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ABSTRACT

Artificial intelligence (Al) has emerged as a powerful tool in human genetics,
enabling the analysis and interpretation of complex datasets generated by next-
generation sequencing, single-cell profiling, and large population biobanks.
Traditional statistical and computational methods struggle with the scale, noise, and
heterogeneity of these data, whereas Al approaches, particularly machine learning
(ML) and deep learning (DL), are uniquely suited to uncover hidden patterns
and make clinically relevant predictions. Current applications of Al in genetics
include identifying the possible effects of genomic mutations, data base genome
mapping, genomic control, and association of different biological data. There
has also been some progress in diagnostics of rare diseases, pharmacogenomics,
genome-wide association studies (GWAS), and polygenic risk scores analysis. Al
has also influenced precision medicine. The use of deep variant, alpha fold, and
Al-aided clinical tools are important milestones to note in the arms of genomic
medicine. Regardless of progress clinical decision support systems still face
challenges like lack interpret interface, reproducibility of data, and equity issues
related to privacy. This review aims to describe the dominions in the application
Al to human genetics, success tracking, flaws and relief for Al stems from.
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INTRODUCTION

The sequencing of the human genome in
2001 marked a pivotal moment in biomedical
research, providing a comprehensive blueprint
of the genetic information underlying health
and disease. Over the past two decades,
advances in next-generation sequencing
(NGS), genome-wide association studies
(GWAS), and large-scale Bio-banks have
greatly expanded the scope of genetic research.
Yet, turning this vast amount of information
into actionable insights for clinical practice
remains a formidable challenge. Complex
diseases are influenced not only by single
pathogenic mutations but also by thousands
of genetic variants with small effects, intricate
regulatory networks, epigenetic modifications,
and environmental interactions. Traditional
bioinformatics and statistical approaches,
while essential, often struggle to fully capture
the scale, complexity, and nonlinearity of these
biological systems.! Artificial intelligence (Al),
defined as computational systems capable of
performing tasks that typically require human
intelligence, offers a promising avenue.
Machine learning (ML), a subset of Al, allows
algorithms to learn from data without explicit
programming, while deep learning (DL),
a branch of ML using multilayered neural
networks, excels at modeling high-dimensional
and nonlinear relationships.2 These techniques
have already achieved remarkable success in
diverse areas, including image recognition,
natural language processing, and drug
discovery. Their application to human genetics
is now transforming how researchers analyze
genomic data, interpret genetic variation, and
predict disease risk.?

Al is especially appealing in genetics for
several reasons. First, modern genomics
generates vast, heterogeneous datasets
including DNA sequences, transcriptomic
profiles, epigenetic modifications, proteomics,
metabolomics, and clinical phenotypes
that require integrative computational
strategies. Second, many genetic challenges
involve pattern recognition tasks, such as
distinguishing true variants from sequencing
errors or predicting the functional impact of
mutations, which align naturally with ML
approaches. Third, Al can enhance predictive
accuracy in polygenic risk scoring and
pharmacogenomics, where subtle interactions

between genetic variants and environmental
factors are difficult to model using linear
methods.* The field has already reached
important milestones. Deep Variant, an Al-
based variant caller developed by Google,
has set new benchmarks for sequencing
accuracy. Alpha Fold, a deep learning
system for protein structure prediction, has
transformed structural genomics by solving
one of biology’s most difficult problems. Al-
driven tools like Face2Gene have accelerated
rare disease diagnostics by linking facial
features to genetic syndromes. Meanwhile,
large-scale resources such as the UK Biobank,
All of Us Research Program, and national
genome projects provide the volume of data
needed to train robust Al models.” Despite
its potential, applying Al in genetics comes
with challenges. These include the “black-
box” nature of many deep learning models,
potential biases from underrepresentation
of non-European populations in training
datasets, and concerns around data privacy
and governance. Addressing these issues is
critical for translating Al into clinical practice
and ensuring its equitable use in genomics.

This review examines how Al is transforming
human genetics. We first outline foundational
Al principles relevant to genomics, followed
by an overview of current applications in
variant interpretation, genome annotation,
multi-omics integration, and clinical genetics.
We then highlight key case studies, challenges,
and ethical considerations, concluding with
future directions, including explainable
Al, integration with genome editing, and
predictive modeling of human health.

FOUNDATIONS OF ARTIFICIAL
INTELLIGENCE IN GENETICS

Al refers to computational approaches
designed to perform tasks that typically
require human intelligence, such as pattern
recognition, classification, and prediction.
Within Al ML allows algorithms to learn from
data and improve performance without explicit
programming, whereas DL uses multilayered
neural networks capable of capturing complex,
nonlinear relationships.! These strengths make
Al particularly well-suited for human genetics,
where the size, complexity, and heterogeneity
of datasets often exceed the capabilities of
traditional statistical methods.
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Key Concepts in Al
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Figure 1: Al approaches in genetics are generally classified (Fig. 1) into:

i. Supervised learning: Models are trained
on labeled data, learning to predict outcomes
such as variant pathogenicity or disease status
from genomic features.? Common algorithms
include support vector machines (SVMs),
random forests, and gradient boosting.

ii. Unsupervised learning: These methods
detect patterns in unlabeled data, such as
clustering patients based on multi-omics
profiles or identifying novel cell types in
single-cell data.® Techniques include k-means
clustering, hierarchical clustering, and
autoencoders.

iii. Reinforcement learning: Algorithms
learn optimal strategies through trial and
error, guided by feedback signals. Emerging
applications in genetics include genome editing
optimization and drug response prediction.*

Deep learning architectures have further
expanded AI applications. Convolutional
neural networks (CNNs) are particularly
effective for analyzing DNA sequences
and predicting regulatory element activity.
Recurrent neural networks (RNNs) and
transformers capture sequential dependencies
in genomic data, enabling the study of long-
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range interactions. Graph neural networks
(GNNSs) are increasingly applied to represent
complex biological networks, such as gene-
gene and protein-protein interactions.

Genetic Data Types Suitable for Al

Human genetics research produces multiple
types of high-dimensional data:

i. Genomic sequences: Whole-genome
and whole-exome sequencing generate
millions of variants per individual.

ii. Transcriptomics: RNA-seq and single-
cell RNA-seq provide dynamic gene
expression profiles across tissues and
cell types.

iii. Epigenomics: = DNA  methylation,
histone modifications, and chromatin
accessibility datasets capture regulatory
mechanisms.

iv. Proteomics and metabolomics: These
reflect the functional outputs of genetic
programs and cellular pathways.

v. Phenotypic and clinical data: Electronic
health records, imaging, and biobank
surveys provide crucial context for
linking genotype to phenotype.®

Al models can integrate these diverse
datasets to reveal hidden patterns and generate
predictive insights, enabling a systems-level
understanding of human biology.

Advantages and Challenges

Al offers several benefits over conventional
approaches:

i

ii.

iii.

Handling high dimensionality: Al
can analyze millions of features
simultaneously.

Capturing nonlinear relationships: Deep
learning uncovers complex interactions
among variants and across omics layers.

Integration across modalities: Al can
combine genomics, transcriptomics,
proteomics, and clinical data for more
comprehensive predictions.

However, challenges remain:

i

ii.

iii.

v.

Data sparsity and noise: Sequencing
errors, batch effects, and missing data
can reduce model performance.

Interpretability: Deep learning models
often act as “black boxes,” limiting their
use in clinical decision-making.

Bias: Underrepresentation of certain
populations in training datasets can
lead to inequitable predictions.

Computational requirements: Training
deep learning models demands
substantial computational resources
and specialized expertise.®

Al in Genomics: Applications and Impact
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Current efforts focus on explainable Al
(XAI), model regularization, and incorporating
biological priors to improve interpretability,
reliability, and generalizability. By tackling
these challenges, Al has the potential to
become a transformative tool for both research
and clinical applications.

Current Applications of AI in Human
Genetics

Artificial ~ intelligence  has  rapidly
transformed human genetics by enabling
the analysis, interpretation, and integration
of large-scale genomic data (Figure 2). Its
applications span from fundamental research
to clinical translation, providing insights that
were previously difficult or impossible to
achieve with conventional bioinformatics and
statistical methods.

Variant Calling and Genome Annotation

Accurate identification of genetic variants is
a cornerstone of genomics. Traditional variant
calling methods rely on probabilistic models,
which can be error-prone in low-coverage or
complex genomic regions. Al approaches,
especially deep learning, have substantially
improved both sensitivity and specificity. For
instance, DeepVariant, developed by Google,
frames variant calling as an image classification
task, converting aligned sequencing reads into
images that are analyzed using convolutional
neural networks.! DeepVariant consistently
outperforms traditional pipelines in detecting
single nucleotide variants (SNVs) and small
insertions/deletions (indels). Other tools, such
as Clairvoyante and DeepTrio, extend deep
learning to long-read sequencing and trio-
based analyses, improving the detection of
complex structural variants.? Neural network-
based genome annotation has also advanced,
enabling more accurate identification of coding
regions, regulatory elements, and noncoding
functional sequences.?

Variant Pathogenicity Prediction

A major challenge in genetics is interpreting
variants of uncertain significance (VUS). Al
models can predict the functional impact and
pathogenicity of both coding and noncoding
variants. Tools such as CADD (Combined
Annotation-Dependent Depletion), PolyPhen-2,
and SIFT employ supervised machine learning
to integrate evolutionary conservation, protein
structure, and functional annotations.* More

recent deep learning models, including
DeepSEA and PrimateAl, use convolutional
neural networks trained on large functional
genomic datasets to predict regulatory effects
and disease relevance.” AlphaMissense, which
incorporates protein structure information
from  AlphaFold, = demonstrates  high
accuracy in classifying missense variants and
prioritizing candidate pathogenic mutations.®
These models are increasingly incorporated
into clinical pipelines, helping to close the
diagnostic gap for rare and complex diseases.

Gene Regulation and Epigenomics

Al has proven highly effective for modeling
gene regulation. Noncoding regions, which
make up over 98% of the human genome,
play essential roles in transcriptional control
and disease susceptibility. Models such as
DeepBind, Basset, and Basenji use CNNs
to predict transcription factor binding,
chromatin accessibility, and enhancer activity
from DNA sequences.” Autoencoders and
variational autoencoders (VAEs) are applied
to high-dimensional epigenomic datasets,
reducing noise and capturing latent regulatory
patterns.® These approaches help identify
functional noncoding variants associated with
conditions like cancer, autoimmune disorders,
and neurodegeneration.

Genome-Wide Association Studies and

Polygenic Risk Scores

Genome-wide association studies (GWAS)
have identified thousands of loci linked to
complex traits. Al enhances GWAS by modeling
nonlinear relationships between variants and
phenotypes, improving predictive accuracy.
Machine learning methods such as random
forests, gradient boosting, and deep neural
networks can integrate thousands of variants
to compute polygenic risk scores (PRS).” These
Al-derived PRS predict disease susceptibility —
from cardiovascular disease to diabetes—
with higher accuracy than traditional linear
models."” Integrating genetic data with clinical
and lifestyle information through AI further
strengthens risk stratification and personalized
medicine approaches.

Multi-Omics Data Integration

Human diseases often result from
interactions across multiple molecular
layers. Al provides a framework to integrate
genomics, transcriptomics, proteomics,
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metabolomics, and epigenomics, enabling a
holistic view of disease mechanisms. Deep
learning-based integrative models, such as
MOFA (Multi-Omics Factor Analysis) and
graph neural networks, uncover coordinated
patterns across datasets.!! In cancer genomics,
Al models that combine somatic mutation data,
gene expression, and protein alterations have
successfully predicted tumor progression and
therapy response.’? Transfer learning allows
models trained on one omics type to enhance
predictions in others, which is particularly
valuable for rare diseases with limited datasets.

Single-Cell Genomics

Single-cell technologies provide high-
resolution maps of cellular heterogeneity but
produce sparse and noisy data. Al is crucial
for processing, denoising, and interpreting
these datasets. Unsupervised clustering with
ML algorithms, combined with dimensionality
reduction techniques like t-SNE and UMAP,
reveals novel cell populations. Deep generative
models, such as scVI (single-cell variational
inference), probabilistically model gene
expression distributions, enabling trajectory
inference and lineage prediction.’® These
approaches have illuminated developmental
pathways, immune cell differentiation, and
tumor evolution at single-cell resolution.

Pharmacogenomics
Prediction

and Drug Response

Al accelerates pharmacogenomics by
predicting how genetic variation affects drug
efficacy and toxicity. ML models integrating
genomic data with chemical properties of
drugs can identify gene-drug interactions and
potential adverse reactions.* Deep learning
frameworks, including DeepChem and
ChemBERTa, have been applied to predict
patient-specific therapy responses, particularly
in oncology."” By combining tumor genomics
with transcriptomic and proteomic profiles,
Al supports precision oncology approaches
that optimize treatment selection and improve
outcomes.

RARE DISEASE DIAGNOSTICS

Rare genetic disorders often remain
undiagnosed due to the vast number of
potential variants. Al-assisted diagnostic
tools speed wup variant prioritization
and clinical interpretation. For example,

Face2Gene uses computer vision to analyze
craniofacial features and suggest candidate
syndromes, complementing exome or genome
sequencing.’® ML algorithms applied to
NICU sequencing data enable rapid triage
of potentially pathogenic variants, reducing
diagnostic delays and improving clinical
outcomes."”

Practical and translational

relevance

applications

Several landmark applications illustrate the
transformative impact of Al in human genetics,
showcasing both research and clinical utility.

DeepVariant in Genome Sequencing

Google’s DeepVariant highlights how Al
can enhance genome analysis. By treating
variant calling as an image -classification
problem, DeepVariant uses convolutional
neural networks to detect single nucleotide
variants and small insertions/deletions with
higher accuracy than traditional approaches.!®
Its deployment across large-scale sequencing
projects has streamlined variant detection,
reduced false positives, and enabled more
reliable downstream analyses, particularly in
rare disease diagnostics."

AlphaFold in Protein Structure Prediction

AlphaFold, developed by DeepMind,
represents a major breakthrough in structural
genomics.” Using deep learning, AlphaFold
predicts three-dimensional protein structures
directly from amino acid sequences with
remarkable accuracy, often approaching
experimental resolution. This advance has
profound implications for understanding
the functional impact of genetic variants,
guiding drug development, and interpreting
pathogenic mutations in clinical genetics.?!

Face2Gene in Rare Disease Diagnostics

Al has also made inroads into clinical
genetics through diagnostic tools like
Face2Gene, which applies deep learning to
patient facial photographs to suggest potential
syndromes.?? When combined with exome or
genome sequencing, this method accelerates
the identification of rare genetic disorders,
reducing diagnostic delays and supporting
patient management.?

Al in Cancer Genomics
In oncology, Al models that integrate
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genomic, transcriptomic, and proteomic data
havebeenapplied to predict tumor progression,
identify driver mutations, and guide therapy
selection.” For instance, ML-based polygenic
risk scores, combined with clinical features,
have improved risk stratification for breast,
prostate, and colorectal cancers.”> These models
enhance prognostic accuracy and facilitate
precision medicine by tailoring interventions
to individual genetic profiles.

Multi-Omics Integration for Complex Traits

Integrative Al models, such as MOFA and
graph neural networks, have successfully
connected genomic, epigenomic, and
transcriptomic layers to uncover disease
mechanisms.* In neurodegenerative disorders,
these approaches have revealed novel
regulatory interactions and candidate
therapeutic targets, demonstrating Al’s ability
to translate multidimensional genetic data into
actionable biological insights.” Collectively,
these examples show that Al is not only
accelerating basic research but also reshaping
clinical practice, enabling more precise, data-
driven approaches to diagnosis, prognosis,
and treatment.

CHALLENGES AND LIMITATIONS

Despite the transformative potential of
Al in human genetics, several challenges
and limitations must be addressed to ensure
reliability, fairness, and clinical applicability.

Data Quality and Heterogeneity

Al models depend on high-quality, well-
annotated datasets. However, genomic and
multi-omics data often contain sequencing
errors, batch effects, missing values, and
uneven coverage.® Noisy or incomplete
datasets can compromise model accuracy and
lead to erroneous predictions. Additionally,
integrating heterogeneous datasets from
different platforms, laboratories, or
populations remains challenging, requiring
advanced normalization and harmonization
strategies.”

Model Interpretability

Deep learning models, particularly
convolutional and recurrent neural networks,
are frequently criticized as “black boxes”.*
Although they often achieve high predictive
performance, their lack of transparency can

limit trust and adoption in clinical genetics.
Clinicians and researchers need to understand
how predictions are generated, especially when
they influence patient care. Current efforts in
explainable AI (XAI), attention mechanisms,
and model visualization aim to improve model
interpretability and transparency.3!

Bias and Population Representation

Many Al models are trained on datasets
dominated by populations of European
ancestry.® This can introduce bias, reducing
predictive accuracy for underrepresented
groups and potentially worsening health
disparities. Ensuring diverse representation
in training datasets and evaluating model
performance across populations are critical
steps for equitable application.?

Computational Resources and Expertise

Training and deploying AI models,
particularly deep learning architectures,
requires substantial computational resources,
specialized hardware (e.g.,, GPUs or TPUs),
and expertise in both genomics and AI3
Smaller research labs or clinical centers may
face barriers to adoption due to these resource
constraints.

Ethical and Privacy Concerns

Genomic data are inherently sensitive. Al
models often need large-scale datasets, raising
concerns about privacy and informed consent.*
Potential risks include unauthorized data
sharing, re-identification of individuals, and
misuse of predictive information. Regulatory
frameworks and secure data-sharing platforms
are necessary to protect patient information
while enabling Al research.*® Addressing
these limitations is essential to fully realize
Al's potential in genetics. Strategies include
developing interpretable models, improving
data quality and diversity, implementing
ethical guidelines, and fostering collaborations
between Al experts and geneticists. By
overcoming these challenges, Al can move
from a research tool to a robust, clinically
impactful technology.

FUTUREDIRECTIONS AND CONCLUSION

Artificial intelligence is set to transform
human genetics by moving beyond data
analysis toward predictive, interpretable, and
actionable tools. A key future direction is the
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development of explainable and interpretable
Al, which clarifies the reasoning behind
complex predictions. Techniques such as
attention mechanisms, feature importance
mapping, and interpretable neural architectures
can enhance clinician trust, support regulatory
approval, and facilitate adoption in diagnostic
workflows. Integrating Al with genome editing
technologies, including CRISPR-Cas systems,
represents  another promising avenue.
Predictive models can optimize guide RNA
design, reduce off-target effects, and forecast
the functional outcomes of edited sequences,*®
accelerating therapeutic development for
monogenic disorders and targeted gene
therapies.

The concept of predictive digital twins—
computational  representations of an
individual’s genetic, molecular, and clinical
profile—offers the potential for truly
personalized medicine.* Al can simulate disease
progression, treatment response, and lifestyle
interventions, enabling proactive, patient-
specific healthcare decisions. Furthermore, Al
models will increasingly integrate multi-omics
and longitudinal datasets, combining genomics,
transcriptomics, proteomics, metabolomics,
and imaging over time.* These integrative
approaches can capture dynamic biological
processes, reveal causal relationships, and
enhance understanding of disease onset,
progression, and treatment response, with
advanced architectures such as graph neural
networks and transformers enabling complex
analyses. Ensuring population diversity in
genomic datasets is another critical focus.
Including diverse ancestries improves model
generalizability, reduces bias, and supports
equitable application of AI in healthcare.*
Al can also identify population-specific
variants and risk factors, contributing to
global genomics initiatives and helping
to mitigate health disparities. Ethical and
regulatory considerations remain central,
requiring transparent guidelines, robust data
governance, and frameworks that balance
innovation with privacy, consent, and
fairness.* These measures are essential for the
responsible translation of Al into research and
clinical practice.

In conclusion, Al has already made
substantial contributions in variant calling,
pathogenicity prediction, gene regulation,
multi-omics integration, pharmacogenomics,

and rare disease diagnostics. The combination
of Al with expanding genomic datasets,
advanced modeling techniques, and clinical
insights promises a new era of precision
genomics, enabling individualized risk
prediction, targeted therapies, and improved
patient outcomes. While challenges such as data
quality, interpretability, bias, computational
demands, and ethical considerations persist,
ongoing methodological innovations and
collaborative efforts are likely to overcome
these barriers. By integrating predictive Al
tools with genome editing, longitudinal multi-
omics, and personalized digital twins, the field
is moving toward a future in which Al not only
interprets genetic data but actively informs
decision-making, accelerates discovery, and
transforms human healthcare.
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