Original Research Article

To Study the Spectrum of Histopathological Variants of Periampullary Carcinoma

Prasuna Chilveri1, Bhavani Adepu2, Triveni Bhopal3

1Assistant Professor, Department of Pathology, Chalmeda Ananad Rao Institute of Medical Sciences, Bommakal, Karimnagar, Telangana 505001, India. 2Assistant Professor, Department of Pathology, Maheshwara Medical College and Hospital, Patancheru, Telangana 502307, India. 3Professor, Department of Pathology, Osmania Medical College, Hyderabad, etlangana 500095, India.

Abstract

Introduction: Periampullary tumours are defined as those that arise within 2 cm of the major papilla in the duodenum. These tumors exhibit different morphology, immunohistochemistry patterns and different clinical behaviors based on the exact site of origin.

Aim of the study: To study the spectrum of histopathological variants of periampullary carcinoma.

Materials and Methods: This was a retrospective study conducted in Upgraded department of Pathology, Osmania Medical College and General Hospital, Hyderabad over a three year period. A total of 66 cases of periampullary carcinomas resected by Whipples procedure were studied. Histopathologic examination, staging and classification of tumors was done based on site of origin as pancreatic, ampullary, distal common bile duct, and duodenal carcinomas. Immunohistochemistry for CK7, CK20, NSE, Chromogranin A, and Ki67 was done.

Results: The maximum number of patients were in the range of 41-50 years with male: female ratio of 1.6:1. Of the 41 pancreatic periampullary carcinomas, majority were adenocarcinomas (35 cases). Out of 13 ampullary carcinomas 08 were Intestinal type and 04 were Pancreaticobiliary type adenocarcinomas and 01 was Neuroendocrine type. Of the 62 periampullary adenocarcinomas, 72.5%, 24.1% and 3.4% were well, moderate and poorly differentiated carcinomas respectively. Pathological TNM staging was done in 62 resected specimens. Majority of the pancreatic adenocarcinomas (24 cases) were Stage II.

Conclusion: A combination of tumor size, tumor site, histopathological type and grade, lymphode involvement and status of resected margins all influence the overall survival of patients undergoing pancreaticoduodenectomy for periampullary carcinomas. Hence, it is important to classify these tumors according to these parameters.

Keywords: Periampullary Carcinoma; Anatomical Site; TNM Staging; Histopathologic Variants.

Introduction

Periampullary tumours are defined as those that arise within 2 cm of the major papilla in the duodenum. They encompass tumours of the ampulla of Vater, the distal common bile duct/CBD (intrapancreatic distal common bile duct), duodenal tumours (usually the second part) involving the papilla and tumours of the pancreatic head involving the ampulla [1,2].
Carcinomas originating from each of these sites exhibit different clinical behaviors [3-6].

Periampullary cancers account for 5% of all gastrointestinal cancers [7,8].

Majority of periampullary carcinomas are composed of adenocarcinomas. The most common periampullary adenocarcinoma is pancreatic adenocarcinoma followed in order by ampullary carcinoma, distal cholangio carcinoma and duodenal adenocarcinoma [9]. While these tumours have different origins, the complex regional anatomy dictates a common operative approach.

Malignant periampullary tumours are best treated by Whipples resection. Surgical removal of periampullary carcinomas remains the only potentially curative therapy [10].

Pathological examination of resected pancreaticoduodenectomy specimens suggests that pancreatic head tumours account for 60%, while tumours of the ampulla of Vater, the Distal CBD and duodenal tumours constitute 20%, 10% and 10% of neoplasms respectively [11].

Aim of the Study

To study the spectrum of histopathological variants of periampullary carcinomas.

Objectives

To study the following parameters in periampullary carcinomas:
1. Anatomical distribution
2. Histopathological types
3. Neuroendocrine differentiation
4. Pathological staging
5. Grading of tumor
6. To predict the prognosis of patients

Materials and Methods

Ethical permission from the institute was taken before starting the study.

The present study was a retrospective study conducted in Upgraded department of pathology, Osmania Medical College and General Hospital, Hyderabad for duration of 3 years from 1st September 2010 to 31st August 2013. Osmania medical college and general hospital is a tertiary referral centre for state of Telangana and also caters to the needs of various districts of neighbouring states.

A total of 66 cases of periampullary carcinomas resected by Whipples procedure were selected for this study. Clinical data was retrieved from records.

Inclusion Criteria
1. This study includes pancreaticoduodenectomy specimens (Whipples Procedure-Classical or Pylorus preserving) resected for periampullary carcinomas
2. No prior treatment
3. Complete clinicopathological data (age, gender, histopathological diagnosis, tumor stage, nodal status).

Exclusion Criteria
1. Small biopsies.
2. Non carcinomatous periampullary tumours

The representative tissue bits were fixed in 10% buffered formalin and processed in automatic tissue processor. From the paraffin blocks, 4 to 5 microns thick sections were taken using a microtome. These sections were stained with hematoxylin and eosin.

Histopathologic examination and classification of periampullary carcinomas was done according to the site of origin as pancreatic, ampullary, distal common bile duct, and duodenal carcinomas staging. These cases were further subjected to immunohistochemistry for CK7, CK20, Chromogranin, NSE and Ki 67 to differentiate between intestinal and pancreaticobiliary type adenocarcinomas and to know the proliferation index.

Immunohistochemistry

The kits for CK7, CK20, NSE, Chromogranin, Ki67 immunohistochemical staining were obtained from DAKO Company. Staining was done according to the manufacturer’s protocol.

CK7, CK20 Positive- Brown cytoplasmic
NSE, Chromogranin A Positive - Brown cytoplasmic
Ki 67 positive- Brown nuclear membrane

Observations and Results

In the present study only resected periampullary carcinoma specimens were studied.

Total 66 cases of periampullary carcinomas were studied. Of the 66 patients with periampullary carcinomas, pylorus preserving pancreaticoduodenectomy was done in 55 cases and classical Whipples procedure was done in 11 cases.

In the present study, the patient age ranged from 21 years to 70 years. The youngest patient was 21 years and the oldest was 70 years. The maximum patients were in
the range of 41 - 50 years and the mean age was 51.47 years.

Of the 66 cases, there were 41 males and 25 females with a male preponderance with a Male:Female ratio of 1.6 : 1.

Presentation

Most common complaints were of jaundice, loss of appetite, pruritus and pain abdomen. All the 66 patients had jaundice.

Morphology

Sizes of the tumors varied from 2 × 2 cm to 4.5 × 4.5 cm. Cut surface of these lesions was grey white, with few showing areas of hemorrhage and necrosis. Serosa was involved in 6 cases. 3 lesions showed presence of glistening mucin grossly. Nodes were isolated in all specimens. Number of lymph node isolated varied from 4-15. The size of lymph nodes varied from 0.5 – 2 cm. Cut section of grossly involved lymph nodes was grey white. The tumor diameter was smallest for ampullary and bile duct cancers (mean 2 and 2.2 cm, respectively) and largest for duodenal cancers (mean 4.0 cm).

Anatomical Distribution of Periampullary Carcinomas according to Site of the four sites of periampullary region, Pancreas, Ampulla, CBD and the Duodenum, majority of periampullary carcinomas were seen in Pancreas 41 (62.1%) followed by Ampulla 13 (19.7%), CBD7 (10.6%) and Duodenum 5 (7.6%). Of the 66 cases, adenocarcinomas were found in 62 patients (93.9%) and neuroendocrine tumors were found in 4 (6.1%) patients.

Microscopy

Pancreatic periampullary carcinomas: of the 41 pancreatic periampullary carcinomas in the present study, majority (35 cases, 85.3%) were adenocarcinomas.

Ampullary Carcinomas

Out of 13 ampullary carcinomas 08 were Intestinal type and 04 were pancreaticobiliary type adenocarcinomas, 01 was neuroendocrine tumor.

CK7 and CK20 immunohistochemical staining was done to differentiate between intestinal and pancreaticobiliary type ampullary adenocarcinomas. CK7 was positive in all 04 patients with pancreaticobiliary type adenocarcinomas and CK20 was positive in all intestinal type adenocarcinomas. The neuroendocrine type tumor showed positivity for NSE and Chromogranin.

Distal Bile Duct Carcinomas

Of the 07 bile duct carcinomas 05 (71.4%) were papillary adenocarcinomas and 02 (28.5%) were intestinal adenocarcinomas.

Periampullary Duodenal Carcinomas

There were 5 duodenal carcinomas of which 03 were intestinal type adenocarcinomas, 01 was mucinous adenocarcinoma and 01 was neuroendocrine tumor.

Histological Grading

In the present study, of the 62 periampullary adenocarcinomas, 72.5%, 24.1% and 3.4% were well differentiated, moderately and poorly differentiated respectively. Mucinous adenocarcinomas of intestine by convention are considered poorly differentiated.

Lymph Node Metastasis

There were 33 (53.2%) cases showing lymph nodal metastases and 29 (46.8%) cases did not have any lymph nodal metastases. Nodal metastasis was most commonly seen with pancreatic adenocarcinomas (224 cases) and least common with bile duct tumors (02 cases). None of the tumors showed neural invasion.

Resected Margins

In the present study resected margins were positive in 10 patients (16.1%) and negative in 52 patients (83.9%).

TNM Staging

TNM staging was followed in 62 resected specimens of periampullary adenocarcinomas. Staging of the tumor was done mainly on pathological findings. In all the 62 cases, the distant metastases could not be assessed and were designated as Mx. Majority of the pancreatic adenocarcinomas (24 cases, 38.7%) were stage III.

<table>
<thead>
<tr>
<th>Histopathological Type</th>
<th>No. of Cases</th>
<th>Percent (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ductal Adenocarcinomas</td>
<td>35</td>
<td>85.3%</td>
</tr>
<tr>
<td>Mucinous noncystic carcinoma</td>
<td>2</td>
<td>5.0%</td>
</tr>
<tr>
<td>Adenosquamous carcinoma</td>
<td>1</td>
<td>2.0%</td>
</tr>
<tr>
<td>Anaplastic carcinoma</td>
<td>1</td>
<td>2.0%</td>
</tr>
<tr>
<td>Neuroendocrine tumors</td>
<td>4</td>
<td>100%</td>
</tr>
<tr>
<td>Total</td>
<td>41</td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Staging of perianpillary carcinomas

<table>
<thead>
<tr>
<th></th>
<th>Stage I</th>
<th>Stage II</th>
<th>Stage III</th>
<th>Stage IV</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreas</td>
<td>13</td>
<td>2</td>
<td>24</td>
<td>-</td>
<td>39</td>
</tr>
<tr>
<td>Ampulla</td>
<td>4</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Duodenum</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>CBD</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 3: Staging and Grading of Neuroendocrine tumors

<table>
<thead>
<tr>
<th>Age/Gender</th>
<th>HPE Diagnosis and Grade</th>
<th>TNM Staging</th>
</tr>
</thead>
<tbody>
<tr>
<td>33/M</td>
<td>Neuroendocrine tumor, Grade 1</td>
<td>T1N0M0 (Stage I)</td>
</tr>
<tr>
<td>50/M</td>
<td>Neuroendocrine tumor, Grade 2</td>
<td>T3N0M0 (Stage II)</td>
</tr>
<tr>
<td>60/F</td>
<td>Neuroendocrine tumor, Grade 1</td>
<td>T3N0M0 (Stage IIA)</td>
</tr>
<tr>
<td>50/M</td>
<td>Neuroendocrine tumor, Grade 1</td>
<td>T3N0M0 (Stage IIA)</td>
</tr>
</tbody>
</table>

Table 4: Prognostic factors of perianpillary carcinomas

<table>
<thead>
<tr>
<th>Perianpillary adenocarcinomas resected by Whipples procedure</th>
<th>Pancreas (n=39)</th>
<th>Ampulla (n=12)</th>
<th>Bile Duct (n=07)</th>
<th>Duodenum (n=04)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor diameter(cm) (Mean)</td>
<td>3.5</td>
<td>2.0</td>
<td>2.2</td>
<td>4.0</td>
</tr>
<tr>
<td>Nodal status (Positive)</td>
<td>24</td>
<td>5</td>
<td>22</td>
<td>2</td>
</tr>
<tr>
<td>Nodal status (Negative)</td>
<td>15</td>
<td>7</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Margin status (Positive)</td>
<td>8</td>
<td>2</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>Margin status (Negative)</td>
<td>31</td>
<td>10</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Tumor differentiation Well</td>
<td>25</td>
<td>10</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Moderate</td>
<td>13</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Poor</td>
<td>01</td>
<td>-</td>
<td>-</td>
<td>01</td>
</tr>
</tbody>
</table>

NSE, Chromogranin A, was done in all 66 cases of perianpillary carcinomas for neuroendocrine differentiation. Of the 66 perianpillary carcinomas, neuroendocrine tumors were found in 4 patients.

A proliferative marker Ki67 was done for these 4 cases and these tumors were graded according to the 2010 WHO grading system for Neuroendocrine tumors. 03 were Grade 1 Neuroendocrine tumors and 01 was Grade II Neuroendocrine tumor

Discussion

Perianpillary tumours are defined as those that arise within 2 cm of the major papilla in the duodenum. They encompass tumours of the ampulla of Vater, the Distal CBD (intrapancreatic distal common bile duct), duodenal tumours (usually the second part) involving the papilla and the tumours of the pancreatic head involving the ampulla [1,2]. Carcinomas originating from each of these sites exhibit different clinical behaviors [3-6].

Although the modes of presentation and treatment options for these tumors are similar, their prognoses are quite different, with worse prognosis for adenocarcinoma of the head of the pancreas as compared to other perianpillary tumours [12]. (The final diagnosis is of great importance in the outcome of survival analysis after pancreaticoduodenectomy.

Five-year disease-free survival of patients with perianpillary tumours will depend on the site and tumor type. Among the patients with perianpillary adenocarcinomas, treated by pancreaticoduodenectomy, those with duodenal adenocarcinomas are most likely to survive long term. Five year survival is less likely for patients with ampullary, distal bile duct, and pancreatic primaries, in declining order [13].

Patients with duodenal cancer have the longest survival at five years, ranging from 22% to 53% when compared with other perianpillary tumors. Five-year survival is also favorable in patients with ampullary carcinoma, ranging from 34% to 45%. Prognosis will be better for ampullary tumors if neural invasion is absent and if adjuvant chemotherapy is used [14].

Patients with intestinal type of perianpillary adenocarcinomas have a significant long survival. Numerous factors have been reported to improve outcome after pancreaticoduodenectomy for pancreatic cancer, including small tumor size, negative lymph nodes, negative resection margins, diploid tumor DNA content, a lesser degree of genetic alteration, and the use of combined-modality chemotherapy and radiation therapy.
For patients with resected ampullary adenocarcinomas, several factors have been variably associated with survival. They include tumor size, histologic differentiation, lymph node status, resection margin status, and perioperative blood transfusion.

For patients with distal bile duct cancers resected by pancreaticoduodenectomy, tumor histology, lymph node status, and resection margin status have been linked to survival.

For patients with duodenal carcinomas, the factor most strongly linked to survival has been lymph node involvement [13]. As observed in the literature, not all studies used similar parameters. Hence, the present study is compared with different studies having similar parameters.

The Findings in the Present Study are as follows

Demographic Profile

In the present study, the age range was between 21 to 70 years with mean age of 51.47 years and with male predominance (M: F=1.6:1). The mean age in the present study was 51.47 years which is less by 10 years when compared with other studies like that of Cameron et al [15], Yeo et. al. [16], Roest et. al. [17] as seen in the Table 5.

Location of Tumor

The incidence of periampullary carcinomas in the present study was more in pancreas (62.1%) followed by ampulla (19.7%), distal CBD (10.6%), and duodenum (7.6%). This incidence is similar to most of the studies [16,17], Whereas, the incidence of periampullary carcinomas is more in ampulla (36%) when compared to pancreas (35%) [18,19]. (Table 6).

Tumor Size

In the present study the tumor size varied from 2 x 2 cm to 4.5 x 4.5 cm.

Histopathological Diagnosis

In the present study, the commonest periampullary adenocarcinomas were ductal adenocarcinomas of pancreas (35 cases) The present study is similar to that observed by Yeo et. al. [16].

In the present study, of the 12 ampullary carcinomas 08 were intestinal type and 04 were pancreaticobiliary type adenocarcinomas. CK7 was positive in all 04 patients with pancreaticobiliary type adenocarcinomas and CK20 was positive in all intestinal type adenocarcinomas. This incidence in our study is similar to most of the other studies. [20-22] In contrast to our study, Kimura et. al. [23], Zhou et al. [24] and Yasunari et. al. [25] reported that pancreaticobiliary ampullary carcinoma was the most common subtype than intestinal type adenocarcinomas (Table 7).

In the present study, of the 66 cases of periampullary adenocarcinomas, neuroendocrine tumors were found in 4 (6.1%) patients. Similar incidence was seen in study done by Yeo et. al. [16]. Their study showed

Table 5: Incidence of age and gender of periampullary carcinomas – Comparative study

<table>
<thead>
<tr>
<th>Study</th>
<th>Sample size</th>
<th>Mean age (Years)</th>
<th>Gender ratio, M:F</th>
<th>Present study</th>
<th>Cameron et al [15]</th>
<th>Yeo et al [16]</th>
<th>Roest et al [17]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>66</td>
<td>51.47</td>
<td>1.6:1</td>
<td>201</td>
<td>201</td>
<td>650</td>
<td>121</td>
</tr>
</tbody>
</table>

Table 6: Location of tumour versus incidence - Comparative study

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreas</td>
<td>41 (62.1%)</td>
<td>51 (42%)</td>
<td>282 (63.6%)</td>
<td>549 (85%)</td>
<td>20 (33.3%)</td>
</tr>
<tr>
<td>Ampulla</td>
<td>13 (19.7%)</td>
<td>30 (25%)</td>
<td>70 (15.8%)</td>
<td>29 (4.5%)</td>
<td>29 (48.3%)</td>
</tr>
<tr>
<td>Distal CBD</td>
<td>07 (10.6%)</td>
<td>21 (17%)</td>
<td>65 (14.6%)</td>
<td>40 (6.0%)</td>
<td>67 (12.6%)</td>
</tr>
<tr>
<td>Duodenum</td>
<td>05 (7.6%)</td>
<td>19 (16%)</td>
<td>26 (6.0%)</td>
<td>25 (4.5%)</td>
<td>04 (6.6%)</td>
</tr>
<tr>
<td>Total</td>
<td>66</td>
<td>121</td>
<td>443</td>
<td>647</td>
<td>60</td>
</tr>
</tbody>
</table>

Table 7: Incidence of ampullary carcinomas - Comparative study

<table>
<thead>
<tr>
<th>Study</th>
<th>Intestinal type Ampullary Carcinoma (CK20+Ve)</th>
<th>Pancreaticobiliary type ampullary carcinomas (CK7+Ve)</th>
<th>Others (CK7+/CK20+ or CK7-/CK20-)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present Study</td>
<td>08 (66.6%)</td>
<td>04 (33.3%)</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>Zhou et al [24]</td>
<td>29 (24.2%)</td>
<td>24 (20%)</td>
<td>67 (55.8%)</td>
<td>120</td>
</tr>
<tr>
<td>Romiti et al [21]</td>
<td>11 (57.8%)</td>
<td>8 (42.2%)</td>
<td>-</td>
<td>19</td>
</tr>
<tr>
<td>Yasunari et al [25]</td>
<td>16 (37.0%)</td>
<td>18 (42.0%)</td>
<td>9 (21.0%)</td>
<td>43</td>
</tr>
</tbody>
</table>
5% of neuroendocrine tumors among 650 pancreaticoduodenectomy specimens. 03 Neuroendocrine tumors in our study were of low grade, 01 was of intermediate grade and none were high grade. Similar incidence was seen in a study by Jonathan et al. [26].

In contrast to our study some studies showed a higher incidence of high grade neuroendocrine tumors than low grade [27,28].

Histological Grade

In the present study we observed more of Well-differentiated adenocarcinomas constituting 72.5% (45 cases), followed by Moderately-differentiated accounting for 24.1% (15 cases) and Poorly differentiated for 3.4% (02 cases).

Mucinous adenocarcinomas of intestine by convention are considered poorly differentiated. In contrast to our study most of the studies in literature had a higher incidence of moderately and poorly differentiated adenocarcinomas than well differentiated adenocarcinomas [16] (Table 8).

TNM Staging

In the present study, according to the TNM staging 23 cases were of Stage I, 13 cases were of stage II, and 26 cases were of stage III. Majority of pancreatic adenocarcinomas were of stage III.

Conclusion

Periampullary neoplasms excluding those of pancreatic head account for nearly 40% of cases and constitute important subsection that can be treated with optimism compared to more dismal pancreatic head cancers. Pancreaticoduodenectomy pylorus preserving offers the best chance of cure.

A combination of tumor size, tumor site, histopathological type and grade, lymphnode involvement and status of resected margins all influence the overall survival of patients undergoing pancreaticoduodenectomy for periampullary carcinomas.

Hence, it is important to classify these tumors according to the site of origin, grade and stage of the tumors.

References

10. Christopher L, Wolfgang, Shackelford’s Surgery of the Alimentary Tract: 2-Volume, Chapter 93.

12. Fernandez-Cruz L. Periampullary carcinoma; Surgical Treatment: Evidence-Based and Problem-Oriented. 2001. Department of Surgery, Institute of Digestive Diseases, Hospital Clinic, University of Barcelona, Barcelona, Spain

