

Journal of Practical Biochemistry and Biophysics

Editor-in-Chief

Sanjay Swami

Department of Biochemistry,
Topiwala National Medical College & B.Y.L Nair Charitable Hospital,
Mumbai, Maharashtra 400008, India

National Editorial Advisory Board

Amarnath Mishra, Noida
Anju Singh, Delhi
AnushaBhaskar, Thanjavur
AshishKumar, Mathura
Ashok Kumar Kulkarni, Hyderabad
B. S. Gunashree, Kodagu
B.D. Toora, Delhi
Bhabani Sankar Jena, Delhi
Biswajit Das, Bareilly
Brijesh Pandey, Lucknow
C. Ravinder Singh, Virudhunagar
Debasish Kar, Kharagpur
DharmveerYadav, Jaipur
Jitendra Kumar, Mau
K.P. Mishra, Allahabad
K.S. Lamani, Ramdurg
Kanchan Sonone, Mumbai
M. C. Madhusudhan, Mysore
M. Balasubramanyam, Chennai
Mahantesh M. Kurjogi, Dharwad
Md. Wasim Khan, Kolkata
Neelima Hemkar, Jaipur
P. Preetham Elumalai, Kochi

P. Jasmin Lena, Chennai
P. Krishna moorthy, Chennai
Palani Subramani, Thiruvannamalai
Prabhakar Singh Bais, Jhansi
Prakash Kumar B, Kottayam
Pushpender Kumar Sharma, Punjab
R. Mary Josephine, Coimbatore
R.K. Padalkar, Ahmadnagar
Ravi KiranSuripeddi, Hyderabad
Raviraj RajanNaik, Aurangabad
S. Arumugam, Salem
Sachin Chandrakumar Narwadiya, Delhi
Sandeep Tripathi, Jaipur
SandhyaJathar, Mumbai
Saravanan Matheshwaran, Kanpur
Satish Kumar M, Mandya
Shah Ubaid-Ullah, Srinagar
Sharmistha Dey, Delhi
SK. M. Basha, Nellore
Sneha Rani A.H., Karnataka
Syed Shahzadul Haque, Patna
Tanveer Ali Dar, Srinagar
V. Anbazhagan, Salem

International Editorial Advisory Board

Bala Sundaram M., Malaysia
Shiv Kumar, South Korea
Arif Tasleem Jan, South Korea

Managing Editor

A. Lal

Publication Editor

Manoj Kumar Singh

All right reserved. The views and opinions expressed are of the authors and not of the **Journal of Practical Biochemistry and Biophysics**. **Journal of Practical Biochemistry and Biophysics** does not guarantee directly or indirectly the quality or efficacy of any product or service featured in the advertisement in the journal, which are purely commercial.

Corresponding address

Red Flower Publication Pvt. Ltd.
48/41-42 DSIDC, Pocket-II, Mayur Vihar
Phase-I, Delhi - 110 091(India)
Phone: 91-11-22754205/45796900,
Fax: 91-11-22754205
E-mail: info@rfppl.co.in,
Web: www.rfppl.co.in

Journal of Practical Biochemistry and Biophysics (JPBB) (ISSN: 2456-5032) publishes quality original articles and reviews in the Research Areas of Enzyme and protein structure, function, regulation. Folding, turnover, and post-translational processing, Biological oxidations, free radical reactions, redox signaling, oxygenases, P450 reactions, Signal transduction, receptors, membrane transport, intracellular signals. Cellular and integrated metabolism. Solicited peer reviewed articles on contemporary Themes and Methods in Biochemistry and Biophysics form an important feature of JPBB.

Subscription Information

India

Institutional (1 year) (Print+Online): INR7000

Rest of the World

Insitutional (1 year) (Print+Online): \$547

Payment instructions

Online payment link:

<http://rfppl.co.in/payment.php?mid=15>

Cheque/DD:

Please send the US dollar check from outside India and INR check from India made.

Payable to 'Red Flower Publication Private Limited'. Drawn on Delhi branch

Wire transfer/NEFT/RTGS:

Complete Bank Account No. 604320110000467

Beneficiary Name: Red Flower Publication Pvt. Ltd.

Bank & Branch Name: Bank of India; Mayur Vihar

MICR Code: 110013045

Branch Code: 6043

IFSC Code: BKID0006043 (used for RTGS and NEFT transactions)

Swift Code: BKIDINBBDO

Send all Orders to: Subscription and Marketing Manager, Red Flower Publication Pvt. Ltd.,
48/41-42, DSIDC, Pocket-II, Mayur Vihar Phase-I, Delhi - 110 091(India),
Phone: 91-11-45796900, 22754205, 22756995,
E-mail: sales@rfppl.co.in, Website: www.rfppl.co.in

Contents

Original Articles

Evaluation of Thyroid Function in Type 2 Diabetes Mellitus Patients Prajna K, Nandana Muralidharan, Ullal Harshini Devi, Kathyayani Sathish, Suchetha Kumari N	4
Single Step Purification of Soybean Isoflavones Employing Silica Gel Adsorption Chromatography MC Lakshmi, MC Madhusudhan, HS Prakash and KSMS Raghavarao	8
Comparison of Lipid Profile Levels in AMI Patients With and Without Diabetes Mellitus Savita Deshmukh; Raviraj Naik; Ranjana Deshmukh	12
Study of Glycosylated Hemoglobin Levels in Iron Deficiency Anemia Raviraj Naik, Sarita Dakhure	15
Assessment of Obstructive and Restrictive Impairments among of Urban Population of Jaipur: A Survey Study Sachin C Narwadiya, Gulshan J. karhade, P M Tumane	18
Guidelines for Authors	24

Evaluation of Thyroid Function in Type 2 Diabetes Mellitus Patients

¹Prajna K, ²Nandana Muralidharan, ³Ullal Harshini Devi, ^{4*}Kathyayani Sathish,
⁴Suchetha Kumari N

Author's Affiliation: ¹Dept. of Biochemistry, Mysore Medical College and research centre, Mysuru, Karnataka 570001, India.
²MBBS Student, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka 575018, India. ³Central Research Laboratory, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka 575018, India. ⁴Dept. of Biochemistry, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka 575018, India.

Abstract

Background: The ability to diagnose and treat subclinical hypothyroidism in diabetic patients may greatly enhance the quality of life. The treatment of hypothyroidism helps in better control of other associated co-morbidities. Therefore, in present study association between thyroid dysfunction and Diabetes was assessed by correlating Fasting plasma glucose and Thyroid profile. **Materials and Methods:** A total of 40 subjects attending the OPD who were diagnosed for diabetes were recruited. 40 normal age and sex matched participants were recruited as controls. Informed written consent was obtained from all the participants. Fasting plasma glucose was estimated by glucose oxidase method and TSH, T₃ and T₄ by enzyme-immunoassay (ELISA) method using commercially available kit. Subjects grouped as normal with TSH level 0.39-6.16mIU/l, T₃ levels 52-185ng/dl and T₄ level as 5.0-15.0 μ g/dl. Lower T₃ and T₄ with high TSH is considered as Hypothyroidism and higher levels of T₃, T₄ with low TSH is considered as hyperthyroidism. The data was analysed using SPSS version 20. Unpaired t test and Pearson's correlation was performed to find the significant differences between the groups and their correlation. P<0.05 was considered as statistically significant. **Results:** The Chi-square test was used to find the association between diabetes and thyroid dysfunction showed significant association (p<0.05) between Diabetes and thyroid dysfunction. On comparison, showed no difference in the sugar levels according to dysfunction status (p<0.05). **Conclusion:** A routine assessment of thyroid hormone levels in diabetics is necessary, particularly with subclinical thyroid hormones level.

Keywords: Fasting Plasma Glucose Level; Glucose Oxidase Method; TSH; T3; T4; Enzyme-linked Immunoassay.

Introduction

Diabetes mellitus is a common endocrine disorder rising in India and has reached approximately 20% in urban populations and approximately 10% in rural Population [1]. On long term it is associated with vascular complications these are responsible for

increased morbidity and mortality among diabetic subjects [2]. New addition to these complications is the thyroid dysfunction which is indicated by the recent studies [3,4]. The first report showing the association between diabetes and thyroid dysfunction was published in 1979 [5,6]. Since then a number of studies have estimated the prevalence of thyroid dysfunction among diabetes patients to be varying from 2.2 to 17%, the most common disorder being subclinical hypothyroidism [7,8]. However, few studies also estimated much higher prevalence of thyroid dysfunction in diabetes i.e., 31% and 46.5% respectively [9,10] also not showed any significant correlation between Fasting plasma glucose and thyroid profile parameters. Thyroid

Reprint Request: Kathyayani Sathish, Assistant Professor, Dept. of Biochemistry, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka, 575018, India.

E-Mail: suchethashetty.biochem@gmail.com

Received: January 18, 2018 | **Accepted:** May 22, 2018

hormones directly control insulin secretion. In hypothyroidism, there is a reduction in glucose-induced insulin secretion by beta cells, and the response of beta cells to glucose or catecholamine is increased in hyperthyroidism due to increased beta cell mass. Moreover, insulin clearance is increased in thyrotoxicosis. Diabetes may affect the thyroid function to variable extent. Diabetes mellitus appears to influence thyroid function in two sites; first second at peripheral tissue by converting T_4 to T_3 . Unrecognized thyroid dysfunction not only worsens the metabolic control but also impede the management of diabetes. Studies also have suggested that type 2 diabetes mellitus patients with subclinical hypothyroidism are at risk of complications like nephropathy and cardiovascular events. The ability to diagnose and treat subclinical hypothyroidism in these patients may greatly enhance the quality of life. Hence, there is need to detect such cases where hypothyroidism contributes to morbidity and where it is the cause for poor control of the associated conditions. The treatment of hypothyroidism helps in better control of other associated co-morbidities. So, patients with diabetes need to be screened for thyroid dysfunction. Therefore, in present study association between thyroid dysfunction and Diabetes was assessed by correlating Fasting plasma glucose and Thyroid profile.

Materials and Methods

In this study, a total of 40 patients attending the outpatient department of K.S. Hegde Charitable Hospital from June 2017 to November 2017 who were diagnosed for diabetes were recruited. Diagnosis of diabetes was based on the American Diabetes association criteria. 40 normal age and sex matched participants were recruited as controls. A medical history regarding the age at diagnosis of diabetes and current medication was obtained. The study protocol was approved by the institutional ethical committee. Informed written consent was obtained from all the participants.

Blood samples were drawn after 10-12 hours fast for measurement of fasting plasma glucose (FPS) and thyroid status. All the diabetic subjects were confirmed diabetics who had Fasting plasma glucose level $> 126\text{mg/dl}$ and others were taken as control. The study excluded very ill patients with complication of Diabetes Mellitus.

Of the 4ml blood drawn from the subjects 2ml was dispensed into fluoride oxalate bottles for

plasma glucose estimation and the rest of the blood sample was discharged into plain samples bottle and allowed to clot. Serum separated from the cells was stored at -20°C and thawed only when required. Plasma from fluoride tubes was also stored at -20°C until needed for use. Fasting plasma glucose was estimated by glucose oxidase method and TSH, T_3 and T_4 by enzyme-immunoassay (ELISA) method using commercially available kit. Procedure was followed as per the manufacturer's instructions. All the analysis was done in duplicate and the average of the duplicate data was used for calculation. The data obtained was classified as raised, low, or normal thyroid hormone levels were based on the following criteria. Subjects grouped as normal with TSH level $0.39\text{-}6.16\text{mIU/l}$, T_3 levels $52\text{-}185\text{ng/dl}$ and T_4 level as $5.0\text{-}15.0\text{\mu g/dl}$. Lower T_3 and T_4 with high TSH is considered as Hypothyroidism and higher levels of T_3 , T_4 with low TSH is considered as hyperthyroidism.

Data analysis

The data was expressed as percentage and mean $\pm\text{SD}$. Statistical analysis was performed using software statistical package for social sciences (SPSS) version 20, unpaired t test and Pearson's correlation was performed to find the significant differences between the groups and their correlation. $p<0.05$ was considered as statistically significant.

Results

For the study, 80 subjects, were recruited. Out of these 40 were males and 40 females. Further divided into diabetic and control groups having 20 subjects in each group. Their age ranged between 40-75 years with mean age 57 ± 8 years (Figure 1).

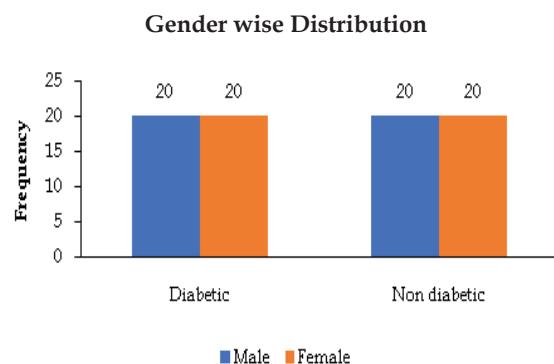


Fig. 1: Showing gender wise distribution

Thyroid hormones (TSH, T_3 , T_4) levels were estimated for both the groups. Results revealed that 6 had abnormal thyroid levels. Of these 3 females had hypothyroidism and 2 had hyperthyroidism in diabetic group. In males only one had hypothyroidism in diabetic group (Figure 2). The Chi-square test was used to find the association between diabetes and thyroid dysfunction. The obtained p values are less than 0.05 and hence there was association between Diabetes and thyroid dysfunction (Table 1).

Unpaired t test was used to compare the difference in Fasting blood glucose levels. The obtained p value was less than 0.05 and hence there was a difference in the sugar levels (Table 2). It has been observed that, in control group the level of Fasting blood glucose was less (98.4 ± 12) than the diabetic group (161 ± 36). One-way ANOVA was used to compare Fasting blood glucose level according to the dysfunctional status. The obtained p value was > 0.05 and hence there was no difference in the sugar levels according to dysfunction status (Table 3).

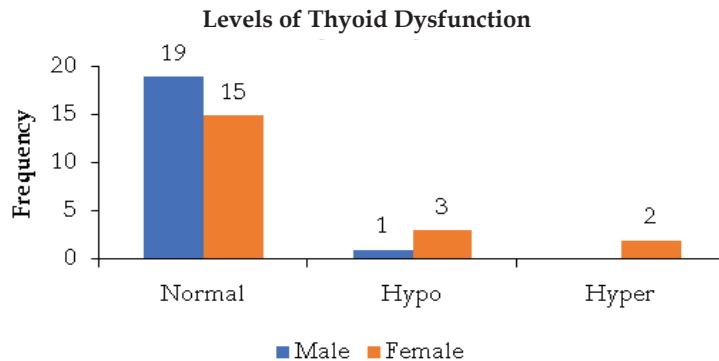


Fig 2: Showing levels of thyroid dysfunction in males and females.

Table 1: Thyroid dysfunction and thyroid hormone levels in diabetic and control group.

(n = 80)		Diabetes Frequency (%)	Control Frequency (%)	p value
Thyroid dysfunction	Hyper	13 (76.5)	4 (23.5)	0.003
	Hypo	13 (65)	7 (35)	
	Normal	14 (32.6)	29 (67.4)	
TSH(UNIT)	< 0.38	10 (76.9)	3 (23.1)	0.003
	0.39-6.16	17 (34.7)	32 (65.3)	
	> 6.17	13 (72.2)	35 (27.8)	
T3	< 51.9	9 (75)	3 (25)	0.011
	52-185	23 (39.7)	35 (60.3)	
	>185.1	8 (80)	2 (20)	
T4	<4.9	6 (85.7)	1 (14.3)	0.001
	5-15	18 (32.1)	38 (67.9)	
	>15.1	16 (94.1)	1 (5.9)	

Table 2: Comparison of fasting blood glucose among the groups.

	Mean	Standard deviation	p value
Diabetic	161	36.07	<0.001
Control	98.4	12.08	

Table 3: Comparison of Fasting blood glucose level according to the dysfunction status.

Group	Mean	Standard deviation	p value
Hyperthyroidism	170.5	2.12	0.667
Hypothyroidism	146.2	6.5	
normal	127.7	24.63	NS

Discussion

Among diabetic subjects investigated, 10% of the subjects had low levels of thyroid hormones while 5% had raised level. Non-diabetic subjects showed no thyroid dysfunction. This shows a high incidence of abnormal thyroid hormones level (high or low) in diabetic population. Pranav K Raghuvanshi [11] stated that total T_3 and total T_4 were significantly low, while serum TSH levels were higher in type 2 diabetes mellitus subjects as compared to the non-diabetic healthy subjects. Alok Mawar, K.P. Mishra et al. [12] concluded through their study that prevalence of hypothyroidism and subclinical hypothyroidism was found to be higher in type 2 diabetes mellitus subjects as compared to non-diabetic subjects. MJ Smithson [8] concluded from a study conducted amongst 11300 patients of which 223 were diabetic that the prevalence of undiagnosed thyroid disease in diabetic patients receiving community diabetes care was 5.5%.

Our finding is in agreement with Smithson [8], Suzuki et al [13]. They found altered thyroid hormones level of different magnitude in diabetic patients. Abnormal thyroid hormone level may be the outcome of various medications the diabetics was receiving. It is widely known that insulin [14] an anabolic hormone enhances the level of FT_4 while it suppresses the levels of T_3 by inhibiting hepatic conversion of T_4 to T_3 . Likewise, the oral hypoglycaemic drugs such as sulfonylureas are known to suppress the levels of FT_4 and T_4 while causing raised levels of TSH. The presence of both raised and low thyroid hormone levels in diabetics in present study may be due to the modified thyroid releasing hormone (TRH) synthesis and its release [15] and may depend on the glycaemic status of the diabetics studied. Glycaemic status is influenced by insulin, which is known to modulate TRH and TSH level.

Conclusion

It was also observed that hypothyroidism was more in female subjects. Although it is possible that the magnitude and precision risk between diabetes and thyroid may be observed with a larger sample size and taking the medication into account. In conclusion routine assessment of thyroid hormone levels in diabetics is necessary, particularly with subclinical thyroid hormones level. Further studies are needed to establish the risk of thyroid dysfunction because the present study had low sample size.

References

1. Ramachandran A and Snehalatha C. "Current scenario of diabetes in India". *J Diabetes* 2009;1(1): 18-28.
2. Zargar AH, Wani AI, Masoodi SR, Laway BA and Bashir MI. "Mortality in diabetes mellitus data from a developing region of the world". *Diabetes Res Clin Pract* 1999;43:67-74.
3. Papazafiropoulou A. "Prevalence of thyroid dysfunction among Greek Type 2 diabetic patients attending an outpatient clinic". *Journal of Clinical Medicine Research* 2010;2(2):75-78.
4. Swamy RM, Kumar N, Srinivasa K, Manjunath GN, Prasad Byrav DS and Venkatesh G. "Evaluation of hypothyroidism as a complication in Type 2 Diabetes Mellitus" *Biomedical Research* 2012;23(2):170-72.
5. Feely J and Isles TE. "Screening for thyroid dysfunction in diabetics". *Br Med J* 1979;1(6179):1678.
6. Gray RS, Irvine WJ and Clarke BF. "Screening for thyroid dysfunction in diabetics". *Br Med J* 1979;2(6202):1439.
7. Perros P, McCrimmon RJ, Shaw G and Frier BM. "Frequency of thyroid dysfunction in diabetic's patients: value of annual screening". *Diabet Med* 1995; 12(7):622-27.
8. Smithson MJ. Screening for thyroid dysfunction in a community population of diabetic patients. *Diabetic Medicine*. 1998 Feb;15(2):148-50.
9. Ajaz Ahmad Telwani, Zahid Hussain Wani, Younis Ashraf, Aejaz Ahmad Shah. Prevalence of thyroid dysfunction in type 2 diabetes mellitus: a case control study. *International Journal of Research in Medical Sciences*. 2017 Oct;5(10):4527-31.
10. Bhattacharyya A, Wiles P G. Diabetic ketoacidosis precipitated by thyrotoxicosis. *Postgraduate Medical Journal*. 1999;75(883):291-92.
11. Pranav Kumar Raghuvanshi , Devendra Pratap Singh Rajput , Bhupendra Kumar Ratre , Roopesh Jain , Narmada Patel , Sudeep Jain. Evaluation of thyroid dysfunction among type 2 diabetic patients. *Asian Journal of Medical Sciences*. 2015;6(3):33-37.
12. Alok Mawar, Pawan Kumar Kare, Kamla Pati Mishra, Raj Kumari Chahar. Study of thyroid dysfunction in type 2 diabetes mellitus patients of Agra city. *International Journal of Biomedical Research* 2016;7(01): 026-29.
13. Suzuki S, Nishio SI, Takeda T, Komatsu M. Gender-specific regulation of response to thyroid hormone in aging. *Thyroid research*. 2012 Dec;5(1):1-8.
14. Uppal V, Vij C, Bedi GK, Vij A, Banerjee BD. Thyroid disorders in patients of type 2 diabetes mellitus. *Indian Journal of Clinical Biochemistry*. 2013 Oct 1;28(4):336-41.15. Penugonda Anveetha, Kotikala Prabhakara Rao, Vamsi Krishna Chittimoju. Study of Thyroid Profile in Patients with Type 2 Diabetes Mellitus. *IJPBS*, 201; 5(1): 24-30.

Single Step Purification of Soybean Isoflavones Employing Silica Gel Adsorption Chromatography

MC Lakshmi¹, MC Madhusudhan², HS Prakash³, KSMS Raghavarao⁴

Author's Affiliation: ¹Oscar House, La Pouquelaye, St Helier, JE13ZD, United Kingdom ^{2,3}DOS in Biotechnology, Manasagangotri, University of Mysore, Mysuru 570006, India. ⁴Department of Food Engineering, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru 570 020, India.

Abstract

The extraction and purification of isoflavones from defatted soy flour (DSF) are attempted by leaching and adsorption chromatography. The isoflavones were extracted in methanol and processed employing silica gel column chromatography. After silica gel column chromatography 0.4 mg/ml of isoflavones content (3.9 mg/g DSF) was obtained which has 16.8 mg of total isoflavones. The process helps to the recovery of the isoflavones along with the removal of contaminants up to 90% which confirmed through HPLC.

Keywords: Concentration; Methanol; Isoflavones; Soybean; Column Chromatography.

Introduction

Soybeans (*Glycine max*) are the rich sources (1.2 - 4.2 mg/g flavonoid) of isoflavones, and are widely available, which are less expensive (Vacek et al., 2008). Isoflavones are often known as phytoestrogens, the group of plant-derived phenolic compounds which shows estrogenic activity (Wildman, 2007). These are commonly found in leguminous plants (peas, beans) and clovers (Saviranta et al., 2008). Isoflavones are known for their potential health benefits. They exhibit antioxidant activity and play an important role in preventing and treating various cancers, osteoporosis and cardiovascular diseases (Achouri et al., 2005). Isoflavones are mainly classified into four groups namely aglycons, glucosides, malonylglucosides and acetyl glucosides. The three isoflavone aglycons, namely, genistein, daidzein and glycinein, are each present in four glucosidic forms in soybeans and soy foods (Griffith and Collison, 2001; Klejdus et al., 2005; Lee et al., 2004).

Several methods and techniques have been reported for the extraction, isolation, and purification of isoflavones. They can be categorized based on several general principles (or approaches). One is based on extraction followed by precipitation. Another is based on precipitation followed by extraction or separation. The third is based on the use of chromatography or other means either before or after solvent extraction to separate or concentrate isoflavones (Zhang and Schwartz, 2005; Lakshmi et al., 2013).

Due to the multiple beneficial effects of soy isoflavones on human health, related products have flooded the market, with unsubstantiated claims and few regulations governing their quality or efficacy. Most products have levels of isoflavones less than their claimed contents, with some containing virtually no detectable isoflavones (Lawton et al., 2003). Moreover, many products only contain soy extracts with very little isoflavones (i.e., 0.2%) and abundant unknown impurities. More importantly, isoflavones in many products are in the form of glucosides, which have weaker biological activities and are more difficult to be absorbed by the body than the corresponding aglycones (Zhang et al., 2007). Therefore, the quality and efficacy of many isoflavone products are poor, and there is a need to develop products with higher purity and efficacy.

Corresponding Author: MC Madhusudhan, DOS in Biotechnology, Manasagangotri, University of Mysore, Mysuru 570006, India

Email: mcmsudhan@gmail.com

Received: May 27, 2018 | **Accepted:** June 14, 2018

Most reported processes include multiple steps; some require multiple chromatography columns for the production of isoflavones. Adsorption is a potential method for purification of isoflavones with minimum processing steps, allowing the elimination of polar, nonphenolic impurities. Partitioning, using solid phase extraction (SPE), using adsorbant resin is a selective method for completely purifying isoflavones. The main objective of this study was to isolate and purify major isoflavones daidzein, genistein and their glycosylated forms (daidzin, genistin) from defatted soy flour in the single step purification method.

Materials and Methods

Materials

The soybeans (*Glycine max*) of variety JS 335 was procured from National Seed Corporation, India. They were stored at refrigerated temperature (6-8 °C) until use. Adsorbent silica gel was obtained from Sd fine-chem. Ltd, Mumbai, India. HPLC grade solvents, namely, water, ethanol, methanol, acetone and acetonitrile were purchased from Merck, Mumbai, India. All the chemicals used were of analytical grade. The isoflavone standards such as genistein, daidzein, genistin and daidzin were obtained from Sigma Chemical Co. St. Louis, MO, USA.

Methods

Extraction

Isoflavones, genistein and daidzein (aglycones), genistin and daidzin (glycosylated) were purified from defatted soy flour following the method described by Ohta *et al.*, (1979) with some modifications. Finely defatted soy flour (25g) was extracted with 250 ml of 80% methanol three times at 80°C for 3 hours. The extract was filtered and the supernatant concentrated under atmospheric pressure first and then under vacuum. A brownish, syrupy liquid was obtained. This was subjected to extraction with two volumes of acetone. The acetone extract was concentrated by vacuum drying. The solid obtained was dissolved in water and subjected to solvent partition using ethylacetate. The extract was partitioned into three layers, uppermost ethylacetate layer, middle solid mass and lower aqueous layer.

Silica gel adsorption chromatography

The ethylacetate extract was subjected to adsorption chromatography on silica gel. The column (30 cm x 2.5 cm) was eluted with 50% water saturated ethylacetate, and 50% water saturated ethylacetate containing 2% ethanol with a flow rate of 1ml/min. Fraction F1 is rich genistein and daidzein, F5 is rich in genistin and F6 is rich in daidzin. Each fraction obtained was rechromatographed on silica gel using the same procedure.

HPLC

The amount of isoflavones in the extracts was analyzed using HPLC (Waters Alliance 2690, Waters, USA) equipped with a photodiode array detector (Waters, USA) and millennium chromatography manager software. A 10 μ l sample was loaded onto a C18 column (SGE, 250 x 4.6 mm, 5 μ m particle size, SGE, Germany). The mobile phase was composed of 0.1% acetic acid in water (A) and 0.1% acetic acid in acetonitrile (B). The elution was performed in a linear gradient of A against B. The separation was achieved using the following gradient program: 0-5 min, 85% A; 5-36 min, 71% A; 36-44 min, 65% A and 45-60 min, 85% A. The flow rate of the mobile phase was set at 0.6 ml /min and absorption was measured at 260 nm (Murphy *et al.*, 1997). The temperature of the column was maintained at 25 \pm 1°C. The identity and purity of isoflavones in the samples were confirmed by matching the retention times and areas with the standards.

The purity of isoflavones was determined by HPLC employing a C 18 column (Wang and Murphy, 1994) with gradient elution using acetonitrile water (15 to 35%, in 50 min, flow rate: 1ml/min and detection at 262 nm). The concentration of isoflavones was determined by the standard graph using the method as given by Coward *et al.*, (1993).

Calculation of total isoflavones

The concentration of isoflavone glucosides (daidzin, genistin) in a given sample were expressed as aglycon equivalents using the following equation (AOAC, 2005; Lakshmi *et al.*, 2013).

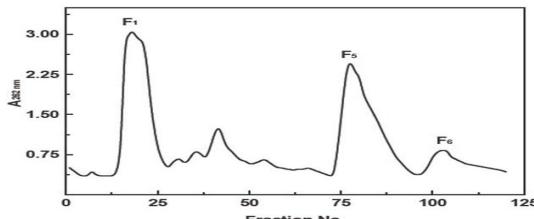
where Ca_e = isoflavones aglycon equivalents ($\mu\text{g/g}$); MW_a = molecular weight of aglycon; MW_g = molecular weight of glucoside; and Cg = concentration of daidzin and genistin ($\mu\text{g/g}$).

The total isoflavones in microgram aglycon equivalents/g of sample was calculated, by summing the concentrations of daidzein, genistein and adding this total to the sum of aglycon equivalent concentrations of daidzin and genistin as indicated below.

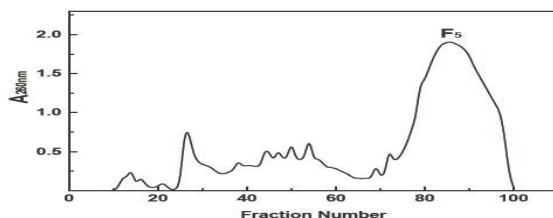
$$T_a = C_a \text{ (daidzein)} + C_a \text{ (genistein)}$$

$$T_{ae} = C_{ae} \text{ (daidzin)} + C_{ae} \text{ (genistin)}$$

where T_a = sum of concentrations of aglycons and T_{ae} = sum of aglycon equivalent concentrations of glucosides.


Free Radical Scavenging Activity

The DPPH radical scavenging test was carried out as described as Blois (1958). The extracts (with different dilutions of the extract in 100% methanol, ranging from 0.05 to 0.3 mL), were mixed with 0.5 mM/L DPPH solution. The absorbance was measured at 517 nm immediately and again after 30 min to determine the amount of DPPH scavenged. The free radical scavenging activity of samples was expressed in percentage, and each sample was analyzed in triplicate. The free radical scavenging activity was calculated by using the following equation:


Table 1: The content of isoflavones

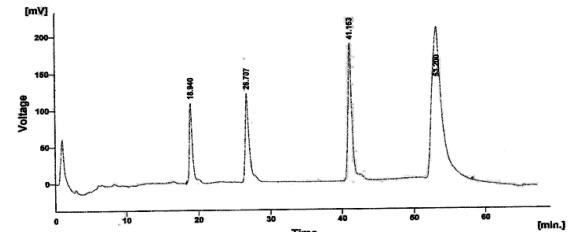
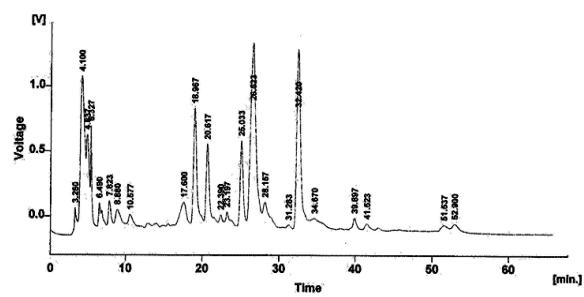
Procedure	Isoflavone content		Total Isoflavones (mg)
	mg/ml	mg/g DSF	
Extraction	0.12	1.28	1.2
after purification	0.4	3.9	16.8

* per gram of dry extract.

Fig. 1: Elution profile of ethyl acetate extract on silica gel column. F_1 fraction mixture of genistein and daidzein, F_5 and F_6 fraction are rich in genistin and daidzin.

Fig. 2: Rechromatography of fraction F_5

$$\text{Scavenging activity (\%)} = \frac{[A_a - (A_b - A_c)]}{A_a} \times 100$$



where A_a is the absorbance of the control solution of DPPH (without isoflavone extract), A_b is the absorbance of the mixture containing isoflavone extract as well as DPPH, and A_c is the absorbance of the blank solution without DPPH.

Results and Discussion

Extraction using methanol has resulted in 0.12 mg/ml of isoflavones content (1.28 mg/g DSF) which has 1.2 mg of total isoflavones.

The solvent extract (methnolic extract) on silica gel column was resolved into three fractions F_1 , F_5 and F_6 as shown in Fig. 1. F_1 fraction which was eluted with 50% water saturated ethyl acetate was found to be genistein and daidzein. F_5 and F_6 fractions which were eluted with 50% water saturated ethyl acetate containing 2% ethanol contained genistin and daidzin respectively. Each fraction obtained was rechromatographed using similar conditions (Fig. 2). The isoflavones genistin, daidzin, genistein, and daidzein purified from defatted soy flour, had a purity of >90% (confirmed by HPLC) as can be seen in Fig. 3.

After silica gel column chromatography it resulted in 0.4 mg/ml of isoflavones content (3.9 mg/g DSF) which has 16.8 mg of total isoflavones. The process helps to the recovery of the isoflavones along with removal of contaminants.

Fig. 3: Chromatograms showing crude and purified isoflavones (RT; 16.946-Daidziein, RT; 26.707-Genistein, RT; 41.163-Daidzin and RT; 53.20-Genistin)

The radical scavenging activity of all the extracts was found to increase with an increase in the concentration (from 0.05 to 0.25 mg) of isoflavones (Fig. 4). Highest antioxidant activity (65.8%) was observed at 0.25 mg concentration of isoflavones compared to other extracts and afterwards, it attained a plateau showing no further change in RSA (%) even with an increase in isoflavone concentration (0.3 mg).

Conclusions

Extraction and purification of isoflavones from defatted soy flour were carried out employing adsorption process resulted in 16.8 mg of isoflavones per gram of defatted soy flour from 1.2 mg/g (DSF) of initial extraction. The silica gel chromatography process successfully used for the purification (>90 %) and recovery of the isoflavones. The purified extract exhibited maximum radical scavenging activity of 65.8% on DPPH at 0.25 mg/g isoflavone concentration.

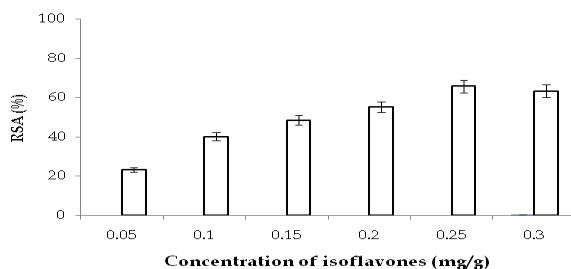


Fig. 4: Radical scavenging activities of isoflavones at different concentrations.

References

- Vacek, J., Klejdus, B., Lojkova, L., Kuban, V. Current trends in isolation, separation, determination and identification of isoflavones: A review. *J sep sci.* 2008;31:2054-67.
- Wildman, R.E.C. Isoflavones: Source and Metabolism In: *Handbook of nutraceuticals and functional foods*. Suzanne Hendrich and Patricia Murphy, Taylor and Francis, New York. 2007.
- Saviranta, N.M.M., Anttonen, M. J., Wright, A. V., Karjalainen, R. Red clover (*Trifolium pratense* L.) isoflavones: determination of concentrations by plant stage, flower colour, plant part and cultivar. *J Sci Food Agric.* 2008;88:125-32.
- Achouri, A., Boye, J. I., Belanger, D. Soybean isoflavones: Efficacy of extraction conditions and effect of food type on extractability. *Food Res Int.* 2005;38: 1199-1204.
- Griffith, A.P., Collison, M.W. Improved methods for the extraction and analysis of isoflavones from soy-containing foods and nutritional supplements by reversed-phase high-performance liquid chromatography and liquid chromatography-mass spectrometry. *J Chromat A.* 2001;913:397-413.
- Klejdus, B., Mikelova, R., Petrolova, J., Potesil, D., Adam, V., Stiborova, M. Evaluation of isoflavone aglycon and glycoside distribution in soy plants and soybeans by fast column high-performance liquid chromatography coupled with a diode-array detector. *J Agri Food Chem.* 2005;53:5848-52
- Lee, J. H., Renita, M., Fioritto, R. J., Martin, S. K., Schwartz, S. J., Vodovotz, Y. Isoflavone characterization and antioxidant activity of Ohio soybeans. *J Agri Food Chem.* 2004;52:2647-51.
- Zhang, Y.C. Schwartz, S.J. (2005) Analysis of isoflavones in soy foods, in *Handbook of Food Analytical Chemistry*, Wrolstad, R.E., Acree, T.E., Decker, E.A., Penner, M.H., Reid, D.S., Schwartz, S.J., Shoemaker, C.F., Smith, D., Sporns, P. (Eds.), 2005;2:519-35. John Wiley & Sons, New Jersey.
- Lakshmi, M. C., Jaganmohan Rao, L., Ravi, R. and Raghavarao, K. S. M.S. Extraction and Concentration of Isoflavones from Soybean (*Glycine max*). *Sep Sci Technol.* 2013;48:166-74.
- Lawton, B., Rose, S., McLeod, D., Dowell, A. Changes in use of hormone replacement therapy after the report from the Women's Health Initiative: cross sectional survey of users. *Br Med J.* 2003;327 (7419):845-46.
- Zhang, E.J., Ming N.K., Qian, L.K. Extraction and purification of isoflavones from soybeans and characterization of their estrogenic activities. *J Agric Food Chem.* 2007;55:6940-50.
- Ohta, N., Kuwata, G., Akahori, H., Watanabe, T. Isoflavonoid constituents of soybeans and isolation of a new acetyl daidzin. *Agric Biol Chem.* 1979;43:1415-19.
- Murphy, P. A., Song, P. A., Buseman, T. G., Barua, K. Isoflavones in soy based infant formulas. *J Agri Food Chem.* 1997;45:4635-38.
- Wang, H., Murphy, P.A. Isoflavone Content in Commercial Soybean Foods. *J. Agric Food Chem.* 1994;42:1666-73.
- Coward, L., Barnes, N.C., Setchell, K.D.R., Barnes, S. Genistein, daidzein, and their β -glycoside conjugates: Antitumor isoflavones in soybean foods from American and Asian diets. *J Agri Food Chem.* 1993;41:1961-67.
- AOAC official methods of Analysis In: *Vitamins and other Nutrients*, Chapter 45, 2005.p. 114.
- Blois, M.S. Antioxidant determination by the use of a stable free radical. *Nature* 1958;181: 119-1200.

Comparison of Lipid Profile Levels in AMI Patients With and Without Diabetes Mellitus

Savita Deshmukh¹, Raviraj Naik², Ranjana Deshmukh³

Author's Affiliation: ^{1,2}Assistant Professor, Dept. of Biochemistry; Indian Institute of Medical Science & Research, Jalna, Maharashtra 431202, India. ³Consulting Physician; Dr. Hedgewar Hospital, Aurangabad, Maharashtra 431005, India.

Abstract

Present study was aimed to assess lipid profile in diabetic and non-diabetic patients with history of myocardial infarction. *Methods:* Study conducted in the Department of Biochemistry, Indian Institute of Medical Science and Research, Warudi, Tq. Badnapur, District Jalna (M.S.) in collaboration with Hedgewar hospital during period of 2015-17. Biochemical investigations include fasting blood sugar, postprandial blood sugar and lipid profile (total cholesterol, triglyceride, LDL-cholesterol, HDL-cholesterol and VLDL). *Results:* Present study shows significant increase in the levels of triglyceride, LDL-cholesterol, while cholesterol level increases non-significantly. HDL-cholesterol levels decreased significantly in patients of myocardial infarction (MI) with diabetes mellitus compared to non-diabetic patients with history of myocardial infarction. *Conclusion:* Diabetic patients with history of myocardial infarction were having significantly deranged lipid parameters and higher risk of dyslipidemic complications as compared to nondiabetic patients with history of myocardial infarction.

Keywords: AMI (Acute Myocardial Infarction); HDL (High Density Lipoprotein; LDL (Low Density Lipoprotein); Diabetic & Non-Diabetic.

Introduction

Diabetes mellitus is a group of metabolic disease characterized by hyperglycemia resulting from defects in insulin secretion, insulin action or both [1]. Hyperlipidemia and altered lipid metabolism is seen in diabetes. The chronic hyperglycemia is associated with hyperlipidemia which leads to vascular complications. Patients with type II Diabetes mellitus are on higher risk of cardiovascular disease associated with atherogenic abnormalities and dyslipidemia [2]. This dyslipidemia is characterized by increased plasma triglyceride concentration, increased cholesterol concentration increased LDL-cholesterol concentration while decreased concentration of HDL-cholesterol [3].

Cardiovascular disease is defined as "impairment of heart function due to inadequate flow of blood to the heart compared to its need caused by obstructive changes in the coronary artery disease especially MI is the leading cause of morbidity and mortality worldwide [4].

There are several risk factors for MI such as hypertension, smoking, family history of obesity. Independently of the presence or absence of other risk factors DM add to the risk for CVD.

Materials and Methods

This study was conducted in the Department of Biochemistry, Indian Institute of Medical Science and Research, Warudi, Tq. Badnapur, District Jalna (M.S.) and in collaboration with Hedgewar hospital, Aurangabad (M.S.) during period of 2015-17. The study was clearance from Institutional ethical committees.

Reprint Request: Raviraj Rajan Naik, Assistant Professor, Dept. of Biochemistry; Indian Institute of Medical Science & Research, Jalna, Maharashtra 431202, India.

Email: raviraj_40@yahoo.com

Received: May 16, 2018 | Accepted: June 14, 2018

Total 60 patients were included in this study. Patients were divided into two groups. Group I consists of 30 patients suffering from myocardial infarction without diabetes mellitus and Group II consists of 30 patients suffering from myocardial infarction with diabetes mellitus. The diagnosis of myocardial infarction was based on a history of prolonged chest pain, ECG changes and elevated CK-MB level within 12 hours after the onset of chest pain. The patient with other complications like liver disease, bone disease, kidney disease and inflammatory disease were excluded from the study. Biochemical investigations include fasting blood sugar (FBS), postprandial blood sugar (PPBS), CK-MB and lipid profile (total cholesterol, triglyceride, LDL-cholesterol, HDL-cholesterol and VLDL) were carried out.

Statistical Analysis

Statistical analysis were carried out by SPSS software and p values were obtained.

Results

Data from investigations of all patients were tabulated in the MS-Excel sheet for their mean \pm SD and following observations were made

Table 1: Biochemical marker in myocardial patients with and without diabetes (Group I AMI without DM, Group II AMI with DM)

Parameters	Group I	Group II	'p' value
CK-MB (IU/L)	102.0 \pm 19.69	152.0 \pm 27.6	<0.001
FBS (mg%)	99.23 \pm 6.68	180.6 \pm 89.4	0.000
PPM (mg%)	130.4 \pm 34.2	224.0 \pm 114.0	0.000
Total cholesterol (mg%)	168.0 \pm 32.1	185.0 \pm 51.5	0.092
LDL-C (mg%)	111.1 \pm 32.3	131.6 \pm 31.2	0.009
HDL (mg%)	37.5 \pm 13.7	40.3 \pm 13.8	0.401
TG (mg%)	131.7 \pm 60.0	168.2 \pm 66.4	0.019
VLDL (mg%)	26.3 \pm 12.0	30.6 \pm 15.1	0.037

Above table 1 shows the levels of CK-MB ($p<0.001$), triglyceride ($p=0.019$), LDL-C ($p=0.009$) & VLDL ($p=0.037$) was significantly increased in patients of myocardial infarction with diabetes mellitus while cholesterol level increased. In patients of myocardial infarction with diabetes mellitus and HDL cholesterol level decreased in patients of myocardial infarction with diabetes mellitus compared to non-diabetic MI patients.

Discussion

Findings of our study were similar to previous studies [6,7,9]. Cholesterol level in AMI patients

with diabetes mellitus as compared to patients of AMI without diabetes mellitus.

It has been hypothesized that hyperplasia of diabetes induces increased activity of HMG-CoA reductase of the intestine resulting in increased synthesis of cholesterol leading to raised levels in plasma. Dietary cholesterol also adds up to total cholesterol by increased absorption [2,8].

LDL-C our study shows significant increase in LDL-C level in patients of AMI with diabetes mellitus than in patients of AMI without diabetes mellitus. Other previous research studies showed more or less similar findings [9,10]. Small dense LDL particles appear to arise from the intravascular processing of specific larger VLDL precursors through a series of steps, including lipolysis. Further triglyceride enrichment of the lipolytic products through the action of cholesteryl ester transfer protein together with hydrolysis of TG and phospholipids by hepatic lipase leads to increase production of small dense LDL particles [10,11]. (lipids and lipoproteins in patients with type II DM Ronald M. Krauss American Diabetes Association Diabetes Care).

In our study HDL-C level in AMI patients with diabetes mellitus is not statistically significant but it shows decreased HDL level in AMI patients with diabetes mellitus than that of in AMI patients without diabetes mellitus. The findings of our study were correlate with the previous studies [3-5,7]. Lower HDL-C in diabetes may be due to reduced lipoprotein lipase activity [2,13,14].

Our study shows significant increase in level of triglyceride in AMI patients with diabetes mellitus. Similar findings were shown by previous studies [1,3,9,15]. Hypertriglyceridemia may be due to higher rates of production of triglyceride rich VLDL by liver and to decreased removal of triglyceride by peripheral tissue, primary adipose tissue and muscle [2,15,16]. Insulin deficiency leads to high triglyceride production and subsequent high packaging in VLDL.

Our study showed increase in VLDL level in AMI with diabetes mellitus than in non-diabetic AMI patients but increase is not significant. Similar findings were also noted by previous studies [4,5,12,17]. Lipid metabolism in type II diabetes is modulated by series of factors among which the degree of glycemic control and the presence of insulin resistance are two most important player. One major consequence of insulin resistance of lipid metabolism is the loss of the suppressive effect

of insulin on fat mobilization from adipose tissue. As a result there is an increase in free fatty acids flux owing to reduced suppression of lipolysis. The failure of suppression of FFA in the postprandial period, due to the decreased activity of lipoprotein lipase and the rise in plasma FFA due to increased adipocyte lipolysis are key reasons behind increased VLDL.

Conclusion

Diabetic patients with history of myocardial infarction were having significantly deranged lipid parameters and higher risk of dyslipidemic complications as compared to nondiabetic patients with history of myocardial infarction.

References

1. Nayak R, Jain S, Chauhan VS. Association between glycosylated hemoglobin and lipid profile in acute myocardial infarction patients. *Int J Pharm Biol Sci* 2016;8(1):155-58.
2. Shankarprasad DS, Gundalli S, Mahantesh B, Kashinakunti SV, Sunitha P. Lipid profile in diabetes mellitus. *Ind J Pathol Oncol* 2015;2(4):290-94.
3. Patal PM, Shah T, Krish K. The evaluation of cardiac markers in diabetic and non diabetic patients with myocardial infarction. *IJBAR* 2014;5. Available on ISSN 2229-3809 (Online). J DOI:10.7439/ijbar.
4. Verges B. Pathophysiology of diabetic dyslipidaemia: where are we? *Diabetologia* 2015; 58(5):886-99. Available on <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4392164>.
5. Talayero BG, Sacks FM. The role of triglycerides in atherosclerosis. *Curr Cardiol Rep* 2011 Dec;13(6):544-52. Available on <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC32341071>.
6. Fatima Ali, Nadia Wajid. Comparative analysis of biochemical parameters in diabetic and non diabetic acute myocardial infarction patients. *Ind Heart J* 2016;68:325-31.
7. Cholesterol abnormalities and diabetes - American Heart Association. Available on www.heart.org/why-diabetes-matters.
8. Ness GC, Zhao Z, Wiggins L. Insulin and glucagon modulate hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase activity by affecting immunoreactive protein levels. *J Biol Chem* 1994;269(46):29168-72.
9. Shivanand KG, Manjunath ML, Jeganathan PS. Lipid profile and its complications in diabetes mellitus. *Int J Biomed Adv Res* 2012;3:775-80.
10. Krauss RM. Lipids and lipoproteins in patients with type 2 diabetes. *Diabetes Care* 2004;27(6):1496-1504.
11. Garvey WT, Kwon S, Zheng D, Syaughnessy S, Wallace P, Hutto A et al. Effects of insulin resistance and type 2 diabetes on lipoprotein subclass particle size and concentration determined by nuclear magnetic resonance. *Diabetes* 2003;52(2):453-62.
12. Carmena R. High risk of lipoprotein dysfunction in type 2 diabetes mellitus. *Rev Esp Cardiol* 2008;8(Supl C):18-24.
13. Ramirez A, Hu PP. Low high - density lipoprotein and risk of myocardial infarction. *Clinical Medicine Insights : Cardiology* 2015;19:113-17.
14. Goldberg IJ. Diabetic dyslipidemia : causes and consequences. *J Clin Endocrinol Metab* 2001;86(3):965-71.
15. Daniel MJ, Pharm D. Cih CDE. Am Health Drug Benefits 2011;4(5):312-22.
16. Gaziano JM, Hannekens CH, O'Donnell CJ, Breslow JL, Buring JE. Fasting triglycerides, high-density lipoprotein and risk of myocardial infarction. *Circulation* 1997;96:2520-25.

Study of Glycosylated Hemoglobin Levels in Iron Deficiency Anemia

Raviraj Naik¹, Sarita Dakhure²

Author's Affiliation: ¹Assistant Professor; Department of Biochemistry, ²Assistant Professor; Department of Pathology; Government Medical College, Aurangabad, Maharashtra 431004, India.

Abstract

The aim of present study was to study the levels and analyze the variation in glycosylated hemoglobin (HbA1c) levels in Iron Deficiency Anemia (IDA). This study was conducted on 50 cases who were diagnosed to be having iron deficiency anemia and 50 age matched healthy controls which are not having any form of anemia. The levels of HbA1c was significant increased in cases of iron deficiency anemia as compared to those in the healthy controls. There were no differences in the random glucose levels between the anemic and healthy subjects. It is not only the blood sugar levels that affects HbA1c levels but it also may be affected by other factors such as hemoglobinopathies and anemia among which most common in India is iron deficiency anemia. Hence, it is very vital to have an estimate of iron levels in the blood so as to be able to take therapeutic decision to treat diabetes based on HbA1c levels. Therefore, it is always advisable to correct any iron deficiency before any diagnostic or therapeutic decision is made.

Keywords: Glycosylated Hemoglobin; HbA1c; Iron Deficiency Anemia; Diabetes Mellitus.

Introduction

Glycosylated hemoglobin is used in clinical practice for having an estimate of glycemic control of last 2-3 months [1]. It is not only the blood sugar levels that affects HbA1c levels but it also may be affected by other factors such as hemolytic anemias [2], hemoglobinopathies, acute and chronic blood loss [3] pregnancy [4], and uremia [5]. Vitamin B₁₂, folate. Apart from this most common cause of anemia in India which is iron deficiency anemia have also been found to affect HbA1c levels. Iron deficiency anemia is the most common form of anemia in India [6]. One can label a subject as suffering from iron deficiency anemia if there is presence of atleast two following parameters

which can also be called as indicators such as serum ferritin, transferrin saturation, total iron binding capacity and peripheral blood smear picture of microcytic hypochromic anemia [7]. There had been different research studies which elaborated on relationship between iron deficiency anemia and HbA1c. These were Brooks *et al.* [8] Sluiter *et al.* [9] and Mitchell *et al.* [10] who reported positive correlation between changes in iron levels and HbA1C variations. However, there were some researchers who contradicted with researchers mentioned above and these were Von Heyningen *et al.* [11] and Gram-Hansen *et al.* [12]. But there were other studies have shown that reduced iron levels were associated with increased levels of HbA1c [8]. Inspite of iron deficiency anemia being the most common nutritional anemia there have been many evidences of inconsistency in relation of iron and HbA1c levels [13].

Since the earlier results on the relation between HbA1c and iron deficiency anemia were inconsistent and the exact mechanism remained

Reprint Request: Sarita Dakhure, Assistant Professor; Department of Pathology; Government Medical College, Aurangabad, Maharashtra 431004, India.

Email: raviraj_40@yahoo.com

Received: March 03, 2018 | Accepted: June 14, 2018

unclear, we have attempted to perform this study to investigate the effects of Iron Deficiency anemia on HbA1c levels.

Material and Methods

We conducted this study at GMC; Aurangabad in department of pathology during January 2016 to May 2017. 5ml blood samples were obtained by venepuncture from 50 anaemic patients aging 45±5 years, and 50 age-matched healthy controls. Among the iron deficiency anemia group 18 were males and 32 were females. The study subjects were enrolled from the medicine outpatient department

of our institute. All the study subjects (cases & controls) underwent following investigations; blood hemoglobin (Hb) concentration, CBC, serum ferritin and TIBC, PS, random blood glucose and glycosylated hemoglobin. The HbA1c levels were determined by sysmex HbA1c analyser. The peripheral blood smears were examined in all the patients. Estimation of blood sugar was done on fully automated transasia autoanalyser. Patients having diabetes mellitus and any type of hemoglobinopathies were excluded from our study. All the results were presented as mean±S.D. Significant differences were evaluated using students t-test when $p \leq 0.05$.

Observation & Results

Table 1:

Sr.No	Parameters	Normal Subjects (n = 50) Mean ± S.D.	IDA subjects(n = 50) Mean ± S.D.	Significance
1.	Hb(gm/dl)	12.66 ± 0.42	9.17 ± 1.84	p < 0.001
2.	Serum Ferritin	0.08 ± 0.76	0.06 ± 0.01	p < 0.001
3.	TIBC	0.42 ± 0.16	0.56 ± 0.03	p < 0.001
4.	Glycosylated Hb	5.3 ± 0.09	6.4 ± 0.72	p < 0.001
5.	Random Glucose	124 ± 7.68	130 ± 4.71	p > 0.05

All the parameters which were tested in both the groups have been reported in table above. The peripheral blood smears showed a microcytic hypochromic picture. The HbA1c levels were significantly increased among the iron deficiency

anemia patients as compared to those in the controls. There were no differences in the levels of random glucose levels between the subjects of iron deficiency anemia and the control groups ($p > 0.05$).

Discussion

In the present study it was observed that HbA1c concentrations were found to be higher in the subjects with iron deficiency. Our study results were consistent with one of the study reported in past by Brooks et al. [8] who analyzed HbA1C levels in 35 non-diabetic patients having iron deficiency anemia both before and after treatment with iron. They concluded that HbA1C levels in subjects with iron deficiency anemia were significantly higher as compared to healthy controls. They also reported that HbA1C levels decreased when the subjects were treated with iron supplements. They postulated the following mechanism of increase in HbA1c levels in iron deficiency anemia subjects in which they stated that, iron deficiency resulted in alteration of the structure of the hemoglobin molecule and it also led to rapid glycation of the globin chain as compared to normal scenario [8]. Another study reported by Sluiter et al. [9] attempted to justify the rising trend of HbA1c in iron deficiency anemia in which they proposed that there is linear relationship between HbA1c

concentration and RBC age. They also reported that in iron deficiency anemia although the formation rate of RBC decreases but there is increase in average lifespan of circulating erythrocytes so it ultimately results in more glycation and thus levels of HbA1c rises [9]. Some other researchers also agreed with the studies done by Brooks et al. and Sluiter et al. such as studies by El-Agouza et al. [14] and Cogan et al. [15] who in their respective study concluded that in iron deficiency anemia resulted in significantly increased levels of HbA1C and also reported that these increased HbA1c levels normalized after treatment with iron supplements. They tried to justify their observation by arguing that elevated HbA1c levels in iron deficiency anemia could be explained by the assumption that if serum glucose remains constant, a decrease in the hemoglobin concentration might lead to an increase in the glycated fraction. In contradiction to above mentioned studies there were some researchers who reported otherwise. Among them first study conducted was by Mitchell et al. [10] who analyzed the absolute concentration of HbA1c in each erythrocyte and concluded that HbA1c levels before and after iron treatment did not change.

They also studied research work done by Sluiter et al. and commented that erythrocyte lifespan was unlikely to be a significant factor in explaining the changes in HbA1c levels in iron deficiency anemia. As evident from the above studies, the exact mechanism through which iron deficiency anemia affects HbA1c levels still remains unclear. But we support the theories postulated by Brooks et al and Sluiter et al as we find factors mentioned above in their respective studies more logical reasoning for increased levels of HbA1c in subjects of iron deficiency anemia.

Conclusion

HbA1c levels were significantly increased in subjects having iron deficiency anemia.

References

1. Telen MJ and Kaufman RE. The mature erythrocyte. In: Greer JP, Forester J, et al., eds. *Wintrobe's clinical hematology*. 11th ed. Lippincot Williams and Wilkins, 2004:230.
2. Horton BF and Huisman TH. Studies on the heterogeneity of hemoglobin. VII. Minor hemoglobin components in haematological diseases. *Br J Haematol* 1965;11:296-304.
3. Bernstein RE. Glycosylated hemoglobins: hematologic considerations determine which assay for glycohemoglobin is advisable. *ClinChem* 1980;26:174-5.
4. Lind T and Cheyne GA. Effect of normal pregnancy upon the glycosylated haemoglobins. *Br J ObstetGynaecol* 1979;86:210-3.
5. De Boer MJ, Miedema K, Casparie AF. Glycosylated haemoglobin in renal failure. *Diabetologia* 1980;18:437-40.
6. Shendurnikar N (Ed.). Iron deficiency is preventable. <http://www.indiaparenting.com/raisingchild/data/raisingchild063.shtml> (Updated on Apr 2007).
7. Institute of Medicine, Committee on Nutritional Status during Pregnancy and Lactation. *Nutrition during pregnancy*. Washington, DC: National Academy Press, 1990:272-98.
8. Brooks AP, Metcalfe J, Day JL, Edwards MS. Iron deficiency and glycosylated haemoglobin A1. *Lancet*. 1980 Jul;316(8186):141.
9. Sluiter WJ, van Essen LH, Reitsma WD, Doorenbos H. 1980. Glycosylated haemoglobin and iron deficiency. *Lancet* 1980;2:531-32.
10. Mitchell TR, Anderson D, Shepperd J. Iron deficiency haemochromatosis, and glycosylated haemoglobin. *Lancet* 1980;2:747.
11. Van Heyningen C, Dalton RG. Glycosylated haemoglobin in Gycyanaemia. *Lancet*, 1985;1:874.
12. Gram-Hansen P, Eriksen J, Mourits-Andersen T, Olesen L. Glycosylated haemoglobin (HbA1c) in iron- and vitamin B12 deficiency. *J Intern Med* 1990;227:133-36.
13. Sinha N, Mishra TK, Singh T, Gupta N. Effect of Iron Deficiency Anemia on Hemoglobin A1c Levels *Ann Lab Med*. 2012;32(1):17-22.
14. El-Agouza I, Abu Shohla A, Sirdah M. The effect of iron deficiency anaemia on the levels of haemoglobin subtypes: possible consequences for clinical diagnosis. *Clin Lab Haematol* 2002;24:285-9.
15. Coban E, Ozdogan M, Timuragaoglu A. Effect of iron deficiency anemia on the levels of hemoglobin A1c in nondiabetic patients. *ActaHaematol* 2004;112:126-8.

Assessment of Obstructive and Restrictive Impairments Among of Urban Population of Jaipur: A Survey Study

Sachin C. Narwadiya¹, Gulshan J. Karhade², P.M. Tumane³

Author Affiliation: ¹Scientist C, Vigyan Prasar, A-50, Institutional Area, Sector 62, Noida, Uttar Pradesh 201 309, India. ²Laboratory Technician, Regional Ayurveda Research Institute for Endocrine Disorders, Indira Colony, Banipark, Jhotwara Road, Jaipur, Rajasthan 302 016, India. ³Associate Professor, Department of Microbiology, RTM Nagpur University, Nagpur, Maharashtra 440 033, India.

Abstract

The Spirometry is the test usually used to diagnose the capacity of lungs. Spirometry which signifies meant the measurement of breath. The Spirometry is routinely performed as part of the pulmonary function tests (PFTs). It is used to measure the Lung Function with specific importance to the amount (volume) and/or speed (flow) of air that can be inhaled and exhaled. The use of this test involved in assessing breathing patterns that identify conditions such as asthma, pulmonary fibrosis, cystic fibrosis, and Chronic obstructive pulmonary disease (COPD). It is also helpful as part of a system of health surveillance, in which breathing patterns are measured over time. The present study focused on the patterns of the Obstructive and Restrictive Impairments among of urban population of Jaipur. The patients selected specifically from the visiting patients with some symptoms to the health camp. In this camp the assessment of Lung Functions was done by using the RMS Helios 401 PC based Spirometer. The parameters, as per the manual are used for the diagnosis of the Obstructive and Restrictive Impairments. The parameter assessed includes Age, Height, Weight, Gender, Smoker/ Non-Smoker, FVC Pred, FVC (M. Pred), % Pred. M., % Pred, Lung Age (P), Lung Age (M). As per the instrument manual restrictive stage COPD as $FEV_1/FVC >= 70\%$ and $FEV_1 < 80\%$. In the present study the COPD before the medication mentioned as pre-test is found to be 144 patients in the total numbers of 164 which accounts for 87.80%.

Keywords: Spirometry; Lungs; COPD; FVC; FEVI.

Introduction

Spirometry is the technology used for the detection of Lung Functions. The various indications for the use of spirometry are early detection of asthma and COPD, evaluation of the relationship between flow and volume, measurement of the degree of airflow obstruction and variability, severity of lung disease, assessment of response to therapy, to provide education and feedback for patients, preoperative evaluation. Lung functions tests are routinely performed for the estimation of Pulmonary Functions which include both physiological and

pathological which can be responsible for alter in Lungs functions as well. Lung functions were prescribed when physician or pulmonologists observed the related symptoms and the tests include the estimation of lung volumes are forced vital capacity (FVC), forced expiratory volume in the first second (FEV1) and peak expiratory flow rate (PEFR) (Nku CO *et al.* 2006)

The peak expiratory flow rate (PEFR), residual volume (RV), functional residual capacity (FRC) and FEV1 expressed as a percentage of FVC are the various parameter used to differentiate between obstructive and restrictive impairments (Donnelly PM *et al.* 1991).

Aims and Objectives

To perform PFT in normal persons (control group)

Reprint Request: Sachin C Narwadiya, Scientist C, Vigyan Prasar, A-50, Institutional Area, Sector 62, Noida, Uttar Pradesh 201309, India.

Email: snarwadiya@gmail.com

Received: January 17, 2018 | **Accepted:** February 09, 2018

and having symptoms of impairments (study group)

To compare the values of PFT parameters in normal persons (control group) and having symptoms of impairments (study group)

Materials and Methods

Selection of Subjects

The study was undertaken during the Health camp organized in the urban area of Jaipur. The selection is based on the medical history taken by the Doctor and referred for the PFT.

Inclusion Criteria

Healthy subjects with

- a) No previous history of upper respiratory tract infection within 3 months (Fulambarker A, *et al.*, 2004).
- b) No history of asthma or bronchitis in the subjects as well in their family
- c) No other clinically detected medical illness
- d) No history of smoking

Exclusion Criteria

Subjects who were smokers (Fulambarker A, *et al.*, 2004), have had history of respiratory disorders or diseases like tuberculosis, congenital cardiac disorders and musculoskeletal deformity of chest wall were excluded.

On selection through the above inclusion criteria, their socio demographic data was recorded. The patients and normal persons underwent general physical examination and thorough clinical examination of respiratory system to rule out significant pre-existing pathology which may influence the study parameters.

All normal persons and patients physical characteristics like height and weight was measured and recorded. Body surface area will be calculated for each person, by the software incorporated in the spirometer. PFT was assessed in the subjects selected. The test was done on a normal survey day. Lung function parameters, i.e, FEV1, FVC, FEV1/FVC ratio were measured using the below described instrument, by the below described method.

Instrument: The Spirometer used for this study is RMS Helios Spirometer- 401.

Procedure of Recording

Pulmonary function test (PFT) parameters, viz. Inspiratory reserve volume (IRV), Expiratory reserve volume (ERV), Forced vital capacity (FVC), Forced expiratory volume in the first second (FEV1) and FEV1/FVC ratios were recorded using computerized spirometer- RMS Helios 401.

The persons were asked to perform the PFT at least three times to observe FVC, FEV1, FEV1/FVC%. After appropriate coaching, the best of three technically acceptable attempts were recorded and the best of the three results were considered for analysis. Subjects were instructed to practice the maneuver before being attached to the instrument. To achieve good results before the test, the subjects were familiarized with the machine and the detail instructions and demonstration up to the satisfaction were done (Vijayan VK *et al.* 1990). The persons were asked to loosen tight clothing and were seated comfortably erect with feet firmly on the floor (the most comfortable position, though standing gives similar results in adults). A nose clip was applied to the person's nose. Then, the person was asked to breathe in fully.

The following precautions were observed while doing the test

- Seal his lips around the disposable mouth piece.
- Blast air out 'As fast as he can' until the lungs are completely empty.
- Breathe in again as forcibly and fully as possible.
- Inspiration should be full and unhurried and expiration once begins should be continued without a pause.

The best report out of the several blows ranging from 3 to 4 was selected. The FEV1 between the highest and second highest result value was considered.

The largest of three FVC and FEV1 values were accepted even if the two volumes do not come from the same curve. The ratio of FEV1 to FVC were expressed as a percentage (Vijayan VK *et al.* 2000).

The largest volume was quoted. The following guidelines were used for the manoeuvre performance.

- Minimum of 3 acceptable blows.
- Rapid start is essential.
- A minimum exhalation time of 6 seconds

- Spirometer temperature being 17 to 40°C.
- Take largest FEV1 even if not from the same curve as the best FVC.
- Smooth, rapid take off with no hesitation, cough, leak, tongue obstruction, glottis closure, etc.
- Reproducibility: the highest and the second highest FEV1 should agree to within 0.2 L.

Spirometer was calibrated periodically with an accurate 3 liters syringe. The persons were asked to take a deep breath until he/she breathes in up to total lung capacity (TLC) and close the lips around the mouth piece, and to breath out as fast as possible (up to residual volume), and finally breathe it all in again as fast as possible to TLC.

The values for Age, Height, Weight, Gender, Smoker/ Non-Smoker, FVC Pred, FVC (M. Pred), FVC%, Lung Age (P), Lung Age (M) for each person thus obtained was entered in the proforma and tabulated. Suitable statistical methods were applied using Microsoft Excel to analyze the data, such as, mean, standard deviation.

Discussion

The results obtained are suggestive of the group of persons under study are suffering from restrictive impairment as per the manual restrictive stage COPD as $FEV1/FVC >= 70\%$ and $FEV1 < 80\%$ was considered for evaluation. The average age groups of the persons under this study is 35 which indicate the subjects were not too old and in middle age. The BMI suggests that 23.54 suggestive of the group of persons were not in the category of obese. The Lung age seems to be the 10+ years older than that of the average age predicted for the Lungs i.e 35 indicating the affected lungs. The Forced Vital Capacity was just lesser than the normal of the whole group when compared with the predicted one indicating that major numbers of persons under study were suffering from COPD. The group has maximum percentage of the 31-40 years age group. The quiet young aged groups too have more Lung age as measured by the instrument Helios 401. All the subjects under the present study and control are non-smoker thus occurrences of Restrictive

Results

Table 1: Showing the Age Group classification and patients with Restrictive Impairments

Age Group	Numbers	Percent of total persons under study	Number of normal persons	Number of Restrictive Impairments	Percent of Restrictive Impairments
11-20	11	6.14	02	09	81.81
21-30	61	34.07	09	52	85.24
31-40	25	13.96	02	23	92.00
41-50	43	24.02	02	41	95.34
51-60	16	8.93	03	13	81.25
61-70	8	4.46	02	06	75.00
Control	15	8.37	15	00	00

Table 2: Showing the Means of Age, BMI and smoking details

Age	Height Mean \pm SD	Weight Mean \pm SD	Gender Mean \pm SD M* F*	Body Mass Index Mean \pm SD		Smoker/ Non-Smoker Mean \pm SD
				Mean \pm SD	Mean \pm SD	
35.1 \pm 11.7	1.626 \pm 0.092	1.626 \pm 0.092	113 66	23.54 \pm 4.66		Nil

*M-Male and F-Female

Table 3: showing the Mean PFT parameters of FVC, FEV and Lung Age.

FVC -M Mean \pm SD	FVC (Pred) Mean \pm SD	% FVC Mean \pm SD	FEV-1(M) Mean \pm SD	FEV-1(P) Mean \pm SD	Lung Age(P) Mean \pm SD	Lung Age(M) Mean \pm SD
2.46 \pm 0.76	4.10 \pm 2.82	63 \pm 13	2.62 \pm 0.94	3.29 \pm 0.65	35 \pm 12	48 \pm 20

Fig. 1: The Helios 401 Spirometer

Impairments through cause of smoking can not be considerable. In the age groups of 31-40 and 41-50 were the Percent of Restrictive Impairments were quite high i.e 92 and 95 percentage respectively. In a restrictive lung disease, the size of the lung is reduced, which increases the stiffness of the lung and limits its expansion. In these cases, a greater pressure (P) than normal is required to give the same increase in volume (V). Common causes of decreased lung compliance are pulmonary fibrosis, pneumonia and pulmonary edema. (<http://www.ugr.es>)

Conclusion

The Lungs related diseases like Restrictive Impairment slowly increasing in the society. It is depending on the quality of air inhaled, working profile, diet, exercise and many more factors. The present study showcased that when the population under study has normal levels of the BMI they suffered from older lungs and decreased FVC and FEV1. The study also showed that the FVC readings are more on abnormal side as compared to that of the FEV1. The Figure 2 depicted that the Predicted FEV1 and FVC are higher and the measured is lower. This shows that the majority of the subjects under study suffering from COPD. The dust level of the area where population residing can be a factor to be taken into consideration as one of the recent news also shown that Air Quality Index (AQI) measured in Jaipur was at 383 (very poor), a notch below the

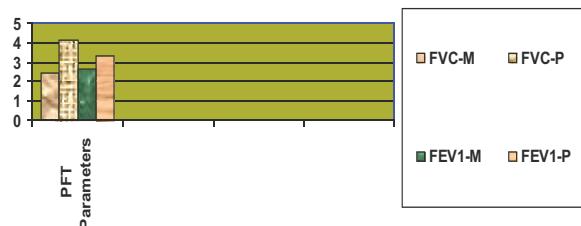


Fig. 2: PFT Parameters FVC and FEV1-P and M

highest category of 'severe' which is far above than the desired level of 100 AQI. The desired level of AQI is 100. During this hazardous situation the peoples became more prone to heart or lung diseases. (<https://timesofindia.indiatimes.com>, 2018)

References

1. Donnelly PM, Yang TS, Peat JK, Woolcock AJ; What factors explain racial differences in lung volumes? *Eur Respir J.*, 1991;4(7):829- 38.
2. Fulambarker A, Copur AS, Javeri A, Jere S, Cohen ME; Reference values for pulmonary function in Asian Indians living in the United States. *Chest.*, 2004;126(4):1225-33.
3. http://www.ugr.es/~jhuertas/Evaluacion_Fisiologica/Espirometria/restobst.htm, accessed on 17-01-2017.
4. <https://timesofindia.indiatimes.com/city/jaipur/Air-pollution-in-Jaipur-four-times-higher-than-average/articleshow/55343247.cms> on 17-01-2017.
5. Nku CO, Peters EJ, Eshiet a I, Bisong S a, Osim EE; Prediction formulae for lung function parameters in females of south eastern Nigeria. *Niger J Physiol Sci.*, 2006;21(1-2):43-47.
6. Vijayan VK, Kuppurao KV, Venkatesan P, Sankaran K, Prabhakar R; Pulmonary function in healthy young adult Indians in Madras. *Thorax.*, 1990;45(8): 611-15.
7. Vijayan VK, Reetha AM, Kuppurao K V, Venkatesan P, Thilakavathy S; Pulmonary function in normal south Indian children aged 7 to 19 years. *Indian J Chest Dis Allied Sci.*, 2000;42(3):147-56.

Revised Rates for 2018 (Institutional)

Title	Frequency	Rate (Rs): India	Rate (\$):ROW
Community and Public Health Nursing	3	5500	5000
Dermatology International	2	5500	5000
Gastroenterology International	2	6000	5500
Indian Journal of Agriculture Business	2	5500	5000
Indian Journal of Anatomy	4	8500	8000
Indian Journal of Ancient Medicine and Yoga	4	8000	7500
Indian Journal of Anesthesia and Analgesia	4	7500	7000
Indian Journal of Biology	2	5500	5000
Indian Journal of Cancer Education and Research	2	9000	8500
Indian Journal of Communicable Diseases	2	8500	8000
Indian Journal of Dental Education	4	5500	5000
Indian Journal of Forensic Medicine and Pathology	4	16000	15500
Indian Journal of Emergency Medicine	2	12500	12000
Indian Journal of Forensic Odontology	2	5500	5000
Indian Journal of Hospital Administration	2	7000	6500
Indian Journal of Hospital Infection	2	12500	12000
Indian Journal of Law and Human Behavior	2	6000	5500
Indian Journal of Library and Information Science	3	9500	9000
Indian Journal of Maternal-Fetal & Neonatal Medicine	2	9500	9000
Indian Journal of Medical & Health Sciences	2	7000	6500
Indian Journal of Obstetrics and Gynecology	4	9500	9000
Indian Journal of Pathology: Research and Practice	4	12000	11500
Indian Journal of Plant and Soil	2	65500	65000
Indian Journal of Preventive Medicine	2	7000	6500
Indian Journal of Research in Anthropology	2	12500	12000
Indian Journal of Surgical Nursing	3	5500	5000
Indian Journal of Trauma & Emergency Pediatrics	4	9500	9000
Indian Journal of Waste Management	2	9500	8500
International Journal of Food, Nutrition & Dietetics	3	5500	5000
International Journal of Neurology and Neurosurgery	2	10500	10000
International Journal of Pediatric Nursing	3	5500	5000
International Journal of Political Science	2	6000	5500
International Journal of Practical Nursing	3	5500	5000
International Physiology	2	7500	7000
Journal of Animal Feed Science and Technology	2	78500	78000
Journal of Cardiovascular Medicine and Surgery	2	10000	9500
Journal of Forensic Chemistry and Toxicology	2	9500	9000
Journal of Geriatric Nursing	2	5500	5000
Journal of Microbiology and Related Research	2	8500	8000
Journal of Nurse Midwifery and Maternal Health	3	5500	5000
Journal of Organ Transplantation	2	26400	25900
Journal of Orthopaedic Education	2	5500	5000
Journal of Pharmaceutical and Medicinal Chemistry	2	16500	16000
Journal of Practical Biochemistry and Biophysics	2	7000	6500
Journal of Psychiatric Nursing	3	5500	5000
Journal of Social Welfare and Management	3	7500	7000
New Indian Journal of Surgery	4	8000	7500
Ophthalmology and Allied Sciences	2	6000	5500
Otolaryngology International	2	5500	5000
Pediatric Education and Research	3	7500	7000
Physiotherapy and Occupational Therapy Journal	4	9000	8500
Psychiatry and Mental Health	2	8000	7500
Urology, Nephrology and Andrology International	2	7500	7000

Terms of Supply:

1. Agency discount 10%. Issues will be sent directly to the end user, otherwise foreign rates will be charged.
2. All back volumes of all journals are available at current rates.
3. All Journals are available free online with print order within the subscription period.
4. All legal disputes subject to Delhi jurisdiction.
5. Cancellations are not accepted orders once processed.
6. Demand draft / cheque should be issued in favour of "Red Flower Publication Pvt. Ltd." payable at Delhi
7. Full pre-payment is required. It can be done through online (<http://rfppl.co.in/subscribe.php?mid=7>).
8. No claims will be entertained if not reported within 6 months of the publishing date.
9. Orders and payments are to be sent to our office address as given above.
10. Postage & Handling is included in the subscription rates.
11. Subscription period is accepted on calendar year basis (i.e. Jan to Dec). However orders may be placed any time throughout the year.

Order from

Red Flower Publication Pvt. Ltd., 48/41-42, DSIDC, Pocket-II, Mayur Vihar Phase-I, Delhi - 110 091 (India), Tel: 91-11-22754205, 45796900, Fax: 91-11-22754205. E-mail: sales@rfppl.co.in, Website: www.rfppl.co.in

STATEMENT ABOUT OWNERSHIP AND OTHER PARTICULARS

"Journal of Practical Biochemistry and Biophysics" (See Rule 8)

1. Place of Publication	:	Delhi
2. Periodicity of Publication	:	Quarterly
3. Printer's Name	:	Asharfi Lal
Nationality	:	Indian
Address	:	3/258-259, Trilok Puri, Delhi-91
4. Publisher's Name	:	Asharfi Lal
Nationality	:	Indian
Address	:	3/258-259, Trilok Puri, Delhi-91
5 Editor's Name	:	Asharfi Lal (Editor-in-Chief)
Nationality	:	Indian
Address	:	3/258-259, Trilok Puri, Delhi-91
6. Name & Address of Individuals who own the newspaper and particulars of shareholders holding more than one per cent of the total capital	:	Asharfi Lal 3/258-259, Trilok Puri, Delhi-91

I Asharfi Lal, hereby declare that the particulars given above are true to the best of my knowledge and belief.

Sd/-

(Asharfi Lal)

Guidelines for Authors

Manuscripts must be prepared in accordance with "Uniform requirements for Manuscripts submitted to Biomedical Journal" developed by international committee of medical Journal Editors

Types of Manuscripts and Limits

Original articles: Up to 3000 words excluding references and abstract and up to 10 references.

Review articles: Up to 2500 words excluding references and abstract and up to 10 references.

Case reports: Up to 1000 words excluding references and abstract and up to 10 references.

Online Submission of the Manuscripts

Articles can also be submitted online from http://rfppl.co.in/customer_index.php.

1) First Page File: Prepare the title page, covering letter, acknowledgement, etc. using a word processor program. All information which can reveal your identity should be here. use text/rtf/doc/PDF files. Do not zip the files.

2) Article file: The main text of the article, beginning from Abstract till References (including tables) should be in this file. Do not include any information (such as acknowledgement, your name in page headers, etc.) in this file. Use text/rtf/doc/PDF files. Do not zip the files. Limit the file size to 400 Kb. Do not incorporate images in the file. If file size is large, graphs can be submitted as images separately without incorporating them in the article file to reduce the size of the file.

3) Images: Submit good quality color images. Each image should be less than 100 Kb in size. Size of the image can be reduced by decreasing the actual height and width of the images (keep up to 400 pixels or 3 inches). All image formats (jpeg, tiff, gif, bmp, png, eps etc.) are acceptable; jpeg is most suitable.

Legends: Legends for the figures/images should be included at the end of the article file.

If the manuscript is submitted online, the contributors' form and copyright transfer form has to be submitted in original with the signatures of all the contributors within two weeks from submission. Hard copies of the images (3 sets), for articles submitted online, should be sent to the journal office at the time of submission of a revised manuscript. Editorial office: Red Flower Publication Pvt. Ltd., 48/41-42, DSIDC, Pocket-II, Mayur Vihar Phase-I, Delhi - 110 091, India, Phone: 91-11-22754205, 45796900, 22756995. E-mail: author@rfppl.co.in. Submission page: http://rfppl.co.in/article_submission_system.php?mid=5.

http://rfppl.co.in/article_submission_system.php?mid=5.

Preparation of the Manuscript

The text of observational and experimental articles should be divided into sections with the headings: Introduction, Methods, Results, Discussion, References, Tables, Figures, Figure legends, and Acknowledgment. Do not make subheadings in these sections.

Title Page

The title page should carry

- 1) Type of manuscript (e.g. Original article, Review article, Case Report)
- 2) The title of the article, should be concise and informative;
- 3) Running title or short title not more than 50 characters;
- 4) The name by which each contributor is known (Last name, First name and initials of middle name), with his or her highest academic degree(s) and institutional affiliation;
- 5) The name of the department(s) and institution(s) to which the work should be attributed;
- 6) The name, address, phone numbers, facsimile numbers and e-mail address of the contributor responsible for correspondence about the manuscript; should be mentioned.
- 7) The total number of pages, total number of photographs and word counts separately for abstract and for the text (excluding the references and abstract);
- 8) Source(s) of support in the form of grants, equipment, drugs, or all of these;
- 9) Acknowledgement, if any; and
- 10) If the manuscript was presented as part at a meeting, the organization, place, and exact date on which it was read.

Abstract Page

The second page should carry the full title of the manuscript and an abstract (of no more than 150 words for case reports, brief reports and 250 words for original articles). The abstract should be structured and state the Context (Background), Aims, Settings and Design, Methods and Materials, Statistical analysis used, Results and Conclusions. Below the abstract should provide 3 to 10 keywords.

Introduction

State the background of the study and purpose of the study and summarize the rationale for the study or observation.

Methods

The methods section should include only information that was available at the time the plan or protocol for the study was written such as study approach, design, type of sample, sample size, sampling technique, setting of the study, description of data collection tools and methods; all information obtained during the conduct of the study belongs in the Results section.

Reports of randomized clinical trials should be based on the CONSORT Statement (<http://www.consort-statement.org>). When reporting experiments on human subjects, indicate whether the procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional or regional) and with the Helsinki Declaration of 1975, as revised in 2000 (available at http://www.wma.net/e/policy/17-c_e.html).

Results

Present your results in logical sequence in the text, tables, and illustrations, giving the main or most important findings first. Do not repeat in the text all the data in the tables or illustrations; emphasize or summarize only important observations. Extra or supplementary materials and technical details can be placed in an appendix where it will be accessible but will not interrupt the flow of the text; alternatively, it can be published only in the electronic version of the journal.

Discussion

Include summary of key findings (primary outcome measures, secondary outcome measures, results as they relate to a prior hypothesis); Strengths and limitations of the study (study question, study design, data collection, analysis and interpretation); Interpretation and implications in the context of the totality of evidence (is there a systematic review to refer to, if not, could one be reasonably done here and now?; What this study adds to the available evidence, effects on patient care and health policy, possible mechanisms)? Controversies raised by this study; and Future research directions (for this particular research collaboration, underlying mechanisms, clinical

research). Do not repeat in detail data or other material given in the Introduction or the Results section.

References

List references in alphabetical order. Each listed reference should be cited in text (not in alphabetic order), and each text citation should be listed in the References section. Identify references in text, tables, and legends by Arabic numerals in square bracket (e.g. [10]). Please refer to ICMJE Guidelines (http://www.nlm.nih.gov/bsd/uniform_requirements.html) for more examples.

Standard journal article

[1] Flink H, Tegelberg Å, Thörn M, Lagerlöf F. Effect of oral iron supplementation on unstimulated salivary flow rate: A randomized, double-blind, placebo-controlled trial. *J Oral Pathol Med* 2006; 35: 540-7.

[2] Twetman S, Axelsson S, Dahlgren H, Holm AK, Källestål C, Lagerlöf F, et al. Caries-preventive effect of fluoride toothpaste: A systematic review. *Acta Odontol Scand* 2003; 61: 347-55.

Article in supplement or special issue

[3] Fleischer W, Reimer K. Povidone iodine antisepsis. State of the art. *Dermatology* 1997; 195 Suppl 2: 3-9.

Corporate (collective) author

[4] American Academy of Periodontology. Sonic and ultrasonic scalers in periodontics. *J Periodontol* 2000; 71: 1792-801.

Unpublished article

[5] Garoushi S, Lassila LV, Tezvergil A, Vallittu PK. Static and fatigue compression test for particulate filler composite resin with fiber-reinforced composite substructure. *Dent Mater* 2006.

Personal author(s)

[6] Hosmer D, Lemeshow S. *Applied logistic regression*, 2nd edn. New York: Wiley-Interscience; 2000.

Chapter in book

[7] Nauntofte B, Tenovuo J, Lagerlöf F. Secretion and composition of saliva. In: Fejerskov O,

Kidd EAM, editors. *Dental caries: The disease and its clinical management*. Oxford: Blackwell Munksgaard; 2003. p. 7-27.

No author given

[8] World Health Organization. *Oral health surveys - basic methods*, 4th edn. Geneva: World Health Organization; 1997.

Reference from electronic media

[9] National Statistics Online—Trends in suicide by method in England and Wales, 1979-2001. www.statistics.gov.uk/downloads/theme_health/HSQ20.pdf (accessed Jan 24, 2005): 7-18. Only verified references against the original documents should be cited. Authors are responsible for the accuracy and completeness of their references and for correct text citation. The number of reference should be kept limited to 20 in case of major communications and 10 for short communications.

More information about other reference types is available at www.nlm.nih.gov/bsd/uniform_requirements.html, but observes some minor deviations (no full stop after journal title, no issue or date after volume, etc).

Tables

Tables should be self-explanatory and should not duplicate textual material.

Tables with more than 10 columns and 25 rows are not acceptable.

Table numbers should be in Arabic numerals, consecutively in the order of their first citation in the text and supply a brief title for each.

Explain in footnotes all non-standard abbreviations that are used in each table.

For footnotes use the following symbols, in this sequence: *, ¶, †, ‡,

Illustrations (Figures)

Graphics files are welcome if supplied as Tiff, EPS, or PowerPoint files of minimum 1200x1600 pixel size. The minimum line weight for line art is 0.5 point for optimal printing.

When possible, please place symbol legends below the figure instead of to the side.

Original color figures can be printed in color at the editor's and publisher's discretion provided the author agrees to pay.

Type or print out legends (maximum 40 words, excluding the credit line) for illustrations using double spacing, with Arabic numerals corresponding to the illustrations.

Sending a revised manuscript

While submitting a revised manuscript, contributors are requested to include, along with single copy of the final revised manuscript, a photocopy of the revised manuscript with the changes underlined in red and copy of the comments with the point to point clarification to each comment. The manuscript number should be written on each of these documents. If the manuscript is submitted online, the contributors' form and copyright transfer form has to be submitted in original with the signatures of all the contributors within two weeks of submission. Hard copies of images should be sent to the office of the journal. There is no need to send printed manuscript for articles submitted online.

Reprints

Journal provides no free printed reprints, however a author copy is sent to the main author and additional copies are available on payment (ask to the journal office).

Copyrights

The whole of the literary matter in the journal is copyright and cannot be reproduced without the written permission.

Declaration

A declaration should be submitted stating that the manuscript represents valid work and that neither this manuscript nor one with substantially similar content under the present authorship has been published or is being considered for publication elsewhere and the authorship of this article will not be contested by any one whose name (s) is/are not listed here, and that the order of authorship as placed in the manuscript is final and accepted by the co-authors. Declarations should be signed by all the authors in the order in which they are mentioned in the original manuscript. Matters appearing in the Journal are covered by copyright but no objection will be made to their reproduction provided permission is obtained from the Editor prior to publication and due acknowledgment of the source is made.

Approval of Ethics Committee

We need the Ethics committee approval letter from an Institutional ethical committee (IEC) or an institutional review board (IRB) to publish your Research article or author should submit a statement that the study does not require ethics approval along with evidence. The evidence could either be consent from patients is available and there are no ethics issues in the paper or a letter from an IRB stating that the study in question does not require ethics approval.

Abbreviations

Standard abbreviations should be used and be spelt out when first used in the text. Abbreviations should not be used in the title or abstract.

Checklist

- Manuscript Title
- Covering letter: Signed by all contributors
- Previous publication/ presentations mentioned, Source of funding mentioned
- Conflicts of interest disclosed

Authors

- Middle name initials provided.
- Author for correspondence, with e-mail address provided.
- Number of contributors restricted as per the instructions.
- Identity not revealed in paper except title page (e.g.name of the institute in Methods, citing previous study as 'our study')

Presentation and Format

- Double spacing
- Margins 2.5 cm from all four sides
- Title page contains all the desired information. Running title provided (not more than 50 characters)
- Abstract page contains the full title of the manuscript
- Abstract provided: Structured abstract provided for an original article.
- Key words provided (three or more)
- Introduction of 75-100 words

- Headings in title case (not ALL CAPITALS). References cited in square brackets
- References according to the journal's instructions

Language and grammar

- Uniformly American English
- Abbreviations spelt out in full for the first time. Numerals from 1 to 10 spelt out
- Numerals at the beginning of the sentence spelt out

Tables and figures

- No repetition of data in tables and graphs and in text.
- Actual numbers from which graphs drawn, provided.
- Figures necessary and of good quality (color)
- Table and figure numbers in Arabic letters (not Roman).
- Labels pasted on back of the photographs (no names written)
- Figure legends provided (not more than 40 words)
- Patients' privacy maintained, (if not permission taken)
- Credit note for borrowed figures/tables provided
- Manuscript provided on a CDROM (with double spacing)

Submitting the Manuscript

- Is the journal editor's contact information current?
- Is the cover letter included with the manuscript? Does the letter:
 1. Include the author's postal address, e-mail address, telephone number, and fax number for future correspondence?
 2. State that the manuscript is original, not previously published, and not under concurrent consideration elsewhere?
 3. Inform the journal editor of the existence of any similar published manuscripts written by the author?
 4. Mention any supplemental material you are submitting for the online version of your article. Contributors' Form (to be modified as applicable and one signed copy attached with the manuscript)

Instructions to Authors

Submission to the journal must comply with the Guidelines for Authors.
Non-compliant submission will be returned to the author for correction.

To access the online submission system and for the most up-to-date version of the Guide for Authors
please visit:

<http://www.rfppl.co.in>

Technical problems or general questions on publishing with IJPRP are supported by Red Flower Publication Pvt. Ltd's Author Support team (http://rfppl.co.in/article_submission_system.php?mid=5#)

Alternatively, please contact the Journal's Editorial Office for further assistance.

Editorial Manager
Red Flower Publication Pvt. Ltd.
48/41-42, DSIDC, Pocket-II
Mayur Vihar Phase-I
Delhi - 110 091(India)
Phone: 91-11-22754205, 45796900, 22756995, Cell: +91-9821671871
E-mail: author@rfppl.co.in