

## REVIEW ARTICLE

## Dysregulation of Protein Synthesis and its Implications for CNS Disorders: Detection Methods, Diseases and Therapy an Update

Kiran Kumar H.B.<sup>1</sup>, K. Ramachandra Kini<sup>2</sup>,  
Kamatachi C<sup>3</sup>, Ranjini P.<sup>4</sup>

**HOW TO CITE THIS ARTICLE:**

*Kiran Kumar H.B., K. Ramachandra Kini, Kamatachi C et. al, Dysregulation of protein synthesis and its implications for CNS disorders: Detection methods, diseases and therapy an update. Ind J Genet Mol Res. 2025; 14(2): 53-65.*

### ABSTRACT

Protein translation is central to gene expression in the central nervous system (CNS) because it is the crucial process of converting messenger RNA (mRNA) into functional proteins, which are vital for the structure, function, and regulation of neurons and their circuits. Regulation of protein synthesis involves posttranscriptional modifications and coordination between transcription and mRNA turnover to enable rapid signaling and gene expression changes in cells of CNS. This process is highly regulated and essential for key CNS functions such as synaptic plasticity, learning, and memory. Impaired translation is linked to several CNS disorders. The present review covers basic areas of gene-regulation and deregulation to highlight the unique features of the mechanism and their relevance to CNS. Further, it updates on the current methods of detection, and CNS disorders with details of the mechanisms and proteins, pathways involved in brief. Finally, the potential of targeting the proteins and intermediates of the mechanism as therapeutic targets is discussed. In the post-Human genome sequencing era CNS disorders are implicated as major source of Human disorders. Novel methods to treat these disorders are need of the hour, thus the detail study of protein synthesis at all levels would enable positive leads towards this direction. The present review is a brief update of the current literature in this important area of biomedical research.

### KEYWORDS

- Ribosome Profiling • Aminoacyl-tRNA Synthetases (ARSs) • Repeat-Associated Non-Aug (Ran) Translation

---

**AUTHOR'S AFFILIATION:**

<sup>1</sup> Assistant Professor, Department of Biotechnology, Nrupathunga University, Bangalore, India.

<sup>2</sup> Professor and Head of Department, Department of Studies in Biotechnology, University of Mysore, Mysuru, India.

<sup>3</sup> Professor and Head, Department of Biotechnology, Oxford College of Science, Bangalore, India.

<sup>4</sup> Professor, Department of Biotechnology, Sir. M.V. Government Science College, Bhadravathi, Karnataka, India.

**CORRESPONDING AUTHOR:**

**Kiran Kumar H.B.**, Assistant Professor, Department of Biotechnology, Nrupathunga University, Bangalore, India.

**E-mail:** kirankumarhb@gmail.com

➤ Received: 25-08-2025   ➤ Accepted: 24-09-2025



Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution NonCommercial 4.0 License (<http://www.creativecommons.org/licenses/by-nc/4.0/>) which permits non-Commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the Red Flower Publication and Open Access pages (<https://www.rfppl.co.in>)

## INTRODUCTION

Although historically research has focused on transcription as the central governor of protein expression, protein translation is now increasingly being recognized as a major factor for determining protein levels within eukaryotic cells. The central nervous system (CNS) relies on efficient updating of the protein landscape for maintaining several functions. Deregulated translation can lead to aberrant protein synthesis, altered cellular functions, and disease progression. Increasing evidence suggests that impaired mRNA translation is a common feature found in numerous CNS disorders. In this review, we discuss malfunctions of translation and their contributions to development of diseases. We explore the key mechanisms contributing to the deregulation of protein translation, including functional alterations in translation factors, tRNA, mRNA, and ribosome function. Advances in detection methods are discussed. Abnormal protein synthesis leads to protein expression, disrupted cellular signaling, and perturbed cellular functions these are discussed with reference to CNS disorders. Advancements in understanding the molecular mechanisms of protein translation deregulation, coupled with the development of targeted therapies, could offer promising avenues for improving disease outcomes in various human diseases like CNS disorders which form major burden of diseases globally.

## BASICS OF GENE-REGULATION AND CONTROL OF TRANSLATION

In the following paragraphs gene-regulation through transcript and translation is described in brief to highlight the major event protein and modifications to provide a background of the mechanism and its regulation. The paragraph uses chapters from books Bruce Alberts *et al.*, 2020 and De Robertis 2020 as a source.

An mRNA is exported from the nucleus after transcription, splicing, capping, and polyadenylation. The ribosome in the cytoplasm then uses the mRNA to translate its encoded information into a polypeptide chain. An mRNA is chosen for translation by a complicated process, and the effectiveness of each mRNA's recruitment is determined by a number of regulatory elements found inside the mRNA. The polyA tail at the 3 end of an mRNA and the cap structure at the 5 end are

especially significant in this context. Other components include the poly-adenosine-binding protein (PABP) and the cap-binding protein eukaryotic initiation factor 4E (eIF4E), respectively, and allow the circularization of the mRNA by binding to eIF4G.

eIF4G functions as a scaffold protein, with additional binding sites for the ATP-dependent RNA helicase eIF4A and eIF3, which binds to the 40S ribosomal subunit. Next the 40S ribosome subunit is be loaded with the initiator methionine-tRNA (tRNAiMet) aided by eIF2, which binds tRNAiMet and GTP. This 'ternary complex' is subsequently delivered to the pre-initiation complex, which consists of the 40S ribosomal subunit, eIF3, and eIF1A, resulting in the 43S pre-initiation complex. This complex is attracted to the mRNA by eIF3 and eIF4G, resulting in the 48S initiation complex. The GTP bound by eIF2 is subsequently hydrolyzed to GDP, releasing eIF2 and requiring replenishment with GTP for successive rounds of initiation, which is carried out by the GTP exchange factor eIF2B. The 40S ribosomal subunit then scans the mRNA in a 5 to 3 direction until it finds an AUG start codon in the appropriate context. Finally the binding of the 60S ribosomal subunit and elongation of the polypeptide chain occurs. Figure 1 is an illustration of protein synthesis steps and machinery.

Translation of protein synthesis is regulated globally by two main mechanisms: interruption of the closed loop containing mRNA, eIF4F complex, eIF4B, and PABP, or decreased ternary complex formation (Olga *et al.*, 2020). The first is accomplished through a collection of inhibitor proteins that compete with eIF4G for a binding site on eIF4E, inhibiting this essential interaction. This set of eIF4E-binding proteins, known as 4E-BP1, 4E-BP2, and 4E-BP3, is phosphorylated in a pathway downstream of the mammalian target of rapamycin' (mTOR) kinase (Böhm, *et al.*, 2021). Signaling via mTOR causes the phosphorylation of 4E BPs, rendering them unable to bind eIF4E and allowing it to engage with eIF4G. In the second mechanism of global control four eIF2α-kinases (GCN2, PERK, HRI, and PKR) phosphorylate the eIF2 α subunit on serine during cellular stress, such as amino acid deprivation, viral infection, hypoxia, and DNA damage (Ryoo *et al.*, 2024; Llabata, *et al.*, 2019). Phosphorylation of serine increases the protein's affinity for eIF2B, preventing it from

carrying out guanosine nucleotide exchange with other eIF2 molecules. This reduces the amounts of ternary complexes and overall translational inhibition. In addition to these global translation mechanisms, there are several mRNA-specific mechanisms at action. The majority of examples of message-specific

regulation rely on sequence elements that may or may not be organized inside the 5 and 3UTRs. IRESs, uORFs, and miR-binding sites are examples of such structures, which can act individually or in combination (Leppek et al., 2018; Nandagopal and Roux 2015; Somers et al., 2013).

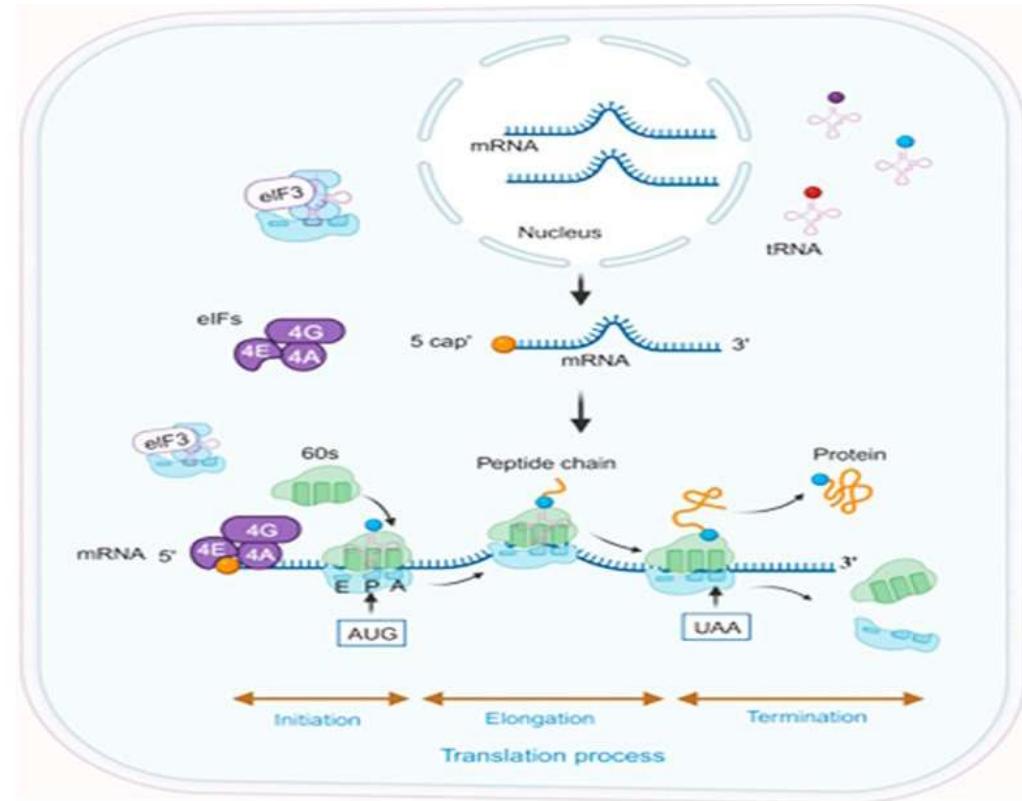



Figure 1: Overview illustrating various steps and machinery of protein synthesis

### Deregulation mechanisms

These regulatory mechanisms could vary based on cellular stress, developmental stage, viral infections, and other situations due to their distinct combination and interaction (Endres et al., 2015; Dong et al., 2015; Gao et al., 2025). In the 5' UTR, m6A modification can enhance translation independently of 5' cap-binding proteins, especially in response to physiological stress. Selective suppression of adenosine methylation lowers the translation efficiency of mRNAs with m6A in their 5' UTRs. When cells are subjected to heat shock, higher levels of m6A in Hsp70 mRNA govern cap-independent translation (Meyer et al., 2015). In eIF3d-mediated translation initiation, eIF3d, an eIF3 complex subunit, possesses cap-binding ability, allowing it to detect the mRNA cap structure (Lee et al., 2016). IRES-mediated translation initiation is a mechanism that

allows some mRNA molecules, commonly found in viruses, to start protein synthesis within a eukaryotic cell without using the typical cap-dependent translation initiation (Yang, et al., 2019). This allows for the quick commencement of protein synthesis, which enables viruses to hijack cellular translation machinery and generate their own proteins inside host cells. Ribosome shunting initiation is frequently reported in plant viruses (Bamford and Mark Zuckerman 2021). Protein expression dysregulation, post-translational changes, and mutations of initiation-related proteins typically block the translation initiation process (Song, et al., 2020). Deregulation of tRNA, such as changes in tRNA expression, modifications, aminoacylation, splicing, and maturation, can all lead to cellular malfunction and diseases (Orellana et al., 2024). Abnormal expression or mutations of rRNA

and ribosomal proteins in the ribosome result in abnormal ribosome biogenesis, affecting several ribosome functions and limiting translation (Turi, *et al.*, 2019). Finally, short RNA molecules target certain mRNAs, such as eIFs, splicing factors, and upstream regulators, influencing their secondary structure and expression (Georgakopoulos-Soares, *et al.*, 2022). Also, miRNAs can prevent or enhance the degradation of target mRNAs by binding to their 3' or 5' untranslated regions (O'Brien, *et al.*, 2018).

Elongation dynamics can be influenced by a variety of environmental or cellular stressors, including oxidative stress, thermal shock, food shortage, and viral infections (Barros *et al.*, 2023; Guzikowski, *et al.*, 2022; Shcherbik and Pestov *et al.*, 2019). Deregulation of elongation, the mechanism by which ribosomes move along mRNA during protein synthesis, has a substantial impact on translation efficiency, fidelity, and protein creation. eEFs can interfere with proper function, resulting in elongation faults (Rodnina. *et al.*, 2016). Impaired eEF2 activity could cause diminished ribosome translocation, resulting in slower translation rates and possibly altering protein folding, localization, or function. Deregulation of alternative mRNA splicing results in aberrant protein isoforms that disrupt EEF1B2 production, facilitating disease development in eukaryotes (Peng, *et al.*, 2021). Errors in aminoacyl-tRNA selection and the incorporation of incorrect amino acids into the developing polypeptide chain result in faulty or non-functional proteins that contribute to

cell malfunction or disease states. In addition, tRNA mutations have been linked to ribosomal stalling, premature polypeptide release, and neurodegeneration. Ribosome stalling can be caused by mRNA secondary structures, codon repetitions, uncommon codons, mRNA damage, or a lack of particular eEF availability (Ou, *et al.*, 2019).

Deregulation of termination, the final stage of protein synthesis, has a profound impact on translation fidelity and functional protein output. Abnormal termination is caused by a dysregulated read-through of the termination codon, as well as changes in the 3' UTR of mRNA, the ribosome, and termination factor modifications (Pandit, *et al.*, 2023; Embree, *et al.*, 2022). Translation is bypassed and continues beyond the stop codon. This process, known as PTC read-through or nonsense suppression, can be caused by a number of variables, including specific genetic mutations, ribosomal context, and the existence of suppressor tRNAs (Lejeune *et al.*, 2017; Dabrowski, *et al.*, 2015). Changes in regulatory elements within the 3' UTR of mRNA can affect translation termination efficiency, resulting in deregulated termination, abnormal protein synthesis, or changed protein levels (Cridge *et al.*, 2015). Alterations in the modification patterns of termination factors may impact their functions and subsequently affect termination efficiency and fidelity (Agris, *et al.*, 2017). Thus various machinery of the translation could be dysregulated through extrinsic and intrinsic factors could lead to a spectrum of CNS diseases.

**Table 1:** Brief list of proteins involved in eukaryotic protein translation

| S. no | Protein involved in protein translation                       | Function/role                                                                                                                                          | Reference                         |
|-------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| 1     | Eukaryotic initiation factors (eIFs)                          | Stabilize the formation of ribosomal preinitiation complexes around the start codon and are an important input for post-transcription gene regulation. | Jackson RJ, 2010                  |
| 2     | Eukaryotic release factors (eRF1)                             | Essential protein involved in stop codon recognition in translation, termination of translation.                                                       | Song <i>et al.</i> , 2000         |
| 3     | Cap-binding protein (eukaryotic initiation factor 4E (eIF4E)) | A type of RNA-binding protein that specifically recognizes and binds to the 5' m7G cap structure of messenger RNA (mRNA).                              | Pelletier J, <i>et al.</i> , 1991 |
| 4     | DEAD-box helicase                                             | ATP-dependent protein that unwinds RNA, playing a central role in translation.                                                                         | Linder <i>et al.</i> , 1989       |
| 5     | PERK kinase                                                   | Regulates translation by phosphorylating the eIF2 $\alpha$ subunit of the eukaryotic initiation factor 2 (eIF2).                                       | Shi Y <i>et al.</i> , 1998        |
| 6     | mTOR                                                          | The protein is a key regulator of translation, influencing both general and specific mRNA translation.                                                 | Mitra <i>et al.</i> , 2015        |
| 7     | Peptidyl-tRNA hydrolase (Pth)                                 | Essential enzyme that cleaves the ester bond linking the peptide to the tRNA.                                                                          | Tomasi <i>et al.</i> , 2023       |
| 8     | Peptidyl transferase                                          | Facilitates the aminolysis reaction that joins amino acids during protein synthesis.                                                                   | Tirumalai <i>et al.</i> , 2021    |

## METHODS OF PROTEIN TRANSLATION ANALYSIS

The following paragraph compiles few methods of protein translation, describing the protocol involved brief and their applications.

### Polysome Profiling

One or more ribosomes recruit identical mRNA, and the translation rate is restricted by the start rate. Thus, ribosome density on a certain mRNA indicates translational state. Polysome profiling is a technique from the 1960s that uses sucrose density gradient ultracentrifugation and fractionation (Drysdale and Munro, 1967). mRNAs attached to different numbers of ribosomes can be separated using centrifugation (King and Gerber, 2016). Polysomes and monosomes are frequently separated using a normal linear sucrose gradient (typically 50% sucrose) produced by a gradient maker. Gradients are separated into fractions, some of which contain translating mRNAs coupled with polysomes and monosomes, as well as the supernatant containing free mRNAs, 60S and 40S ribosomal subunits. The height of polysome peaks of the curve and the area under each peak indicate ribosome translational activity. Northern blot, RT qPCR, as well as the high-throughput microarray or RNA-seq approaches are then used to identify mRNAs in the separated components. Initiation inhibition causes ribosome “runoff,” leading to decomposition of polysome and elevated levels of free ribosomal subunits. Elongation inhibition enhances polysomal size (Liang et al., 2018).

### Ribosome Profiling

Ribosome profiling involves treating the ribosome-nascent peptide chain complex with nuclease to delete mRNA portions that are not occupied by ribosomes (Ingolia et al., 2009). Ribosome-protected fractions (RPFs) are then obtained using sucrose density gradient centrifugation or immunopurification of ribo-tag cells (Ingolia et al., 2012). Following ribosome and rRNA removal, high-throughput sequencing is employed to detect small, ribosome-protected RNA fragments ranging from 21 to 28 bp. This strategy has several advantages. High-resolution ribosome footprints (RFs) enable genome-wide investigation of translation with codon resolution and can reveal: (i) translational efficiency of all individual

mRNAs as computed by ribosome profiling combined with RNA-seq; (ii) detect rare and subtle translation events (iii) uncover rich and precise ribosome positional information, such as translation initiation at non-AUG codons, identify upstream ORFs (uORFs) translation, elucidate codon usage bias and ribosome pausing (Juntawong et al., 2013).

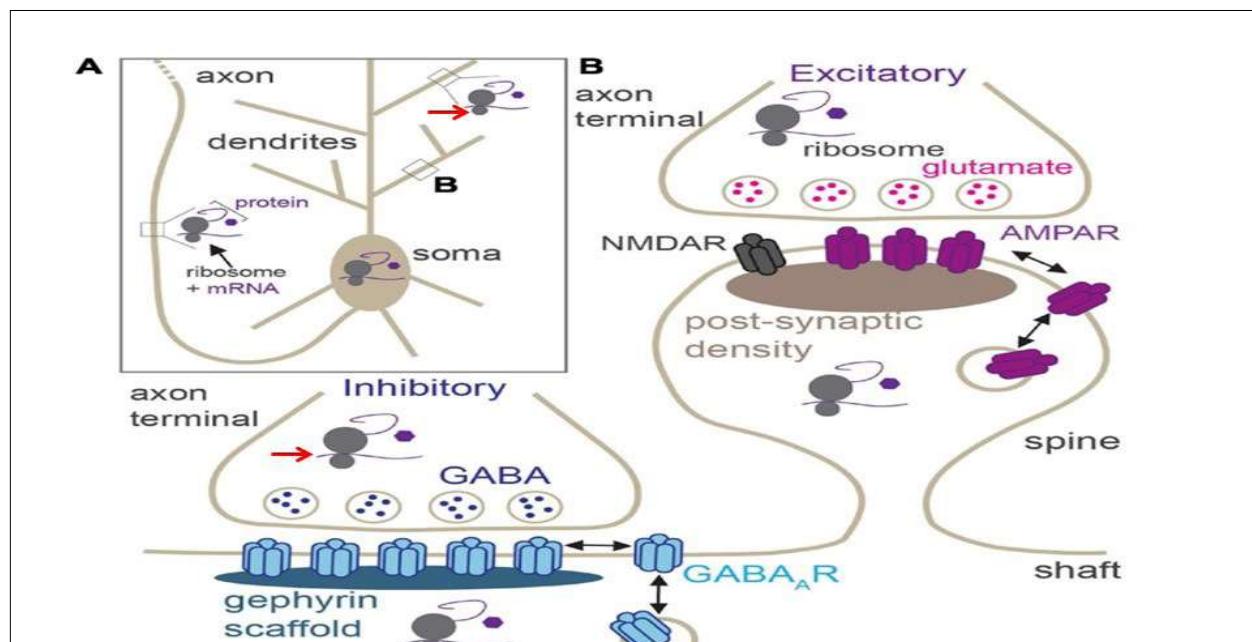
### TRAP-Seq

Inada et al. (2002) demonstrated ribosome affinity purification sequencing (TRAP-seq) using tagged ribosomal proteins. Using animals or cells in which activated cre-recombinase under a cell-specific promoter drives expression of an affinity tag (such as His, Avi, or GFP) fused to the large ribosomal subunit, RNC-mRNAs of a specific cell type can be isolated by affinity purification with corresponding anti-tag beads. This strategy is constrained by the necessity to create stably transfected cell lines or transgenic animals for each cell type. Also, the approach may be biased by the fact that some ribosomal proteins, notably RPL10a, selectively translate only specific mRNAs (Xue and Barna, 2012), and extra ribosomal mRNAs.

### Mass spectrometry

Mass spectrometry proteomics has emerged as a powerful tool for investigating dynamic changes in protein translation and identifying key players. By pulse labeling nascent peptide chains with heavy amino acid isotopes (SILAC) or click-reactive amino acids/puromycin, mass spectrometry approaches can assess protein dynamics such as degradation and synthesis (Ross, et al., 2021). Quantitative proteomics with mass spectrometry can compare overall protein levels between healthy and diseased cells/tissues, revealing which proteins are over/under produced due to defects in translation (Jiang, et al., 2024).

### Other recent methods


In recent years, mRNA sequencing is a powerful technique for profiling the transcriptome and has emerged as a valuable tool for investigating protein translation deregulation. The method aids detection of mutations in the Kozack sequence and enables identification of the 5' UTRs of eukaryotic mRNAs (Tsimberidou, et al., 2022). Single-cell ribosome sequencing (scRibo seq) combines nuclease footprinting, small-RNA

library construction and size enrichment to measure translation dynamics in individual cells (Michael VanInsberghe *et al.*, 2021). The method provides valuable information about protein translation dynamics during cellular differentiation, cell-to-cell heterogeneity in gene expression thus revealing defects in subpopulations of cells.

### CNS disorders

Neurological tissues are sensitive to perturbations in the control of protein synthesis because CNS neurons are demanding in metabolism, and shortcomings in translation that are tolerated in other cell types become limiting in neurons (Zhou and Bian 2024). However, synapse and at the ends of long axons (dendrites) protein synthesis is localized and control neurotransmission. Translational mechanisms are efficient in controlling

translation in situ and transport of mRNAs to the extremities of dendrites and axons, over long distances to meet short-term changes in local protein requirements (Das *et al.*, 2021). Brain enables experience-dependent cognition in humans and synaptic transmission is a key component of this physiological phenomenon. Changes in synaptic strength are controlled in part by rapid local translation of mRNAs at synaptic clefts (Rajgor *et al.*, 2021). Figure-2 is an illustration of context specific protein translation in the neuron. Impaired local translation regulation is a central feature in the mechanisms underlying CNS disorders. In the following paragraph CNS disorders caused due to protein translation is described briefly. The table-2 summarizes few CNS disorders and the gene and gene functions briefly.



**Figure 2:** Illustration of protein translation at various sites in a Neuron and context dependent protein synthesis (Excitatory Neuronal Transmission). Arrow head-protein synthesis

**Table 2:** CNS disorders of protein translation

| Sl. no | Disorder                        | Gene          | Function/cellular roles                                                                | Reference                     |
|--------|---------------------------------|---------------|----------------------------------------------------------------------------------------|-------------------------------|
| 1      | ALS/FTD                         | <i>TDP-43</i> | Abnormal trafficking of futsch/Map1b mRNAs to neurites leading to cytoskeleton defects |                               |
| 2      | SMA                             | <i>SMN</i>    | Mislocalization altering neurite growth,                                               |                               |
| 3      | AD                              | <i>Mapt</i>   | Hyperphosphorylation                                                                   |                               |
| 4      | PD                              | <i>LRRK2</i>  | Deregulation of global eIF4E/4E-BP. Defects in axonal 4E-BP dependent translation?     |                               |
| 5      | HD                              | <i>HTT</i>    | Impaired dendritic levels of Act b mRNA, Ago2 protein and P-bodies                     | Gamarra <i>et al.</i> , 2021. |
| 6      | ASD and FKS                     | <i>FMRP</i>   | Deregulation of local mRNAs linked to abnormal spine morphology and plasticity         |                               |
| 7      | DS                              | <i>Dscam</i>  | Upregulation of dendritic mRNA and protein levels with defects in dendrite branching   |                               |
| 8      | Depression and bipolar disorder | <i>Bdnf</i>   | Protein crucial for the survival, growth, and function of neurons.                     |                               |

Missense mutations in any one of the five subunits of eIF2B, the guanosine nucleotide-exchange factor is responsible for recharging eIF2, can cause vanishing white matter disease (VWM) (Moon *et al.*, 2018). VWM is a leukoencephalopathy with vanishing white matter caused by dysfunctional translational control. The symptoms typically appear following mild infections or head trauma, indicating a role for cell stress (Knaap *et al.*, 2025-Genereviewes). CNS diseases are caused by mutations in aminoacyl-tRNA synthetases (ARSs), the enzymes responsible for loading amino acids onto tRNA molecules, which is an early step in protein synthesis (Meyer-Schuman and Antonellis 2017). Defects in translation elongation are also known to cause neurological symptoms such as epilepsy, microcephaly and ataxias. In Mice lacking eEF1A2 exhibit the 'wasted' phenotype, in which neurodegeneration occurs as eEF1A expression in the brain shifts from isoform 1 to isoform 2 in seizures (Davies *et al.*, 2017). Fragile X Mental Retardation Protein (FMRP) is a RNA-binding protein proposed to play a role in specific translational regulation of the subset of mRNAs with which it interacts (Chen and Joseph 2015). Internal ribosome entry is used to initiate translation in a large number of mRNAs and IRES-mediated translation is involved in a number of neurological disorders such as muscular dystrophies (Marques *et al.*, 2022). The expression of many miRs is restricted to particular areas of the CNS and several studies suggest that miRs are involved in key stages of neurogenesis, survival and synaptic plasticity (Rashidi *et al.*, 2023). In Huntington's disease (HD), miR-9 and miR-9 levels are decreased, and miR-9 has been shown to target the REST transcription silencer (REST) transcription silencer (Dong and Cong 2021). In Alzheimer's disease (AD) MiR-106 levels are decreased and APP is targeted by the miR-20 family miRNA (miR-106) in neuronal cell lines (Wang *et al.*, 2023). SNPs in the miRNA machinery have been associated with major depressive disorder (MDD), including SNPs within pre-miR-30e,AGO1, and DGCR8, the latter being part of the microprocessor complex and a component of miRNA biogenesis (Lopizzo, *et al.*, 2019). mTORC1 has also been linked to schizophrenia (SZ) via the serotonin receptor 5-HT6 (Meffre, *et al.*, 2012). Several lines of evidence suggest that activation of mTORC1 signaling is beneficial for the treatment of MDD (Gururajan and van den Buuse 2014).

Expansions of short nucleotide sequence repeats account for more than 50 neurological or neuromuscular diseases and the pathogenic mechanism among those diseases varies based on repeat sequence, length, and the genetic context (Paulson 2018). A unique phenomenon of the repeat expansion is the non-canonical translation of the repeat-containing RNA, recognized as repeat-associated non-AUG (RAN) translation (Goodman and Bonini 2020). The secondary structures of the expanded RNA repeats are important for the non-canonical translation initiation that does not require the AUG start codon, and sometimes the 5'-cap as well (Kearse and Wilusz 2017). The translation of the RNA repeats in all possible reading frames generates various polypeptide proteins, which contribute to disease pathogenesis. RAN translation is detected in fragile X-associated tremor/ataxia syndrome (FXTAS) (CGG•CCG), myotonic dystrophy type 2 (CCTG•CAGG), spinocerebellar ataxias type example- SCA31 (TGGAA•TTCCA) (Banez-Coronel and Ranum 2019). Translation defects in Amyotrophic lateral sclerosis (ALS) demonstrate that the GGGGCC repeat containing RNA transcripts in the cytoplasm are spliced introns, but not the un-spliced pre-mRNAs (Cheng *et al.*, 2019). Cytoplasmic repeats containing introns mainly exist in circular form, due to the defective debranching of spliced lariat intron induced by the repeat. The repeated RNA has been shown to form both hairpin and G-quadruplex structures (Cammas *et al.* 2016). It is demonstrated that both CAG•CTG and CGG•CCG repeats have a propensity to undergo frameshifting, resulting in the production of frameshifted proteins (Wojciechowska *et al.*, 2014). It has been shown that the translation of CGG repeats located in the 5' UTR of FMR1 requires the 5' 7-methylguanosine (m7G) cap on the mRNA. However, as the spliced circular intron is exported to the cytoplasm, the cap-independent translation initiation is important for C9ORF72 repeat expansion (van 't Spijker, *et al.*, 2023). RNA secondary structure is important for RAN translation, and RNA helicases are also implicated in RAN translation (Georgakopoulos-Soares, *et al.*, 2022).

### Protein translation as potential therapeutic target

Emerging and promising therapeutic strategies in various neurological disorders

presently involve the translation regulatory mechanisms. An extensive preclinical model represents eEF2K as an interesting therapeutic target for both AD and PD (Knight *et al.*, 2020). Inhibition in eEF2K rescues cognitive defects in neurological disorders (Wang, *et al.*, 2024). Branaplam a small molecule RNA splicing modulator, is known to promote changes in alternative splicing and stabilize the interaction between the spliceosome unit and SMN 2 Pre-mRNA. Increase in the production of functional SMN protein focused on the splicing of survival motor neuron 2 (SMN2) mRNA towards the pivotal clinical investigation in spinal muscular atrophy (SMA) (Florian Krach *et al.*, 2025). Similarly, Mimosine, a target of eIF3a effects on protein synthesis and cell cycle progression (Dong and Zhang 2003). Everolimus and Temsirolimus are targets of mTOR (Klümpen *et al.*, 2010). Cheng *et al.*, 2018 demonstrate inhibition of PERK and the downstream signaling events of phospho-eIF2 $\alpha$  by inhibitors GSK260641 and ISRIB in a cellular model of the hexanucleotide expansion of C9ORF72. Ridaforolimus (Sirolimus), a macrolide and an mTOR inhibitor, showed a positive result in the animal model study (MacKeigan and Krueger 2015). An allosteric inhibitor, rapamycin targets the mTOR complex I, which promote the diffusion of the effect on the cell signaling pathway through serine-threonine kinase. This pathway governs metabolism, growth and proliferation, autophagy and protein synthesis. Other small molecule inhibitors, includes PP242, Torin1, torin2, and PP30, however structurally different to rapamycin and rapalogs and does not rely on FKBP cooperation (Tramutola, A *et al.*, 2017)

Protein kinases regulate diverse cellular functions through the orchestrated propagation and amplification of cellular stimuli into distinct biological responses through coordinated signal transduction cascades. Several kinases are targets for several CNS disorders. Such as the MLK1, MLK2 and MLK3 in PD (Moreno *et al.*, 2023) and PKS-T in Bipolar disorder (Saxena, *et al.*, 2017) and DAPK1 in AD (Xu, *et al.*, 2018). Thus proteins and mechanism in protein translations are potential targets of CNS drugs.

## CONCLUSION

De *novo* protein synthesis by the ribosome and its multitude of co-factors must occur in

a tightly regulated manner to ensure that the correct proteins are produced spatiotemporally and, in some cases, also in the proper location in eukaryotic cells. Protein synthesis is especially critical to the development, survival, and proper functioning of neurons due to their unique cellular architecture which requires specific spatiotemporal regulation. A key factor in many CNS diseases is the misfolded proteins aggregate into toxic clumps which damage neurons and altered cellular functions. Several recent studies have highlighted the importance of canonical translational control in regulating behaviors associated with neuropsychiatric and mood disorders. Development of novel technologies encompassing diverse areas neuroscience, genomics, bioinformatics and experimental approaches have enabled advances in understanding the molecular mechanism of translation regulation at different steps and at the genome-wide level. Thus this area of cell biology is gaining importance both from basic and clinical researchers.

## REFERENCES

1. Cell and Molecular Biology. De Robertis, 8th Edition 2020. Lww Rs Pharmacy Exclusive (Cbs).
2. Molecular Biology of the Cell, Bruce Alberts, Rebecca Heald, *et al.* 7th Edition. 2022. Norton & Co.
3. Olga M. Alekhina, Ilya M. Terenin, Sergey E. Dmitriev and Konstantin S. Vassilenko. Functional Cyclization of Eukaryotic mRNAs. *Int. J. Mol. Sci.* 2020, 21(5), 1677; <https://doi.org/10.3390/ijms21051677>
4. Raphael Böhm, Stefan Imseng, Roman P. Jakob, Michael N. Hall, Timm Maier, Sebastian Hiller. The dynamic mechanism of 4E-BP1 recognition and phosphorylation by mTORC1. *Molecular Cell.* Volume 81, Issue 11, 3 June 2021, Pages 2403-2416.e5
5. Hyung Don Ryoo. The integrated stress response in metabolic adaptation *Journal of Biological Chemistry.* Volume 300, Issue 4, April 2024, 107151
6. Paula Llabata, Julia Richte, Isabel Faus, Karolina Sska-Durdasiak, Lukas Hubert Zeh, Jose Gadea, Marie-Theres Hauser. Involvement of the eIF2 $\alpha$  Kinase GCN2 in UV-B Responses. *Front. Plant Sci.*, 28 November 2019. Sec. Plant Abiotic Stress. Volume 10 - 2019 | <https://doi.org/10.3389/fpls.2019.01492>.

7. Neethi Nandagopal, Philippe P Roux. Regulation of global and specific mRNA translation by the mTOR signaling pathway. *Translation (Austin)*. 2015 Feb 2;3(1):e983402. doi: 10.4161/21690731.2014.983402
8. Kathrin Leppek, Rhiju Da, Maria Barna. Functional 5' UTR mRNA structures in eukaryotic translation regulation and how to find them. *Nat Rev Mol Cell Biol*. 2017 Nov 22;19(3):158–174. doi: 10.1038/nrm.2017.103
9. Joanna Somers, Tuija Pöyry, Anne E. Willis. A perspective on mammalian upstream open reading frame function. *International Journal of Biochemistry & Cell Biology*. Volume 45, Issue 8, August 2013, Pages 1690-1700
10. Lauren Endres, Peter C Dedon, Thomas J Begley. Codon-biased translation can be regulated by wobble-base tRNA modification systems during cellular stress responses. *Review RNA Biol*. 2015;12(6):603-14. doi: 10.1080/15476286.2015.1031947.
11. Hui-Jun Dong, Rui Zhang, Yu Kuang, Xiao-Jia Wang. Selective regulation in ribosome biogenesis and protein production for efficient viral translation. *Arch Microbiol*. 2020 Oct 29;203(3):1021–1032. doi: 10.1007/s00203-020-02094-5
12. Yanyan Gao, Linlin Guo, Gaoxiang Shi, Ruifang Wang, Xu'an Wang, Jizhong Lou. Emerging roles of ribosome translation in stem cells and stem cell therapy - a review. *Cell Biosci*. 2025 May 28;15:71. doi: 10.1186/s13578-025-01412-y.
13. Kate D Meyer, Deepak P Patil, Jun Zhou, Alexandra Zinoviev, Maxim A Skabkin, Olivier Elemento, Tatyana V Pestova, Shu-Bing Qian, Samie R Jaffrey. 5' UTR m6A Promotes Cap-Independent Translation. *Cell*. 2015 Oct 22;163(4):999–1010. doi: 10.1016/j.cell.2015.10.012.
14. Amy SY Lee, Philip J Kranzusch, Jennifer A Doudna, Jamie HD Cate. eIF3d is an mRNA cap-binding protein required for specialized translation initiation. *Nature*. 2016 Aug 4;536(7614):96–99. doi: 10.1038/nature18954.
15. Yun Yang, Zefeng Wang. IRES-mediated cap-independent translation, a path leading to hidden proteome, *Journal of Molecular Cell Biology*, Volume 11, Issue 10, October 2019, Pages 911–919, <https://doi.org/10.1093/jmcb/mjz091>.
16. Dennis H. Bamford and Mark Zuckerman. *Encyclopedia of Virology*. Fourth Edition • Academic Press.2021.
17. Song, P., Yang, F., Jin, H. et al. The regulation of protein translation and its implications for cancer. *Sig Transduct Target Ther* 6, 68 (2021). <https://doi.org/10.1038/s41392-020-00444-9>.
18. Esteban A Orellana, Elisabeth Siegal, Richard I Gregory. tRNA dysregulation and disease. *Nat Rev Genet*. 2022 Jun 9;23(11):651–664. doi: 10.1038/s41576-022-00501-9
19. Zsofia Turi, Matthew Lacey, Martin Mistrik, Pavel Moudry. Impaired ribosome biogenesis: mechanisms and relevance to cancer and aging. *Aging (Albany NY)*. 2019 Apr 26;11(8):2512–2540. doi: 10.18632/aging.101922
20. Panelllias Georgakopoulos-Soares, Guillermo E. Parada, Martin Hemberg. Secondary structures in RNA synthesis, splicing and translation. *Computational and Structural Biotechnology Journal* Volume 20, 2022, Pages 2871-2884
21. Jacob O'Brien, Heyam Hayder, Yara Zayed, Chun Peng. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. *Front Endocrinol (Lausanne)*. 2018 Aug 3;9:402. doi: 10.3389/fendo.2018.00402.
22. Géssica C Barros, Sofia Guerrero, Gustavo M Silva. The Central Role of Translation Elongation in Response to Stress. *Biochem Soc Trans*. 2023 Jun 28;51(3):959–969. doi: 10.1042/BST20220584.
23. Anna R Guzikowski, Alex T Harvey, Jingxiao Zhang, Shihui Zhu, Kyle Begovich, Molly H Cohn, James E Wilhelm, Brian M Zid. Differential translation elongation directs protein synthesis in response to acute glucose deprivation in yeast. *RNA Biol*. 2022 May 1;19(1):636–649. doi: 10.1080/15476286.2022.2065784.
24. Natalia Shcherbik, Dimitri G Pestov. The Impact of Oxidative Stress on Ribosomes: From Injury to Regulation. *Cells*. 2019 Nov 2;8(11):1379. doi: 10.3390/cells8111379.
25. Marina V Rodnina. The ribosome in action: Tuning of translational efficiency and protein folding. *Protein Sci*. 2016 Jun 8;25(8):1390–1406. doi: 10.1002/pro.2950.
26. Qiu Peng, Yujuan Zhou, Linda Oyang, Nayiyuan Wu, Yanyan Tang, Min Su, Xia Luo, Ying Wang, Xiaowu Sheng, Jian Ma, Qianjin Liao. Impacts and mechanisms of alternative mRNA splicing in cancer metabolism, immune response, and therapeutics. *Mol Ther*. 2021 Nov 15;30(3):1018–1035. doi: 10.1016/j.mtthe.2021.11.010.

27. Xumin Ou, Jingyu Cao, Anchun Cheng, Maikel P Peppelenbosch, Qiuwei Pan .Errors in translational decoding: tRNA wobbling or misincorporation? *PLoS Genet.* 2019 Mar 28;15(3):e1008017. doi: 10.1371/journal.pgen.1008017.
28. Madhuparna Pandit,Md Noor Akhtar, Susinder Sundaram,Sarfhak Sahoo,Lekha E. Manjunath, Sandeep M. Eswarappa.Termination codon readthrough of NNAT mRNA regulates calcium-mediated neuronal differentiation *Journal home page for Journal of Biological Chemistry*.Volume 299, Issue 9, September 2023, 105184.
29. Caleb M Embree, Rabab Abu-Alhasan, Guramrit Singh. Features and factors that dictate if terminating ribosomes cause or counteract nonsense-mediated mRNA decay. *J Biol Chem.* 2022 Oct 13;298(11):102592. doi: 10.1016/j.jbc.2022.102592.
30. F. Lejeune.Nonsense-mediated mRNA decay at the crossroads of many cellular pathways. *BMB Reports*, 50 (4) (2017), pp. 175-185, 10.5483/BMBRep.2017.50.4.015.
31. Dabrowski, M., Bukowy-Bierylo, Z., & Zietkiewicz, E. (2015). Translational readthrough potential of natural termination codons in eucaryotes - The impact of RNA sequence. *RNA Biology*, 12(9), 950-958. <https://doi.org/10.1080/15476286.2015.1068497>
32. Andrew G Cridge , Caillan Crowe-McAuliffe , Suneeth F Mathew , Warren P TateEukaryotic translational termination efficiency is influenced by the 3' nucleotides within the ribosomal mRNA channel. *Nucleic Acids Research*, Volume 46, Issue 4, 28 February 2018, Pages 1927-1944, <https://doi.org/10.1093/nar/gkx1315>.
33. Paul F Agris, Amithi Narendran, Kathryn Sarachan, Ville YP Väre, Emily Eruysal. The Role of RNA Modifications in Translational Fidelity. *Enzymes*. 2017 Apr 22;41:1-50. doi: 10.1016/bs.enz.2017.03.005.
34. J.W. Drysdale, H.N. Munro.Polysome profiles obtained from mammalian tissues by an improved procedure. *Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis* Volume 138, Issue 3, 30 May 1967, Pages 616-618.
35. Helen A. King, André P. Gerber.Translatome profiling: methods for genome-scale analysis of mRNA translation. *Briefings in Functional Genomics*, Volume 15, Issue 1, January 2016, Pages 22-31, <https://doi.org/10.1093/bfgp/elu045>.
36. Shuo Liang, Hermano Martins Bellato, Julie Lorent, Fernanda C S Lupinacci, Christian Oertlin, Vincent van Hoef, Victor P Andrade, Martín Roffé, Laia Masvidal, Glaucia N M Hajj, Ola Larsson, Polysome-profiling in small tissue samples, *Nucleic Acids Research*, Volume 46, Issue 1, 9 January 2018, Page e3, <https://doi.org/10.1093/nar/gkx940>.
37. Nicholas T Ingolia, Gloria A Brar, Noam Stern-Ginossar, Michael S Harris, Gaëlle J S Talhouarne, Sarah E Jackson, Mark R Wills, Jonathan S Weissman. Ribosome Profiling Reveals Pervasive Translation Outside of Annotated Protein-Coding Genes. *Cell Rep.* 2014 Aug 21;8(5):1365-1379. doi: 10.1016/j.celrep.2014.07.045.
38. Nicholas T Ingolia.Ribosome Footprint Profiling of Translation throughout the Genome *Cell*. 2016 Mar 24;165(1):22-33. doi: 10.1016/j.cell.2016.02.066.
39. Piyada Juntawong,Thomas Girke, Jérémie Bazin, Julia Bailey-Serres. Translational dynamics revealed by genome-wide profiling of ribosome footprints in *Arabidopsis*. *Proc Natl Acad Sci U S A.* 2013 Dec 23;111(1):E203-E212. doi: 10.1073/pnas.1317811111.
40. Toshifumi Inada, Eric Winstall, Salvador Z Tarun Jr, John R Yates 3rd, Dave Schieltz, Alan B Sachs. One-step affinity purification of the yeast ribosome and its associated proteins and mRNAs RNA. 2002 Jul;8(7):948-58. doi: 10.1017/s1355838202026018.
41. Shifeng Xue, Maria Barna. Specialized ribosomes: a new frontier in gene regulation and organismal biology *Nat Rev Mol Cell Biol.* 2012 May 23;13(6):355-369. doi: 10.1038/nrm3359
42. Alison Barbara Ross, Julian David Langer, Marko Jovanovic. Proteome Turnover in the Spotlight: Approaches, Applications, and Perspectives. *Molecular & Cellular Proteomics*. Volume 20, 2021, 100016.
43. Yuming Jiang, Devasahayam Arokia,Balaya Rex, Dina Schuster,Benjamin A. Neely, Germán L. Rosano,Norbert Volkmar, Amanda Momenzadeh, Trenton M. Peters-Clarke,Susan B. Egbert, Simion Kreimer, Emma H. Doud, Oliver M. Crook, Amit Kumar Yadav, Muralidharan Vanuopadath, Adrian D. Hegeman,Martín L. Mayta, Anna G. Duboff, Nicholas M. Riley, Robert L. Moritz,Jesse G. Meyer. Comprehensive Overview of Bottom-

- Up Proteomics Using Mass Spectrometry. ACS Measurement Science AuVol 4/Issue 4 Article Review June 4, 2024.
44. Apostolia M. Tsimberidou, Elena Fountzilas, Leonidas Bleris, Razelle Kurzrock, Transcriptomics and solid tumors: The next frontier in precision cancer medicine. Seminars in Cancer Biology, Volume 84, 2022. Review.
45. Michael VanInsberghe, Jeroen van den Berg, Amanda Andersson-Rolf, Hans Clevers, Alexander van Oudenaarden. Single-cell Ribo-seq reveals cell cycle-dependent translational pausing. *Nature*. 2021 Sep;597(7877):561-565. doi: 10.1038/s41586-021-03887-4. Epub 2021 Sep 8.
46. An Zhou, Fang Bian. Editorial: Proteostasis in central nervous system disorders. *Front Mol Neurosci*. 2024 Mar 18;17:1394171. doi: 10.3389/fnmol.2024.1394171.
47. Sulagna Das, Maria Vera, Valentina Gandin, Robert H Singer, Evelina Tutucci. Intracellular mRNA transport and localized translation. *Nat Rev Mol Cell Biol*. 2021 Apr 9;22(7):483-504. doi: 10.1038/s41580-021-00356-8.
48. Dipen Rajgor, Theresa M. Welle, Katharine R. Smith, Katharine R. Smith. The Coordination of Local Translation, Membranous Organelle Trafficking, and Synaptic Plasticity in Neurons. *Front. Cell Dev. Biol.*, 14 July 2021. Sec. Membrane Traffic and Organelle Dynamics. Volume 9 - 2021 | <https://doi.org/10.3389/fcell.2021.711446>.
49. Stephanie L Moon, Roy Parker. EIF2B2 mutations in vanishing white matter disease hypersuppress translation and delay recovery during the integrated stress response RNA. 2018 Jun;24(6):841-852. doi: 10.1261/rna.066563.118.
50. Marjo S van der Knaap, Anne Fogli, Odile Boespflug-Tanguy, Truus EM Abbink, and Raphael Schiffmann. Childhood Ataxia with Central Nervous System Hypomyelination / Vanishing White Matter. *GeneReviews® [Internet]*. Seattle (WA): University of Washington, Seattle; 1993-2025. Synonyms: CACH/VWM, Leukoencephalopathy with Vanishing White Matter.
51. Rebecca Meyer-Schuman, Anthony Antonellis. Emerging mechanisms of aminoacyl-tRNA synthetase mutations in recessive and dominant human disease. *Hum Mol Genet*. 2017 Jun 15;26(R2):R114-R127. doi: 10.1093/hmg/ddx231.
52. Faith C J Davies, Jilly E Hope, Fiona McLachlan, Francis Nunez, Jennifer Doig, Hemant Bengani, Colin Smith, Catherine M Abbott. Biallelic mutations in the gene encoding eEF1A2 cause seizures and sudden death in F0 mice. *Sci Rep*. 2017 Apr 5;7:46019. doi: 10.1038/srep46019.
53. Eileen Chen, Simpson Joseph. Fragile X Mental Retardation Protein: A Paradigm for Translational Control by RNA-Binding Proteins. *Biochimie*. Author manuscript; available in PMC: 2016 Jul 1.
54. Rita Marques, Rafaela Lacerda, Luísa Romão. Internal Ribosome Entry Site (IRES)-Mediated Translation and Its Potential for Novel mRNA-Based Therapy Development. *Biomedicines*. 2022 Aug 2;10(8):1865. doi: 10.3390/biomedicines10081865.
55. Seyed Khalil Rashidi, Ata Kalirad, Shahram Rafie, Ebrahim Behzad, Mitra Ansari Dezfooli. The role of microRNAs in neurobiology and pathophysiology of the hippocampus. *Front Mol Neurosci*. 2023 Sep 4;16:1226413. doi: 10.3389/fnmol.2023.1226413.
56. Xiaoyu Dong, Shuyan Cong. MicroRNAs in Huntington's Disease: Diagnostic Biomarkers or Therapeutic Agents? *Front Cell Neurosci*. 2021 Aug 6;15:705348. doi: 10.3389/fncel.2021.705348
57. Long Wang, Xindong Shui, Yuelin Diao, Duotong Chen, Ying Zhou, Tae Ho Lee. Potential Implications of miRNAs in the Pathogenesis, Diagnosis, and Therapeutics of Alzheimer's Disease. *Int J Mol Sci*. 2023 Nov 13;24(22):16259. doi: 10.3390/ijms242216259.
58. Nicola Lopizzo, Valentina Zonca, Nadia Cattane, Carmine Maria Pariante, Annamaria Cattaneo. miRNAs in depression vulnerability and resilience: novel targets for preventive strategies. *J Neural Transm (Vienna)*. 2019 Jul 26;126(9):1241-1258. doi: 10.1007/s00702-019-02048-2.
59. Julie Meffre, Séverine Chaumont-Dubel, Clotilde Mannoury la Cour, Florence Loiseau, David J G Watson, Anne Dekeyne, Martial Séveno, Jean-Michel Rivet, Florence Gaven, Paul Délérès, Denis Hervé, Kevin C F Fone, Joël Bockaert, Mark J Millan, Philippe Marin. 5-HT6 receptor recruitment of mTOR as a mechanism for perturbed cognition in schizophrenia. *EMBO Mol Med*. 2012 Oct 2;4(10):1043-1056. doi: 10.1002/emmm.201201410.
60. Anand Gururajan, Maarten van den Buuse. Is the mTOR-signalling cascade disrupted in

- Schizophrenia? *J. Neurochem.* (2014) 129, 377–387.
61. Henry Paulson. Repeat expansion diseases. *Handb Clin Neurol.* 2018;147:105–123. doi: 10.1016/B978-0-444-63233-3.00009-9.
  62. Lindsey D Goodman, Nancy M Bonini. Repeat-associated non-AUG (RAN) translation mechanisms running into focus for GGGGCC-repeat associated ALS/FTD. *Prog Neurobiol.* 2019 Sep 21;183:101697. doi: 10.1016/j.pneurobio.2019.101697.
  63. Michael G Kearse, Jeremy E Wilusz. Non-AUG translation: a new start for protein synthesis in eukaryotes. *Genes Dev.* 2017 Sep 1;31(17):1717–1731. doi: 10.1101/gad.305250.117.
  64. Monica Banez-Coronel, Laura P.W. Ranum. Repeat-associated non-AUG (RAN) translation: insights from pathology. *Laboratory Investigation.* Volume 99, Issue 7, July 2019, Pages 929-942. *Nat Commun.* 2018 Jan 4;9:51. doi: 10.1038/s41467-017-02495-z.
  65. Weiwei Cheng, Shaopeng Wang, Alexander A Mestre, Chenglai Fu, Andres Makarem, Fengfan Xian, Lindsey R Hayes, Rodrigo Lopez-Gonzalez, Kevin Drenner, Jie Jiang, Don W Cleveland, Shuying Sun. C9ORF72 GGGGCC repeat-associated non-AUG translation is upregulated by stress through eIF2 $\alpha$  phosphorylation *Nat Commun.* 2018 Jan 4;9:51. doi: 10.1038/s41467-017-02495-z.
  66. Anne Cammas, Stefania Millevoi, Weiwei Cheng, Shaopeng Wang, Alexander A Mestre, Chenglai Fu, Andres Makarem, Fengfan Xian, Lindsey R Hayes, Rodrigo Lopez-Gonzalez, Kevin Drenner, Jie Jiang, Don W Cleveland, Shuying Sun. RNA G-quadruplexes: emerging mechanisms in disease. *Nucleic Acids Res.* 2016 Dec 24;45(4):1584–1595. doi: 10.1093/nar/gkw1280
  67. Marzena Wojciechowska, Marta Olejniczak, Paulina Galka-Marciniak, Magdalena Jazurek and Włodzimierz J. Krzyzosiak. RAN translation and frameshifting as translational challenges at simple repeats of human neurodegenerative disorders. *Nucleic Acids Research*, 2014, Vol. 42, No. 19 11849–11864 doi: 10.1093/nar/gku794.
  68. Heleen M van 't Spijker, Sandra Almeida. How Villains are Made: The Translation of Dipeptide Repeat Proteins in C9ORF72-ALS/FTD. *Gene.* 2023 Jan 6;858:147167. doi: 10.1016/j.gene.2023.147167
  69. Ilias Georgakopoulos-Soares, Guillermo E Parada, Martin Hemberg. structures in RNA synthesis, splicing and translation. *Comput Struct Biotechnol J.* 2022 May 27;20:2871–2884. doi: 10.1016/j.csbj.2022.05.041.
  70. John R P Knight, Gavin Garland, Tuija Pöyry, Emma Mead, Nikola Vlahov, Aristeidis Sfakianos, Stefano Grossi, Fabio De-Lima-Hedayioglu, Giovanna R Mallucci, Tobias von der Haar, C Mark Smales, Owen J Sansom, Anne E Willis. Control of translation elongation in health and disease. *Dis Model Mech.* 2020 Mar 26;13(3):dmm043208. doi: 10.1242/dmm.043208.
  71. Xin Wang, Qian Yang, Xueyan Zhou, C Dirk Keene, Alexey G Ryazanov, Tao Ma. Suppression of eEF2 phosphorylation alleviates synaptic failure and cognitive deficits in mouse models of Down syndrome *Alzheimers Dement.* 2024 Jun 27;20(8):5357–5374. doi: 10.1002/alz.13916.
  72. Zizheng Dong, Jian-Ting Zhang. EIF3 p170, a Mediator of Mimosine Effect on Protein Synthesis and Cell Cycle Progression This is the final version - click for previous version *Molecular Biology of the Cell* Vol. 14, No. 9.
  73. Heinz-Josef Klümpen, Jos H Beijnen, Howard Gurney, Jan HM. Schellens. Inhibitors of mTOR *Oncologist.* 2010 Dec 8;15(12):1262–1269. doi: 10.1634/theoncologist.2010-0196
  74. Weiwei Cheng, Shaopeng Wang, Alexander A Mestre, Chenglai Fu, Andres Makarem, Fengfan Xian, Lindsey R Hayes, Rodrigo Lopez-Gonzalez, Kevin Drenner, Jie Jiang, Don W Cleveland, Shuying Sun. C9ORF72 GGGGCC repeat-associated non-AUG translation is upregulated by stress through eIF2 $\alpha$  phosphorylation. *Nat Commun.* 2018 Jan 4;9:51. doi: 10.1038/s41467-017-02495-z.
  75. Jeffrey P MacKeigan, Darcy A Krueger. Differentiating the mTOR inhibitors everolimus and sirolimus in the treatment of tuberous sclerosis complex. *Neuro Oncol.* 2015 Aug 19;17(12):1550–1559. doi: 10.1093/neuonc/nov152.
  76. Tramutola, A., Lanzillotta, C., and Di Domenico, F. (2017). Targeting mTOR to reduce Alzheimer-related cognitive decline: from current hits to future therapies. *Expert Rev. Neurother.* 17 (1), 33–45. doi:10.1080/14737175.2017.1244482.
  77. Ricardo Moreno, Javier Recio, Santiago Barber, Carmen Gil, Ana Martinez. The emerging role of mixed lineage kinase 3 (MLK3) and its potential as a target for neurodegenerative diseases therapies. *Review Eur J Med*

- Chem. 2023 Sep 5:257:115511. doi: 10.1016/j.ejmech.2023.115511. Epub 2023 May 24.
78. Ashwini Saxena, Giselli Scaini, Daniela V Bavaresco, Camila Leite, Samira S Valvassoria, André F Carvalho, João Quevedo. Role of Protein Kinase C in Bipolar Disorder: A Review of the Current Literature. Mol Neuropsychiatry. 2017 Oct 7;3(2):108-124. doi: 10.1159/000480349
79. Ling-Zhi Xu, Bing-Qiu Li, Jian-Ping Jia. DAPK1: a Novel Pathology and Treatment Target for Alzheimer's Disease. Mol Neurobiol. 2019 Apr;56(4):2838-2844. doi: 10.1007/s12035-018-1242-2. Epub 2018 Jul 31.