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ABSTRACT

Molar� absorptivity� plays� a� crucial� role� in� clinical� biochemistry� assays,� offering�
an alternative or complementary approach to standard curve calibration in 
spectrophotometry. This short communication explores its applications in 
enzymatic� and� colorimetric� assays,� facilitating� the� direct� quanti𿿿cation� of�
biomolecules� such� as� NADH,� glucose,� cholesterol,� and� various� enzymes.�
Advances� in�computational�methods,�including�machine� learning,�have�enabled�
the� prediction� of�molar� absorption� coef𿿿cients,� potentially� enhancing� detection�
strategies.�Additionally,�biosensors�and�optical�detection�methods�leverage�molar�
absorptivity�for�improved�quanti𿿿cation�in�point-of-care�testing�(POCT).�However,�
ensuring�analytical�accuracy�requires�rigorous�standardization�and�validation�of�
molar�absorptivity�values.�Future�research�should�focus�on�re𿿿ning�computational�
models and establishing standardized protocols to enhance clinical applicability.
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INTRODUCTION
This short communication explores the 
utilization of molar absorptivity in clinical 
biochemistry� assays,� highlighting� its�
role as an alternative or complement to 
traditional standard curve calibration in 
spectrophotometry. Spectrophotometers are 
widely�used�in�analytical�chemistry,�operating�
based�on�Beer-Lambert’s�Law,�which�describes�
the relationship between absorbance and 
concentration. Molar Absorptivity is calculated 
by the following formula:
A=Ɛcl
Where,�
A= Absorbance
Ɛ=�molar�absorption�coef𿿿cient�(M-1 cm-1)
C=�concentration�(moles/L)
l= pathlength (cm) (1)
The interaction of light with a sample 
quanti𿿿es� the� amount� of� light� absorbed� or�
transmitted�at�speci𿿿c�wavelengths,�facilitating�
the� measurement� of� enzymes,� metabolites,�
proteins,�and�drugs.
In� cases� where� primary� standards� are�

unavailable� for� enzymatic� assays,� secondary�
standards or calibration factors are often used 
based� on� the� molar� extinction� coef𿿿cients� of�
reaction products.1 This approach enables the 
direct�quanti𿿿cation�of�biomolecules�in�various�
clinical applications.

Machine Learning for Molar Absorptivity 
Prediction
Advancements�in�computational�methods,�such�
as�machine�learning,�have�enabled�the�accurate�
prediction�of�molar�absorption�coef𿿿cients�for�
thousands of compounds. Ksenofontov et al. 
demonstrated how machine learning models 
can predict the molar absorption of dye 
molecules� like� BODIPY� (4,4-DiÁuoro-4-bora-
3a,4a-diaza-s-indacene),�offering�an�alternative�
detection strategy.2�However,� these�predicted�
values must undergo rigorous experimental 
validation to ensure their accuracy and 
applicability in clinical settings.

Applications of Molar Absorptivity in 
Clinical Chemistry
Enzyme�Quanti𿿿cation�Using�NADH,�enzymes�
are�quantitated�by�measuring� the� increase�or�
decrease of NADH (Nicotinamide adenine 
dinucleotide� +�Hydrogen)� absorbance� at� 340�

nm,� the�molar� absorptivity� (6.22� 103�mol/L)�
of NADH is used to calculate enzyme activity. 
Similarly,�other�biomolecules�can�be�quanti𿿿ed�
coupled with NADH.1 Expanding the scope: 
key� clinicalanalytes� beyond� NADH-based�
quanti𿿿cations,�molar�absorptivity�is�employed�
in various enzymatic and colorimetric assays 
with� analytes� like� glucose� and� cholesterol.
Alanine�Aminotransferase�(ALT)�&�Aspartate�
Aminotransferase (AST): Enzymatic assays 
rely� on� chromogenic� substrates,� facilitating�
spectrophotometric�quanti𿿿cation.3

MDA-TBA (Malondialdehyde-Thio 
barbituric Acid) Adducts: The concentration of 
MDA can be determined without a standard 
curve by measuring absorbance at 532 nm 
using its molar absorptivity. Biotinidase 
Assay: Biotinidase hydrolyzes biotinidyl-
4-aminobenzoic� acid� (B-PABA),� releasing�
p-aminobenzoic� acid� (PABA),� which� forms�
a purple dye upon diazotization.5� Alkaline�
Phosphatase� (ALP):�No� reagent� calibration� is�
needed,�as�ALP�activity� is�directly�calculated�
using the molar absorptivity of p-nitrophenyl 
phosphate.6

The� clinical� signi𿿿cance� of� POCT� is� being�
ampli𿿿ed� by� sophisticated� quanti𿿿cation�
methods,� which� enhance� the� accuracy,�
reliability,� and� applicability� of� these� tests� in�
various healthcare settings. 

Biosensors and Optical Detection Methods
Molar absorptivity plays a fundamental role in 
biosensors,�particularly�those�utilizing�optical�
detection. Many point-of-care testing (POCT) 
devices leverage optical methods such as 
absorption�and�Áuorescence.�ImageJ�software,�
deep� learning-powered� paper-based� sensors,�
and miniaturized infrared spectrometers 
have� further� enhanced� the� quanti𿿿cation� of�
biomolecules.7

Standardization and Validation of Molar 
Absorptivity Values
Ensuring the accuracy and reliability of 
analytical�results�requires�careful�validation�of�
molar�absorptivity�values.�Certi𿿿ed�Reference�
Materials (CRMs) provide the most reliable 
values� with� stated� uncertainties.� However,�
values provided by reagent manufacturers 
must� be� independently� veri𿿿ed.� While�
machine learning and computational methods 
can� predict� molar� absorptivity� values,� these�
must be experimentally validated to maintain 
analytical precision.
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However,� it� is� essential� to� critically�
evaluate� the� quality� of� the� research� and�
the methods used to determine the values. 
Certi𿿿ed� reference� materials� (CRMs)� may�
provide molar absorptivity values with stated 
uncertainties. These are the most reliable 
sources. Reagent manufacturers may provide 
molar absorptivity values for their products. 
However,�it�is�important�to�verify�these�values�
independently. Machine learning and other 
computational methods are increasingly 
used�to�predict�molar�absorptivity.�However,�
these� predicted� values� require� experimental�
validation.

CONCLUSION
This study underscores the diverse 
applications of molar absorptivity in clinical 
biochemistry,� spanning� from� traditional�
enzyme assays to modern point-of-care 
testing (POCT) biosensors. Proven protocols 
for� bilirubin,� biotinidase,� and� NADH-linked�
assays demonstrate that expanding this cost-
effective approach to other parameters can 
streamline diagnostics and reduce healthcare 
expenses. The integration of machine learning 
for� predicting� molar� absorption� coef𿿿cients�
presents an exciting avenue for rapid and 
economical�detection�strategies.�However,�the�
standardization and experimental validation 
of molar absorptivity values remain critical to 
ensuring the accuracy and reproducibility of 
biochemical measurements. Future research 
should focus on developing standardized 
protocols and validating computational 
predictions to enhance clinical implementation.
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