

REVIEW ARTICLE

Public Health Management During Disasters through Technology Interventions

Sachin C Narwadiya¹, Neha Suthar²**HOW TO CITE THIS ARTICLE:**

Sachin C Narwadiya, Neha Suthar. Public Health Management during Disasters through Technology Interventions. RFP Jour. of Bio. and Biophy. 2025; 10(1): 11-15.

ABSTRACT

Disasters whether natural or man-made pose significant threats to public health systems, often resulting in heightened morbidity, mortality, and prolonged societal disruption. Effective public health management during such crises is essential to minimizing these adverse outcomes. In recent years, technological interventions have played an increasingly critical role in bolstering disaster preparedness, response, and recovery efforts. This article systematically examines the integration of technology in disaster-related public health management. It highlights key innovations such as early warning systems, geographic information systems (GIS), mobile health applications, telemedicine platforms, and data analytics tools that facilitate rapid decision-making and resource allocation. Drawing on real-world case studies from diverse global contexts, the paper illustrates how these technologies have been deployed to monitor disease outbreaks, coordinate emergency services, disseminate public information, and maintain continuity of care. The analysis also addresses the practical challenges of implementing such technologies, including issues of data privacy, interoperability, infrastructure limitations, and equitable access in resource-constrained settings. Finally, the article offers strategic policy recommendations aimed at enhancing disaster resilience through technology, emphasizing the need for integrated planning, cross-sector collaboration, and investment in digital infrastructure. By harnessing the full potential of technological innovations, public health systems can become more adaptive, responsive, and resilient in the face of future disasters.

AUTHOR'S AFFILIATION:

¹Scientist D, Institute of Advance Study in Science and Technology, Guwahati and Research Scholar, School of Public Health, Poornima University, Jaipur, India.

²Tutor, Dr. M K Shah Medical College and Research Centre, Ahmedabad, Gujarat, India.

CORRESPONDING AUTHOR:

Sachin C Narwadiya, Scientist D, Institute of Advance Study in Science and Technology, Guwahati and Research Scholar, School of Public Health, Poornima University, Jaipur, India.

E-mail: snarwadiya@gmail.com

➤ **Received:** 10-07-2025 ➤ **Accepted:** 04-08-2025

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution NonCommercial 4.0 License (<http://www.creativecommons.org/licenses/by-nc/4.0/>) which permits non-Commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the Red Flower Publication and Open Access pages (<https://www.rfppl.co.in>)

KEYWORDS

- Disaster Management • Public Health • Technology Interventions • Emergency Response • Telemedicine • GIS • Health System Resilience • Crisis Preparedness • Digital Health • Risk Reduction

INTRODUCTION

Disasters whether natural such as earthquakes, floods, and pandemics, or human-induced such as chemical spills and nuclear accidents pose severe threats to public health systems worldwide. These catastrophic events often result in the sudden collapse of health infrastructure, disruption of essential services, and a rapid rise in communicable and non-communicable health risks. In such high-pressure scenarios, effective public health management becomes a critical pillar of disaster response and recovery efforts. Timely coordination of health services, disease surveillance, risk communication, and logistics management are essential to mitigate the impact of disasters on human lives.

In recent decades, the integration of technology into public health management has revolutionized the way societies prepare for, respond to, and recover from disasters. Advanced information and communication technologies (ICT), geographic information systems (GIS), mobile health (mHealth), telemedicine, artificial intelligence (AI), and Internet of Things (IoT) tools have significantly enhanced situational awareness, decision-making, and real-time coordination among stakeholders. These innovations not only support the delivery of health services in remote or inaccessible areas but also play a pivotal role in predicting outbreaks, monitoring vulnerable populations, and maintaining continuity of care during and after emergencies.

The COVID-19 pandemic underscored the transformative potential of digital technology in disaster health management. From digital contact tracing and teleconsultations to remote patient monitoring and AI-based resource allocation, technology-enabled solutions became indispensable. Similar interventions have shown remarkable effectiveness in other disasters for example, mobile apps for flood alerts, drone deliveries of medical supplies in conflict zones, and cloud based health records in hurricane hit regions.

Despite these advances, the equitable access, scalability, and sustainability of technology in disaster settings remain complex challenges. Socioeconomic disparities, digital literacy gaps, data privacy concerns, and infrastructural limitations can hinder the effective deployment of tech-based solutions. Therefore, a multidimensional and inclusive approach is essential one that aligns technology with community needs, local governance, and resilient health systems.

This paper explores the role of technology interventions in public health management during disasters, examining various digital tools and platforms that have been successfully utilized in different contexts. It also identifies gaps, challenges, and opportunities for enhancing disaster preparedness and response through tech-enabled public health strategies. By understanding the interface between health, technology, and emergency management, we can pave the way for more resilient, responsive, and adaptive healthcare systems capable of protecting populations in times of crisis.

KEY TECHNOLOGY INTERVENTIONS IN DISASTER PUBLIC HEALTH MANAGEMENT

A. Early Warning Systems and Predictive Analytics Technology enables the forecasting of potential disasters and their public health implications. Satellite imagery, remote sensing, and Geographic Information Systems (GIS) allow authorities to monitor environmental indicators and predict disaster occurrence. Predictive analytics using AI and machine learning can model disease outbreaks or estimate the impact zones of impending events. These systems enhance preparedness and enable timely evacuation and resource mobilization².

B. Mobile Health (mHealth) and Telemedicine mHealth solutions, including mobile applications and SMS-based platforms, facilitate public health communication and access to services during emergencies.

Telemedicine bridges the gap when physical access to healthcare facilities is limited, enabling remote diagnosis, consultations, and treatment. During the COVID-19 pandemic, telehealth platforms played a critical role in maintaining continuity of care while minimizing virus transmission⁷.

C. Electronic Health Records (EHR) and Disease Surveillance Systems Electronic Health Records (EHRs) streamline patient data access and continuity of care, even in displacement scenarios. Disease surveillance systems like DHIS2 or Go. Data provide real-time data for tracking and analyzing disease trends, enabling rapid response to outbreaks. These tools support targeted interventions, resource allocation, and evidence-based decision-making.⁹

D. Drones and Robotics Drones offer innovative solutions for logistics, especially in areas with damaged infrastructure. They can deliver medical supplies, vaccines, or blood units to remote or inaccessible locations.

Robots are also being deployed in high-risk zones to disinfect areas, conduct search and rescue operations, or deliver supplies without exposing responders to danger.⁶

E. Communication Platforms and Social Media Social media and communication platforms enable rapid dissemination of information, public alerts, and health education. Authorities can use platforms like Twitter, WhatsApp, and Facebook to issue warnings, correct misinformation, and collect feedback from affected populations. These tools promote community engagement and ensure real-time situational awareness.⁴

F. Decision Support Systems and Dashboards Integrated dashboards and decision support systems compile data from various sources hospitals, supply chains, weather services to assist in strategic planning and real-time decision-making. These platforms help track hospital capacities, oxygen supplies, vaccination rates, and patient flows, which are crucial for coordinated disaster response.⁸

Technology Interventions and Lives Saved During Disasters (2015-2025)

Country / Region	Technology Intervention	Disaster Context	Estimated Lives Saved*	Notes
India - Kerala, Cyclone Fani (2019)	AI + GIS Early-Warning Systems	Cyclone	Not Specified	Enabled prompt evacuation and rapid deployment of medical teams.
India - COVID-19 Pandemic (2020-2021)	Aarogya Setu App, mHealth, Telemedicine	Pandemic	Not Specified	Over 100 million app installs; helped trace contacts and support isolation.
India - Rayagada, Odisha (2025 Pilot)	AI-Based Maternal/ Child Health Monitoring	High Maternal Mortality Risk	Projected Reduction	Detected complications early and improved referral time.
India - Remote Care Deployment (2020-2022)	Drone + Low-Cost Ventilator Delivery	COVID-19 and Remote Access	Not Quantified	Expanded ICU reach and rural critical care coverage.
India - National IDSP Program (2019-2024)	Digital Disease Surveillance	Epidemic Control	Not Quantified	Real-time data from 90% of districts improved outbreak detection.
Haiti Earthquake (2010)	mHealth Triage Apps & SMS Tools	Earthquake	~617 Patient Cases Processed	Aided frontline triage and record-keeping in disaster zones.
Global (USA, India, Mexico)	Social Media + Mobile Network Data	Earthquake, Floods	Lives Supported	Enabled faster damage mapping and response coordination.
Rwanda (Africa)	Zipline Drone Medical Delivery	Emergencies (Blood, Vaccines)	Systemic Impact	Serves ~75% of national blood supply in Rwanda.
Global Flood Early Warning (70+ countries)	FFGS, Satellite-Radar Tools	Floods	Tens of Thousands (Est.)	Enabled advance evacuation and mitigation planning globally.

Note: 'Lives saved' estimates are often not explicitly quantified in official reports. Impact is inferred from access, process indicators (e.g., number of alerts sent, evacuations completed, or medical deliveries made), and outcomes such as reduced mortality rates or increased coverage.

Technology has dramatically transformed public health responses during disasters. Tools such as AI-based early warning, mobile health apps, drones, and digital surveillance systems have supported early action, improved diagnosis, and ensured medical access in vulnerable regions. While most programs lack exact numerical estimates of lives saved, the available evidence clearly indicates substantial contributions to health system resilience and emergency response effectiveness.

DISASTER-SPECIFIC HEALTH TECHNOLOGY INTERVENTIONS

A. Earthquakes

- Use of drones for damage assessment and search-and-rescue missions.
- Deployment of portable diagnostic kits and mobile field hospitals equipped with telemedicine.
- Rapid GIS mapping to identify high-risk zones and population clusters.

B. Floods and Cyclones

- Early warning alerts through mobile apps and community radio.
- Use of GPS-enabled boats and drones for rescue operations.
- Mobile health vans equipped with satellite internet for remote treatment.

C. Pandemics and Infectious Disease Outbreaks

- Real-time disease surveillance systems and digital contact tracing apps.
- AI-based modeling for outbreak prediction and spread analysis.
- Use of EHRs and cloud platforms for patient record continuity and coordination.

D. Chemical and Radiological Disasters

- Deployment of sensors and remote monitoring systems to detect hazardous substances.
- Robots for decontamination and safe sample collection.
- Real-time alerts and advisories via SMS and social media to reduce exposure risk.

E. Armed Conflicts and Refugee Crises

- Use of satellite communication for healthcare worker coordination in no-network zones.

- Biometric health ID systems for displaced populations.
- Mobile apps to connect displaced individuals with aid, health services, and family.

CASE STUDIES AND REAL-WORLD EXAMPLES

- **COVID-19 Pandemic:** In India, platforms like Aarogya Setu and eSanjeevani facilitated contact tracing, self-assessment, and teleconsultation services. Hospitals adopted EHRs and dashboards for resource tracking and triage management.⁵
- **Kerala Floods (2018):** GIS mapping was used extensively for damage assessment, identifying safe zones, and directing relief efforts. Drones helped assess areas that were otherwise inaccessible.¹
- **Nepal Earthquake (2015):** Drones and mobile apps were utilized for damage surveillance, and aid distribution was coordinated through cloud-based platforms.³
- **Ebola Outbreak in West Africa (2014-2016):** Mobile data collection and digital surveillance helped trace contacts, monitor symptoms, and support community outreach in real-time.¹⁰

BENEFITS OF TECHNOLOGY INTERVENTIONS

- **Speed and Efficiency:** Accelerates data collection, analysis, and communication.
- **Accessibility:** Reaches remote populations with healthcare services.
- **Coordination:** Enhances inter-agency collaboration through shared data platforms.
- **Cost-effectiveness:** Optimizes resource use and reduces logistical costs.
- **Continuity of Care:** Maintains patient records and care access even during evacuations.

CHALLENGES AND LIMITATIONS

- **Infrastructure Failures:** Power outages and network disruptions can hinder technology use.

- **Digital Divide:** Limited access to digital tools in rural or underprivileged communities.
- **Data Security:** Risk of breaches and ethical concerns around data privacy.
- **Interoperability Issues:** Incompatibility between different platforms and data systems.
- **Resistance to Adoption:** Hesitation among healthcare workers and institutions to adopt new technologies without adequate training.

POLICY RECOMMENDATIONS

- **Strengthen Digital Infrastructure:** Invest in resilient internet and power systems.
- **Training and Capacity Building:** Equip health professionals and disaster responders with digital skills.
- **Public-Private Partnerships:** Collaborate with tech firms for rapid deployment and innovation.
- **Inclusive Design:** Ensure tools are accessible to marginalized and differently-abled populations.
- **Regulation and Standards:** Develop frameworks for ethical data use and platform interoperability.

CONCLUSION

Technology has transformed the landscape of public health management during disasters, offering faster, smarter, and more inclusive solutions. From early warning systems to digital health platforms and drones, these innovations strengthen our capacity to anticipate, respond to, and recover from public health emergencies. Governments and stakeholders must prioritize investments in technological resilience, inclusivity, and preparedness to safeguard communities in the face of increasing global crises. Technology has dramatically transformed public health responses during disasters. Tools such as AI-based early warning, mobile health apps,

drones, and digital surveillance systems have supported early action, improved diagnosis, and ensured medical access in vulnerable regions. While most programs lack exact numerical estimates of lives saved, the available evidence clearly indicates substantial contributions to health system resilience and emergency response effectiveness.

REFERENCES

1. George, J., Varghese, R., & Mathew, S. (2019). Disaster mapping using GIS in Kerala floods. *International Journal of Disaster Risk Reduction*, 39, 101251.
2. Khan, Y., O'Sullivan, T., Brown, A., Tracey, S., Gibson, J., Généreux, M., ... & Schwartz, B. (2020). Public health emergency preparedness: a framework to promote resilience. *BMC Public Health*, 20(1), 1344.
3. Meier, P. (2015). *Digital humanitarians: How big data is changing the face of humanitarian response*. CRC Press.
4. Merchant, R. M., Elmer, S., & Lurie, N. (2011). Integrating social media into emergency-preparedness efforts. *New England Journal of Medicine*, 365(4), 289-291.
5. Ministry of Health and Family Welfare. (2020). Aarogya Setu mobile application and telemedicine initiatives. Government of India.
6. Scott, J., & Scott, C. (2017). Drone delivery models for healthcare. *California Management Review*, 59(4), 70-95.
7. Smith, A. C., Thomas, E., Snoswell, C. L., Haydon, H., Mehrotra, A., Clemensen, J., & Caffery, L. J. (2021). Telehealth for global emergencies: Implications for coronavirus disease 2019 (COVID-19). *Journal of Telemedicine and Telecare*, 27(5), 309-313.
8. Wang, C. J., Ng, C. Y., & Brook, R. H. (2020). Response to COVID-19 in Taiwan: Big data analytics, new technology, and proactive testing. *JAMA*, 323(14), 1341-1342.
9. World Health Organization. (2020). WHO guidelines on disease surveillance during emergencies.
10. World Health Organization. (2016). *Ebola data and statistics*. Geneva: WHO.