 1 2 1 2	127 156 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	06 - 00 05 04 02 7 7 7	ransparency
ی ۲۰ محمد ۱۹۹۹ می ۱۹۹۹ می	300 200 • • •	2 15 0 7 8 7 8 8	2 1.8 0 0 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	000 000 000 000 000 000 000	88 23 25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(mm), tr: Ti
00 8	200 200 11	2 15, 0 1 16		80 80 81 10 11 16	00 03 03 1 1 1 1 0 0 1 1 0 0 1 1 0	%), r: rainfall
00 80 0 0 0 0 0 0 80 0 0 0 0 0 0 10 0 200 00	200 200 100 0 200 400		13 15 15 15 15 15 15 15 15 15 15 15 15 15	80 70 80 70 80 7 7 7 7 7 7 7 7 7 7 7 7 7		h: humidity (9
00 00 00 00 00 00 00	200 200 10 200 10 200	005-15 0000000000	00000000000000000000000000000000000000	190 170 150 110 110 110 10 10	00 0.45 0.55 0.57 0.50 0.50 0.50 0.50 0.50 0.5	erature (°C),
18. 80 80 10. 80 80 80 80	300-200 - 20		2 2 2 2 2 2 2 2 2 2 2 2 2 2		0.0 0.2 0.2 0.2 0.2 0 0 0 0 0 0 0 0 0 0	rt: Water Temp
00	200 200 100 15 25 35	2 1.5 0 6 6 7 6 8 7 1 7 1 8 0 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	115, 115, 115, 115, 115, 115, 115, 115,	80 50 50 7 1 1 1 8 7 8 1 8 1 8 1 8 1 8 1 8 1 8 1	00 64 65 03 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ature (°C), w
ant 80	660 20 0	sonq	илі 1. ¹⁰ – 280. 1. 1. 1. 18	вей 100 100 100 100 100 100 100 100 100 10	al 88 89 89 80 8 8 8 8 8 8	: Air Temper

Electrical conductivity, comprising the total dissolved ions, is a good indicator of water chemistry. A certain level of ions in water is essential as nutrients for aquatic life (Galbrand et al. 2008). According to the report of Southern Regional Aquaculture Centre (SRAC) (Stone et al. 2013), the desirable range of conductivity for fish culture is 60-2000 µmho/cm. Our results showed values that were lower than the optimal limit. SRAC also reported that fresh water fish generally thrive over a wide range of electrical conductivity and that the upper range of tolerance varies with fish species.

pH is another important parameter for fish culture. According to the report of Northeastern Regional Aquaculture Centre (NRAC) (Buttner 1993), fish survive and grow best in waters with a pH between 6 and 9. The pH values we recorded in the river Damodar remained within such safe range.

Dissolved oxygen is one of the most important parameters and a primary limiting factor controlling fish growth and survival (Qayyum et al. 2005). According to Banerjea 1967, D.O. should be above 5.0 mg/L for average or good production. Besides, Bhatnagar and Singh, 2010 also reported that D.O. level > 5.0 mg/L is essential to support good fish production. The D.O. content in the river Damodar was very satisfactory for fish culture.

Alkalinity of water is a measure of its capacity to neutralize acids. According to the guidelines for water quality management for fish culture in Tripura, the ideal value of alkalinity for fish culture is 50-300mg/L. According to the report of SRAC, the desirable limit for fish culture is 50 to 150mg/L, and the acceptable range is from 20 to 400 mg/L. So, the alkalinity range of river Damodar permits the fisheries activity.

According to SRAC, more than 100mg/ L is the desirable range for commercial catfish production. So, the chloride value of the river Damodar was very high and stressful for fish culture. Higher chloride content may be due to contamination through large quantity of sewage input (Yousuf et al. 2012). Higher concentration of chloride in water is an indicator of eutrophy (Kausik et al. 1992). The higher concentration of chloride in the river Damodar may be due to agricultural and sewage run-off during rain from the surrounding area of the reservoir and higher evaporation rate. In most fresh waters, total hardness is mainly due to calcium and magnesium ions. According to the guidelines for water quality management for fish culture in Tripura, the ideal value of hardness for fish culture is 30–180mg/L. Bhatnagar et al. 2004 opined that 75–150mg/L is optimum for fish culture. The hardness in river Damodar was slightly outside the desirable limits but did not reach harmful values. Some euryhaline species may have high tolerance limits to hardness (Bhatnagar and Devi, 2013).

Carbon dioxide is produced in water as a result of respiration of the aquatic organisms. According to the report of NRAC, the preferred range of free $OO_2 \leq 10$ mg/L. Besides, the guidelines for water quality management for fish culture in Tripura also mentioned that water supporting abundant fish populations should contain ≤ 5 mg/L free carbon dioxide.

Phosphorus is very critical in maintaining aquatic productivity. SRAC recommend desirable phosphate level for fish culture of 0.06mg/L, and the typical range for surface water is 0.005–0.5mg/L. Bhatnagar and Devi, 2013 reported an optimum range for phosphorus of 0.01–3.0mg/L. The value of phosphate in river Damodar matched the ranges given above.

Nitrogen element is a vital component of protein and is essential for fish growth. FAO recommends desirable limit of total dissolved nitrogen for fish culture of 0.2 ppm. On the other hand, Banerjea 1967 reported TDN values of 0.2–0.5 ppm as favourable for good productivity in ponds. Other than during the rainy season, the total level of inorganic or dissolved nitrogen in the river Damodar is acceptable for fish culture and does not hamper the fish production. Throughout the year, water level in the river Damodar falls from April to June but still remains in adequate amount for fish cultivation.

Therefore, each water quality parameter in the river Damodar remains within the limits suitable for fish production (Stone et al. 2013; Buttner 1993;Banerjea 1967; Bhatnagar and Devi, 2013). The end of the rainy season and the whole winter are the best and the healthier periods for fish growth.

We conclude that water quality in the river Damodar favours for fish cultivation and allows for a high ichthyofaunal diversity, with a value of highest Shannon value was recorded to be (3.29) in site- 2. The low Shannon value was (2.68) in site- 3. We recommend the adoption of scientific fishery management, in order to regulate transparency and chloride level.

Acknowledgement

The authors are grateful to the Department of Zoology, Vidyasagar University, Midnapore and Dr. Bhupendra Nath Dutta Smriti Mahavidyalaya, Hatgobindapur, Burdwan for the facilities provided. The authors are grateful to UGC for providing instrument facilities to Dr. Bhupendra Nath Dutta Smriti Mahavidyalaya, Hatgobindapur, Burdwan, West Bengal, India.

References

- 1. Addinsoft, SARL. XLSTAT software. Version 10.0. Paris, France, 2010.
- 2. APHA. Standard Methods for Examination of Water and Waste Water, American Public Health Association, Washington, DC, USA, 21st edition, 2008.
- 3. Arunachalam M.Assemblage structure of stream fishes in the Western Ghats (India). Hydrobiologia. 2000; 430: 1-31.
- Banerjea SM. "Water quality and soil condition of fish ponds in some states of India in relation to fish production," Indian Journal of Fisheries. 1967; 14: 115–144.
- 5. Bera A, Bhattacharya M, Patra BC, Sar UK. Ichthyofaunal Diversity and Water Quality in the Kangsabati Reservoir, West Bengal, India. Advances in Zoology. 2014; 2014, Article ID 674313, http:// dx.doi.org/10.1155/2014/674313.
- 6. Bhat A. A study of the diversity and ecology of fresh water fishes of four river systems of the Uttara Kannada District, Karnataka, India. Ph.D. Dissertation, Indian Institute of Science, Bangalore, India. 2002; 178.
- Bhatnagar A, Devi P. "Water quality guidelines for the management of pond fish culture," International Journal of Environmental Sciences. 2013; 3(6): 1980–2009.
- Bhatnagar A, Jana SN, Garg SK, Patra BC, Singh G, Barman UK. "Water quality management in aquaculture," in *Course Manual of Summer School on Development of Sustainable Aquaculture Technology in Fresh and Saline Waters*. 2004; pp. 203–210, CCS Haryana Agricultural, Hisar, India.
- Bhatnagar A, Singh G. "Culture fisheries in village ponds – a multi location study in Haryana, India," Agriculture and Biology Journal of North America. 2010; 1(5): 961–968.
- 10. Bossuyt F. Local endemism with in the Western Ghats- Sri Lanka biodiversity hotspot-Science. 2004;

306: 479- 481.

- Buttner JK, Soderberg RW, Terlizzi DE. "An introduction to water chemistry in fresh water aquaculture," NRAC Fact Sheet 170-1993, Northeastern Regional Aquaculture Centre (NRAC). 1993.
- 12. Daniels RJR. A report on the National Biodiversity Strategy and Action Plan-the Western Ghats Ecoregion, Rep. to the Ministry of Environment and Forest, India, 2001.
- 13. Day F. The Fishes of India, Jagamander Agency, New Delhi, 1967; 1(2).
- 14. Day FS. *The Fishes of India*, William and Sons, London, UK, 1958.
- 15. Dhawan A and Kaur S. "Pig Dung as pond manure: effect on water quality, pond productivity and growth of carps in polyculture system," Naga (ICLARM Quarterly). 2002; 25(1): 11–14.
- FAO. "Fisheries and Aquaculture Department, Food and Agriculture Organization of the United Nations, Rome," The State of World Fisheries and Aquaculture. 2010; 115–116.
- Galbrand C, Lemieux IG, Ghaly AE, C^ot[']e R, Verma R. "Water quality assessment of a constructed wetland treating landfill leachate and industrial park runoff," The American Journal of Environmental Sciences. 2008; 4(2): 111–120.
- Jayaram KC. The Freshwater Fishes of India, Pakistan, Bangladesh, Burma, and Sri Lanka: Handbook, Calcutta, India, ZSI. 1981; 1-438.
- Jayaram KC. The freshwater fishes of the Indian Region. Narendra Publishing House, Delhi-6: 1999; 551.
- 20. Kausik S, Agarkar MS, Sakesena DN. "Distribution of phytoplankton in riverine water in Chambal area, Madhya Pradesh," Bionature. 1992; 12: 17.

- Menon AGK. Conservation of freshwater fishes of Peninsular India. Unpublished report (Grant No. 14/ 24/87- MAB/RE) Ministry of Environment and forest. Govt. of India. 1992; 136.
- 22. Mishra S, Pradhan P, Kar S, Chatraborty SK. Ichthyofauna diversity of Midnapore, Bakura and Hooghly districts of Southwest Bengal. Rec. Zool. Surv. India. 2003; Occ 1-66.
- 23. Qayyum A, Ayub M, Tabinda AB. "Effect of aeration on water quality, fish growth and survival in aquaculture ponds," Pakistan Journal of Zoology. 2005; 37(1): 75–80.
- 24. Rajalakshmi S, Sreelatha K. Diversity of Ichthyofauna in Gautami-Godavari estuary Yaman, Union Territory of Pondicherry, Indian J Aqua Biol . 2006; 21(1): 45-48.
- 25. Saha MK, Patra BC. Present status of Ichthyofaunal diversity of Damodar river at Burdwan District, West Bengal, India. International Journal of Scientific and Research Publications. 2013; 3(6): 1-11.
- 26. Sarkar L, Banarjee S. Ichthyofauna of Damodar River system. Proc Zool. Soc Calcutta. 2000; 53(1): 41-54.
- Shaji AI. Freshwater fish diversity in Arlam Wildlife Sanctuary, Kerala, South. India J Bombay Nat Hist Soc. 1995; 92: 360-364.
- Stone N, Shelton JL, Haggard BE, Thomforde HK. "Interpretation of water analysis reports for fish culture," SRAC Publication no. 4606, Southern Regional Aquaculture Centre (SRAC), 2013.
- 29. Talwar PK, Jhingran AG. *Inland Fishes of India and Adjacent Countries*. 1991; vol. 1 and 2, Oxford and IBHPub. Co. Pvt. Ltd., New Delhi, India.
- Yousuf T, Ibrahim M, Majid H, Ahmad J, Vyas V. "Ichthyofaunal diversity of Halali Reservoir, Vidisha, Madhya Pradesh," International Journal of Scientific and Research Publications. 2-12; 2(12): 1–7.

18