

REVIEW ARTICLE

Mobile Technology in Craving Management: A Narrative Review of Opportunities and ChallengesUsha Rani Kandula¹, Zeenath Sheikh², Jeya Beulah D³**HOW TO CITE THIS ARTICLE:**

Usha Rani Kandula, Zeenath Sheikh, Jeya Beulah D. Mobile Technology in Craving Management: A Narrative Review of Opportunities and Challenges. *J Psychiatr Nurs.* 2025; 14(3): 105–111.

ABSTRACT

Mobile technology has emerged as a transformative tool in the management of craving and relapse among individuals with substance use disorders. Craving is a dynamic and multidimensional experience that often precedes relapse, yet traditional clinic-based assessments fail to capture its real-time fluctuations. This narrative review explores how smartphone applications, wearable sensors, and digital health platforms enhance craving management through continuous monitoring, Ecological Momentary Assessment (EMA), and automated interventions. Mobile tools offer immediate coping strategies, personalized feedback, and predictive analytics using digital biomarkers such as sleep patterns, location data, and behavioral changes. These technologies present significant opportunities, including early detection of relapse risk, improved treatment engagement, greater accessibility, and enhanced self-management. However, challenges such as privacy concerns, limited user adherence, ethical implications of passive monitoring, and variability in app quality must be addressed to ensure safe and effective implementation. Mental health and addiction nurses play a crucial role in integrating these technologies into clinical practice and guiding patients in their use. Overall, mobile technology holds considerable promise for advancing craving management and supporting long-term recovery, provided that its limitations are carefully managed and future innovations prioritize ethical, evidence-based, and patient-centered approaches.

KEYWORDS

- Mobile Health (mHealth) • Craving Management • Substance Use Disorders
- Relapse Prevention • Digital Biomarkers • Ecological Momentary Assessment (EMA)

AUTHOR'S AFFILIATION:

¹Department of Community Health Nursing, College of Health Technology, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq.

²Lecturer, Department of Anaesthesia and technology, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq.

³Associate Professor, HOD, Department of Community Health Nursing, SCPM College of Nursing and Paramedical Sciences, Haripur, Gonda, Uttar Pradesh, India.

CORRESPONDING AUTHOR:

Usha Rani Kandula, Department of Community Health Nursing, College of Health Technology, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq.

E-mail: neha2010dec@gmail.com

➤ **Received:** 17-11-2025 ➤ **Accepted:** 17-12-2025

INTRODUCTION

Craving is a powerful and persistent urge to use substances, and it represents one of the leading predictors of relapse among individuals with substance use disorders. Traditionally, craving has been assessed during clinic visits or through retrospective self-report, which often fails to capture the rapid fluctuations and contextual triggers that occur in real life.^{1,2} With the widespread use of smartphones and advancements in mobile health (mHealth) technology, craving management has shifted toward real-time digital monitoring and intervention. Mobile-based platforms now provide continuous assessment, instant feedback, personalized support, and greater accessibility for individuals in recovery.^{3,4} This narrative review examines how mobile technology is transforming craving management, highlighting both the opportunities and challenges associated with its use in addiction care.

Concept of Craving and Its Neurobiological Basis

Craving arises from complex interactions between neurobiological pathways, psychological states, and environmental triggers. Neurobiologically, craving is linked to dopaminergic activity in brain reward circuits, particularly within the mesolimbic pathway, as well as dysregulation in the prefrontal cortex that impairs self-control and decision-making.⁵ Psychological factors such as stress, anxiety, emotional imbalance, and conditioned cues often intensify craving episodes. Environmental triggers including familiar places, social contexts, or people associated with past substance use can activate neural pathways that evoke strong urges.⁶ Understanding the multidimensional and dynamic nature of craving underscores the importance of immediate, real-time monitoring, which mobile technology is uniquely positioned to provide.

OVERVIEW OF MOBILE TECHNOLOGY IN ADDICTION TREATMENT

Mobile technology in addiction treatment encompasses smartphone applications, wearable devices, and sensor-enabled systems that support patients throughout the recovery process. These technologies can deliver therapeutic content, provide

structured behavioural interventions such as digital CBT, track daily functioning, and facilitate communication between patients and clinicians.⁷ Mobile systems may serve as independent tools or complement traditional counselling and medication-assisted treatment, offering a hybrid model that enhances continuity of care.⁸ By enabling remote monitoring and personalized support, mobile technology addresses barriers such as limited clinic availability, geographical constraints, and stigma associated with seeking in-person treatment.

Mobile-Based Craving Assessment Tools

Mobile-based craving assessment tools have revolutionized how cravings are captured and monitored, allowing measurement in real time and natural settings. Many apps rely on self-report questionnaires delivered multiple times a day, enabling patients to record craving intensity, triggers, and emotional states whenever they occur.⁹ Ecological Momentary Assessment (EMA) is one of the most effective methods, prompting users at random intervals to reduce recall bias and capture authentic patterns of craving. In addition to self-report tools, mobile systems increasingly incorporate passive monitoring, using sensors to track location, activity levels, sleep patterns, and phone usage behaviours that may correlate with rising relapse risk.¹⁰ These combined assessment strategies provide a comprehensive picture of the individual's craving episodes and vulnerability moments.

Mobile Technology in Craving Intervention

Mobile interventions for craving management use a range of strategies that respond dynamically to real-time data. Many apps offer immediate coping techniques such as mindfulness exercises, breathing techniques, distraction strategies, or grounding methods when cravings are reported or detected.¹¹ AI-driven systems analyse user behaviour and tailor interventions to individual needs, offering timely reminders, motivational messages, and behavioural prompts to help users maintain control during high-risk moments. Digital CBT modules provide structured exercises that challenge cognitive distortions and encourage healthier coping responses.¹² These interventions offer continuous support beyond therapy sessions, empowering individuals to respond effectively to cravings whenever and wherever they arise.

Digital Biomarkers and Relapse Prediction

Digital biomarkers derived from smartphones and wearables are emerging as powerful tools for predicting relapse risk. Smartphones can detect shifts in behaviour or physiology that often precede relapse, such as disrupted sleep, decreased physical activity, increased isolation, or repeated visits to high-risk locations detected through Global Positioning System (GPS).¹³ Phone usage patterns, including late-night browsing or impulsive communication, may also signal emotional distress or craving escalation. Machine learning models integrate self-reported data with these passive signals to generate personalized relapse predictions, enabling clinicians and users to intervene proactively.¹⁴ This predictive capability represents a major advancement in addiction care, allowing for earlier detection of risk and more timely support.

Opportunities Presented by Mobile Technology

Mobile technology presents numerous opportunities for improving craving management and relapse prevention across diverse patient populations. Real-time monitoring offers early detection of risk, enabling proactive interventions before cravings intensify or relapse occurs.¹⁵ These tools enhance patient engagement through interactive features, reminders, and personalized feedback, improving treatment adherence and motivation. Mobile systems are highly accessible and lower the cost of care, benefiting individuals in rural, underserved, or resource-limited areas. Additionally, mobile interventions promote self-awareness and empower individuals to take an active role in managing their recovery.¹⁶ As mobile technologies evolve, they offer increasingly sophisticated tools for individualized care and continuous support.

CHALLENGES AND LIMITATIONS

Despite their promise, mobile craving management tools face several challenges that may limit their effectiveness. Data privacy is a major concern, particularly when apps collect sensitive information such as location and behavioural patterns, which could be misused without strict security protections. User engagement can decline over time due to app fatigue, low motivation, or poor digital literacy, especially among older adults or marginalized

populations.¹⁷ Self-report tools may suffer from intentional or unintentional inaccuracy, while passive monitoring raises ethical issues related to autonomy and informed consent. Additionally, many commercially available apps lack clinical validation, and regulatory oversight is limited, raising concerns about quality and safety.¹⁸ Addressing these challenges is critical to ensuring that mobile technologies are used responsibly and effectively.

Clinical Implications for Mental Health and Addiction Nursing

Mobile technology has significant clinical implications for mental health and addiction nurses, who play a central role in integrating digital tools into treatment plans. Nurses can guide patients in selecting appropriate apps, teach them how to use digital tools effectively, and interpret data generated by mobile platforms.¹⁹ By incorporating these tools into counselling and relapse prevention strategies, nurses can provide more personalized and continuous support. Mobile technologies can also enhance therapeutic communication, allowing nurses to monitor patient progress remotely and intervene early when signs of craving or distress emerge.²⁰ To maximize the benefits, nurses require training in digital literacy, data interpretation, and ethical considerations related to mobile health technologies.

FUTURE DIRECTIONS

The future of mobile craving management involves expanding the integration of advanced technologies such as artificial intelligence, virtual reality, and wearable biosensors. AI-enabled prediction models will continue to improve in accuracy, offering highly personalized relapse risk detection and intervention planning.²¹ Wearables and smartwatches may capture physiological signals such as heart rate variability or stress markers that complement digital craving assessments. Virtual reality platforms may be paired with mobile apps to deliver immersive therapy experiences for cue exposure and craving reduction.²² There is also a need for standardized guidelines, regulatory frameworks, and culturally tailored interventions to ensure safety, effectiveness, and relevance across diverse populations.

Figure 1: Mobile Technology in Craving Management

DISCUSSION

Findings from various studies suggest that mobile technology offers a promising but still evolving approach to craving management and relapse prevention in substance use disorders. Research on smartphone-based EMA has consistently shown that real-time craving ratings are feasible and acceptable for many patients, and that higher momentary craving levels are strongly associated with increased near-term relapse risk, supporting the value of frequent mobile monitoring.²³ Several intervention studies using apps that combine EMA with just-in-time coping strategies, motivational messaging, or digital cognitive-

behavioral therapy have reported reductions in substance use frequency, improved self-awareness of triggers, and better adherence to treatment, although effect sizes are often modest and vary by substance type and population.²⁴

Digital phenotyping studies, which integrate passive data such as GPS location, sleep patterns, and phone usage, indicate that changes in behavior and routine can precede cravings or relapse, and early machine-learning models show encouraging accuracy in identifying high-risk periods; however, these models are not yet standardized or widely implemented in routine care. At

the same time, multiple reviews highlight important limitations, including small sample sizes, short follow-up periods, heterogeneity of app designs, and a lack of long-term outcome data.²⁵ User engagement emerges as a critical factor, with some studies reporting high initial participation followed by rapid drop-off, suggesting that apps must be engaging, simple, and tailored to user needs to remain effective over time.²⁶ Concerns about privacy, data security, and informed consent are also frequently reported in the literature, indicating a need for stronger regulatory frameworks and transparent design.

Overall, while the accumulated evidence supports mobile technology as a useful adjunct to traditional addiction treatment with particular strengths in real-time assessment, personalization, and accessibility the data also emphasize that such tools should complement, not replace, human clinical support, and that more rigorous, large-scale, and longer-term studies are required to confirm their effectiveness and guide best practices.

CONCLUSION

Mobile technology represents a powerful and evolving tool in the management of cravings and prevention of relapse among individuals with substance use disorders. By enabling real-time assessment, personalized intervention, and continuous support, mobile tools address many limitations of traditional addiction treatment. However, issues such as privacy, engagement, ethical concerns, and variability in app quality highlight the need for careful implementation and ongoing evaluation. With continued innovation and proper clinical integration, mobile technologies have the potential to transform addiction care and support long-term recovery through accessible and individually tailored solutions.

Recommendations

Mobile technology should be more widely integrated into addiction care to support real-time craving monitoring and relapse prevention. Clinically validated apps that combine self-report and passive sensor data must be developed with strong privacy protections and user-friendly designs. Mental health and addiction nurses should be trained to guide patients in using these tools and interpreting digital data. Clear policies and

standards are needed to ensure ethical use, protect personal information, and maintain the quality of digital health interventions. Future research should focus on improving long-term user engagement, evaluating effectiveness, and exploring advanced features such as AI and wearable sensors to enhance predictive accuracy and personalized treatment.

Implications

Mobile technology has the potential to strengthen addiction care by enabling early detection of cravings, supporting timely interventions, and improving personalized treatment. For clinicians, especially mental health and addiction nurses, these tools offer continuous monitoring and enhanced patient engagement beyond traditional settings. Mobile data can also guide research by providing real-time insights into craving patterns and relapse risks. However, the increasing use of digital tools highlights the need for clear policies to ensure privacy, ethical use, and quality standards. Overall, mobile technology can significantly improve recovery outcomes when applied responsibly.

REFERENCES

1. Cless MM, Courchesne-Krak NS, Bhatt KV, Mittal ML, Marienfeld CB. Craving among patients seeking treatment for substance use disorder. *Discov Ment Health.* 2023;3:23. <https://doi.org/10.1007/s44192-023-00049-y>.
2. Guo H, Wang J, Wang S, Zhou J, Wang X. Analysis of factors influencing substance use craving among Chinese substance users. *Front Psychiatry.* 2022;13. <https://doi.org/10.3389/fpsyg.2022.1070215>.
3. Verzijl CL, Gius B, Schlauch R, Rancourt D. The transdiagnostic role of food craving: An application of substance use models. *Appetite.* 2022;170:105867. <https://doi.org/10.1016/j.appet.2021.105867>.
4. Sayette MA, Shiffman S, Tiffany ST, Niaura RS, Martin CS, Shadel WG. The measurement of drug craving. *Addict Abingdon Engl.* 2000;95 Suppl 2:S189-210. <https://doi.org/10.1080/09652140050111762>.
5. Volkow ND, Michaelides M, Baler R. The Neuroscience of Drug Reward and Addiction. *Physiol Rev.* 2019;99:2115-40. <https://doi.org/10.1152/physrev.00014.2018>.
6. Dichter GS, Damiano CA, Allen JA. Reward circuitry dysfunction in psychiatric and

neurodevelopmental disorders and genetic syndromes: animal models and clinical findings. *J Neurodev Disord.* 2012;4:19. <https://doi.org/10.1186/1866-1955-4-19>.

7. Oesterle TS, Hall-Flavin DK, Bormann NL, Loukianova LL, Fipps DC, Breitinger SA, et al. Therapeutic Content of Mobile Phone Applications for Substance Use Disorders: An Umbrella Review. *Mayo Clin Proc Digit Health.* 2024;2:192-206. <https://doi.org/10.1016/j.mcpdig.2024.03.004>.
8. Elfouly T, Alouani A. A Comprehensive Survey on Wearable Computing for Mental and Physical Health Monitoring. *Electronics.* 2025;14:3443. <https://doi.org/10.3390/electronics14173443>.
9. Toulami M, Ghasemi K, Rafei P, Sangchouli A, Nafissi N, Khojasteh Zonoozi A, et al. Craving self-reports as outcome measures in drug addiction trials: A systematic review of ClinicalTrials.gov. *Addict Abingdon Engl.* 2025;120:1931-50. <https://doi.org/10.1111/add.70064>.
10. Sawyer-Morris G, Halverson M, Maher KM, Carswell SB, Gordon MS. Implementing real-time assessments of substance use cravings, triggers, and mood: a feasibility study with justice-involved populations. *Health Justice.* 2025;13:60. <https://doi.org/10.1186/s40352-025-00372-2>.
11. Ploderer B, Smith W, Pearce J, Borland R. A Mobile App Offering Distractions and Tips to Cope With Cigarette Craving: A Qualitative Study. *JMIR MHealth UHealth.* 2014;2:e23. <https://doi.org/10.2196/mhealth.3209>.
12. Anagnostou M, Drigas A. Mobile Applications for stress management. *Sci Electron Arch.* 2022;15. <https://doi.org/10.36560/15220221507>.
13. Saylam B, İncel ÖD. Quantifying Digital Biomarkers for Well-Being: Stress, Anxiety, Positive and Negative Affect via Wearable Devices and Their Time-Based Predictions. *Sensors.* 2023;23:8987. <https://doi.org/10.3390/s23218987>.
14. Webb CA, Ren B, Rahimi-Eichi H, Gillis BW, Chung Y, Baker JT. Personalized prediction of negative affect in individuals with serious mental illness followed using long-term multimodal mobile phenotyping. *Transl Psychiatry.* 2025;15:174. <https://doi.org/10.1038/s41398-025-03394-4>.
15. Serre F, Moriceau S, Donnadieu L, Forcier C, Garnier H, Alexandre J-M, et al. The Craving-Manager smartphone app designed to diagnose substance use/addictive disorders, and manage craving and individual predictors of relapse: a study protocol for a multicenter randomized controlled trial. *Front Psychiatry.* 2023;14:1143167. <https://doi.org/10.3389/fpsyg.2023.1143167>.
16. Scott CK, Dennis ML, Gustafson DH. Using smartphones to decrease substance use via self-monitoring and recovery support: study protocol for a randomized control trial. *Trials.* 2017;18:374. <https://doi.org/10.1186/s13063-017-2096-z>.
17. Lin X, Wu X, Zhu Z, Chen D, Li H, Lin R. Quality and Privacy Policy Compliance of Mental Health Care Apps in China: Cross-Sectional Evaluation Study. *J Med Internet Res.* 2025;27:e66762. <https://doi.org/10.2196/66762>.
18. Serre F, Moriceau S, Donnadieu L, Forcier C, Garnier H, Alexandre J-M, et al. The Craving-Manager smartphone app designed to diagnose substance use/addictive disorders, and manage craving and individual predictors of relapse: a study protocol for a multicenter randomized controlled trial. *Front Psychiatry.* 2023;14:1143167. <https://doi.org/10.3389/fpsyg.2023.1143167>.
19. Connolly SL, Kuhn E, Possemao K, Torous J. Digital Clinics and Mobile Technology Implementation for Mental Health Care. *Curr Psychiatry Rep.* 2021;23:38. <https://doi.org/10.1007/s11920-021-01254-8>.
20. Deniz-Garcia A, Fabelo H, Rodriguez-Almeida AJ, Zamora-Zamorano G, Castro-Fernandez M, Alberiche Ruano M del P, et al. Quality, Usability, and Effectiveness of mHealth Apps and the Role of Artificial Intelligence: Current Scenario and Challenges. *J Med Internet Res.* 2023;25:e44030. <https://doi.org/10.2196/44030>.
21. Ramachandran M, Brinton C, Wiljer D, Upshur R, Gray CS. The impact of eHealth on relationships and trust in primary care: a review of reviews. *BMC Prim Care.* 2023;24:228. <https://doi.org/10.1186/s12875-023-02176-5>.
22. Ghadi YY, Shah SFA, Waheed W, Mazhar T, Ahmad W, Saeed MM, et al. Integration of wearable technology and artificial intelligence in digital health for remote patient care. *J Cloud Comput.* 2025;14:39. <https://doi.org/10.1186/s13677-025-00759-4>.

23. Businelle MS, Perski O, Hébert ET, Kendzor DE. Mobile Health Interventions for Substance Use Disorders. *Annu Rev Clin Psychol*. 2024;20:49–76. <https://doi.org/10.1146/annurev-clinpsy-080822-042337>.
24. Binkowska AA, Obarska K, Marcowski P, Szymczak K, Lewczuk K, Sollich K, *et al.* Evaluating the effectiveness of mobile app-based self-guided psychological intervention to reduce craving and lapse risk in problematic substance use and behaviors: Protocol for a randomized control trial in the general population. *Contemp Clin Trials Commun*. 2023;36:101180. <https://doi.org/10.1016/j.conc.2023.101180>.
25. Shiffman S. Ecological Momentary Assessment (EMA) in Studies of Substance Use. *Psychol Assess*. 2009;21:486–97. <https://doi.org/10.1037/a0017074>.
26. Hawker CO, Merkouris SS, Youssef GJ, Dowling NA. A Smartphone-Delivered Ecological Momentary Intervention for Problem Gambling (GamblingLess: Curb Your Urge): Single-Arm Acceptability and Feasibility Trial. *J Med Internet Res*. 2021;23:e25786. <https://doi.org/10.2196/25786>.