

INTERNATIONAL PHYSIOLOGY

Editor-in-Chief

Rajesh Pathak,

Additional Principal & Senior Professor & Head of Department Physiology,
Jawahar Lal Nehru Medical College & Associated Group of Hospitals, Ajmer-305001, Rajasthan, India.

Executive Editor

Amit Kant Singh, UP RIMS & R, Saifai, Etawah

Noorjehan Begum, Vijayanagar Institute of Medical Science, Bellary

National Editorial Board

Abhinav Dixit, Jodhpur

Aswini Dutt R, Mangalore

B.D. Adgaonkar, Latur

B.G. Subba Rao, Mangalore

Bipin Bihari Pradhan, Berhampur

Harinder Jaseja, Gwalior

Harkirat Kaur, Amritsar

Ishaan Kalavatia, Jaipur

Harpreet Kour, Belagavi

Jyotsna Shukla, Jaipur

N.V. Mishra, Nagpur

Narsingh Verma, Lucknow

Nausheen Rumana, Mysore

Neena Srivastava, Lucknow

Prathamesh H Kamble, Pune

Rajesh K Sharma, Jodhpur

Rajnee, Jodhpur

Rinki Hada, Kota

S. Bose, Indore

S. Mukherjee, Kolkata

Sharad Jain, Hapur

Sunita Nighute, Ahmednagar

Taklikar R.H, Raichur

Urjita Sudhish Zingade, Pune

International Editorial Board

Dale D. Tang, Albany Medical College, NY

Managing Editor: A Lal

E-mail: redflowerppl@vsnl.net

Publication Editor: Manoj Kumar Singh

E-mail: ebmrfp@gmail.com

The International Physiology (ISSN 2347 - 1506) publishes study of function in these systems, such as biochemistry, immunology, genetics, mathematical modeling, molecular biology, and physiological methodologies. Papers on the basis of pathophysiological diseases such on processes of the kidney, urinary tract, and regulation of body fluids are also encouraged. Papers dealing with topics in other basic sciences that impinge on physiology are also welcome. Moreover, theoretical articles on research at any level of biological organization ranging from molecules to humans fall within the broad scope of the Journal.

Indexing information: *ProQuest, USA, Genamics JournalSeek, Scopus (Under process), Index Copernicus (Under process).*

For all other quires Red Flower Publication Pvt. Ltd., 48/41-42, DSIDC, Pocket-II, Mayur Vihar Phase-I, Delhi - 110 091 (India), Phone: 91-11-22754205, 45796900, Fax: 91-11-22754205, E-mail: redflowerppl@vsnl.net, Web:www.rfpl.co.in

Disclaimer The opinion in this publication is those of the authors and is not necessarily those of the International Physiology the Editor-in-Chief and Editorial Board. Appearance of an advertisement does not indicate International Physiology approval of the product or service.

© Red Flower Publication Pvt. Ltd. 2015 all rights reserved. No part of the journal may be reproduce, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior permission of the New Indian Journal of Surgery.

Printed at Mayank Offeset Process, 794/95 Guru Ram Dass Extn, Laxmi Nagar, Delhi - 110092

Revised Rates for 2015 (Institutional)

Title	Frequency	Rate (Rs): India	Rate (\$):ROW
Dermatology International	2	4500	280
Gastroenterology International	2	5000	360
Indian Journal of Agriculture Business	2	4500	300
Indian Journal of Anatomy	2	6000	260
Indian Journal of Ancient Medicine and Yoga	4	7000	330
Indian Journal of Anesthesia and Analgesia	2	5000	600
Indian Journal of Anthropology	2	10500	500
Indian Journal of Applied Physics	2	3500	400
Indian Journal of Biology	2	3000	170
Indian Journal of Cancer Education and Research	2	6500	500
Indian Journal of Communicable Diseases	2	7500	58
Indian Journal of Dental Education	4	4000	288
Indian Journal of Forensic Medicine and Pathology	4	14000	576
Indian Journal of Forensic Odontology	4	4000	288
Indian Journal of Genetics and Molecular Research	2	6000	262
Indian Journal of Law and Human Behavior	2	5000	500
Indian Journal of Library and Information Science	3	8000	600
Indian Journal of Maternal-Fetal & Neonatal Medicine	2	8000	400
Indian Journal of Mathematics and Statistics	2	5000	200
Indian Journal of Medical & Health Sciences	2	6000	120
Indian Journal of Obstetrics and Gynecology	2	5000	200
Indian Journal of Pathology: Research and Practice	2	10000	915
Indian Journal of Plant and Soil	2	5000	1700
Indian Journal of Preventive Medicine	2	6000	250
Indian Journal of Reproductive Science and Medicine	4	3000	180
Indian Journal of Scientific Computing and Engineering	2	4000	280
Indian Journal of Surgical Nursing	3	3000	70
Indian Journal of Trauma & Emergency Pediatrics	4	8500	302
International Journal of Agricultural & Forest Meteorology	2	8000	800
International Journal of Food, Nutrition & Dietetics	2	4000	900
International Journal of History	2	6000	500
International Journal of Neurology and Neurosurgery	2	9000	276
International Journal of Political Science	2	5000	400
International Journal of Practical Nursing	3	3000	70
International Physiology	2	6500	240
Journal of Animal Feed Science and Technology	2	4000	280
Journal of Cardiovascular Medicine and Surgery	2	9000	238
Journal of Orthopaedic Education	2	4500	190
Journal of Pharmaceutical and Medicinal Chemistry	2	15000	350
Journal of Psychiatric Nursing	3	3000	70
Journal of Social Welfare and Management	4	7000	276
Meat Science International	2	5000	500
Microbiology and Related Research	2	6000	150
New Indian Journal of Surgery	4	7000	360
Ophthalmology and Allied Sciences	2	5000	150
Otolaryngology International	2	4500	300
Pediatric Education and Research	4	6500	150
Physiotherapy and Occupational Therapy Journal	4	8000	360
Urology, Nephrology and Andrology International	2	6500	350

Terms of Supply:

1. Advance payment required by Demand Draft payable to Red Flower Publication Pvt. Ltd. payable at Delhi.
2. Cancellation not allowed except for duplicate payment.
3. Agents allowed 10% discount.
4. Claim must be made within six months from issue date.

Order from

Red Flower Publication Pvt. Ltd., 48/41-42, DSIDC, Pocket-II, Mayur Vihar Phase-I, Delhi - 110 091 (India), Tel: 91-11-22754205, 45796900, Fax: 91-11-22754205. E-mail: redflowerppl@vsnl.net, redflowerppl@gmail.com, Website: www.rfppl.co.in

INTERNATIONAL PHYSIOLOGY

CONTENT

**VOLUME 3 NUMBER 2
JULY- DECEMBER 2015**

Original Research Papers

Relationship between Basal Metabolic Rate and Body Fat Percentage in Obese and Non-obese Females: A Comparative Study	85
Nagashree V., Nausheen Rumana, Revathi Devi M. L.	
The Involvement of ANS in Neck Shoulder Pain and Low Back Pain	91
Aaditya Katyal, Rajesh K. Sharma, Abhay Elhence	
Effect of Pranava Yoga on Cardiac Output and Systemic Peripheral Resistance	99
Sharad Jain	
Relationship between Big Five Personality Traits and Total Peripheral Lymphocyte Count (TPLC)	103
Sunita Nighute, Sadavarte Sahebrao	

Original Research Articles

Circadian Oscillations of Oxidative Stress Affects Nociception Sensitivity and Opioid Induced Antinociception: A Hypothetical Preview	109
Amit Kant Singh, Brig. T. Prabhakar, Santosh Kumar Sant, Narsingh Verma, Ramji Singh, Arun Goel	
Memory and Physiological Basis of Gender Variations	115
Preeti Gupta, Amit Kant Singh, Santosh Kumar Sant, Kirti Jaiswal, Anamika Singh, ANG Hyder, Nand Kishor Gupta, Sunita Mittal, Neeru Garg, Satendri Devi, Nidhi Jain	

Review Articles

Insulin Resistance in Type 2 Diabetes Mellitus & Scope of Triglyceride/ High Density Lipoprotein-C Ratio as a Marker of Insulin Resistance in Patients with Metabolic Syndrome	117
Zingade	

Short Communication

New Teaching Methodologies	121
Harkirat Kaur	
Molecular Basis of Diabetic Peripheral Neuropathy: Role of Oxidative Stress	123
Nisha Rani Jamwal, Senthil P Kumar	
Guidelines for Authors	125
Subject Index	130
Author Index	131

International Physiology

Library Recommendation Form

If you would like to recommend this journal to your library, simply complete the form below and return it to us. Please type or print the information clearly. We will forward a sample copy to your library, along with this recommendation card.

Please send a sample copy to:

Name of Librarian

Library

Address of Library

Recommended by:

Your Name/ Title

Department

Address

Dear Librarian,

I would like to recommend that your library subscribe to the **International Physiology**. I believe the major future uses of the journal for your library would provide:

1. useful information for members of my specialty.
2. an excellent research aid.
3. an invaluable student resource.

I have a personal subscription and understand and appreciate the value an institutional subscription would mean to our staff.

Should the journal you're reading right now be a part of your University or institution's library? To have a free sample sent to your librarian, simply fill out and mail this today!

Stock Manager

Red Flower Publication Pvt. Ltd.

48/41-42, DSIDC, Pocket-II, Mayur Vihar, Phase-I

Delhi - 110 091 (India)

Tel: 91-11-22754205, 45796900, Fax: 91-11-22754205

E-mail: redflowerppl@gmail.com, redflowerppl@vsnl.net

Website: www.rfppl.co.in

Relationship between Basal Metabolic Rate and Body Fat Percentage in Obese and Non-obese Females: A Comparative Study

Nagashree V.¹, Nausheen Rumana², Revathi Devi M. L.³

Abstract

Background: Obesity and its associated disorders are a growing epidemic across the world. Many genetic, physiological, and behavioral factors play a role in the etiology of obesity which causes disturbance in energy equilibrium. Balance should be maintained between energy intake and its expenditure. This can be assessed by an individual's basal metabolic rate (BMR). **Aims & Objectives:** To measure and correlate variations in basal metabolic rate in obese and non obese individuals. **Materials and Method:** 140 female subjects were grouped into 70 obese and 70 non obese categories. Anthropometric measurements like height, weight, BMI and waist circumference were recorded. Body fat percentage and BMR were measured using Omron HBF 306 body fat analyzer. **Results and Conclusions:** This study is done by random sampling with power > 80% and Level of significance being 5%. The present study shows statistically significant higher values of waist circumference, BMI and body fat percentage ($p < 0.000$) in obese. Basal metabolic rate (BMR) shows statistically significant higher values ($p < 0.000$) in obese. BMR showed positive correlation with body fat percentage and Body Mass Index (BMI).

This shows that the increased adiposity contributes for increased respiring cells thus resulting increased metabolism, resulting in higher BMR values in obese.

Keywords: Obesity; Body Fat Percentage; BMR; BMI; Lipid Profile; Fasting Blood Glucose.

Introduction

Obesity, a chronic non-communicable disorder is associated with abnormal, excessive body fat accumulation. Approximately 1.2 billion people in the world are overweight and at least 500 million of them are obese [1]. According to the World Health Organization, obesity is one of the 10 most preventable health risks. WHO estimates that approximately 58% of diabetes mellitus, 21% of ischemic heart disease, and 8-42% of certain cancers can be attributed to BMI above $21\text{kg}/\text{m}^2$ [2]. Moreover, there is greater realization that both the amount of body fat and its distribution are important in determining health risks associated with overweight conditions. In many Asian populations, abdominal or central obesity (measured by waist circumference or the ratio of waist to hip circumference) is found to

be more common than obesity defined by BMI [3]. A study in India observed that about 20% of adults who were not overweight or obese as per the BMI definition still had abdominal obesity [4].

Obesity is related to an imbalance between energy intake and expenditure. However, more recent research has suggested that genetic, physiological, and behavioral factors also play a significant role in the etiology of obesity. Body composition, i.e., the proportion of body fat and active protoplasmic tissue, has a great influence upon the basal metabolism. Basal metabolism of an individual is a function of the total mass of active protoplasmic tissue [5].

This study was designed to examine the associations of several measures of adiposity

like BMI and % BF and body fat distribution (waist circumference) with basal metabolic rate.

Author's Affiliations: ¹MD Physiology, ²Associate professor, ³ Professor and Head, Department of Physiology, Mysore Medical College and Research Institute, Irwin Road, Mysore- 570001 Karnataka.

Corresponding Author: Nagashree V., Department of Physiology, Mysore Medical College and Research Institute, Irwin Road, Mysore- 570001 Karnataka.

E-mail: nagashreev86@gmail.com

Materials and Methods

In present study a total number of 140 female subjects were considered and grouped into 2 groups of 70 obese and 70 non obese medical and paramedical students of Mysore Medical College and Research Institute belonging to age group of 18-25 years. Females with BMI more than 25 are grouped as obese (Classification of weight by BMI in Asian and Euripides adults by WHO) and also with Body fat percentage more than 39% are considered as obese [6].

Subjects with history of diabetes mellitus, hypertension, cardiovascular diseases, drug intake, active sports training, yoga, aerobic exercise, and other metabolic disorders were excluded from the study. Study was conducted after obtaining ethical clearance from the ethical committee of MMC&RI. Informed consent was taken from all the participating subjects

Anthropometric measurements such as Height in meters, Weight in kilograms, Waist circumference in centimetres, Body Mass Index were recorded. Body fat percentage and Basal Metabolic Rate was recorded using bioelectric impedance body fat

analyzer Omron Model HBF 306 which gives values of body fat % and BMR after feeding input of height, weight, age and gender details. For measurement of BMR, subjects were instructed to undergo 12 hours overnight fast and to reach the study centre without undue exertion. Subjects were then allowed to relax for half an hour before measurement. Recording was taken within the first ten days of menstrual cycle (the first day of menstruation taken as day 1) of the subjects. All measurements were carried out between 6am-8.30am, in a room, with temperature maintained between 23°C-26°C.

Results

This is a comparative study done by random sampling with power > 80% and Level of significance being 5%. Statistical analysis is done using SPSS software.

The distribution of age is not showing any statistically significant values between case and control. Maximum number of subjects belong to age group of 20 years (27.1% obese and 34.7% non-obese).

Graph 1: Age wise distribution of controls and obese cases

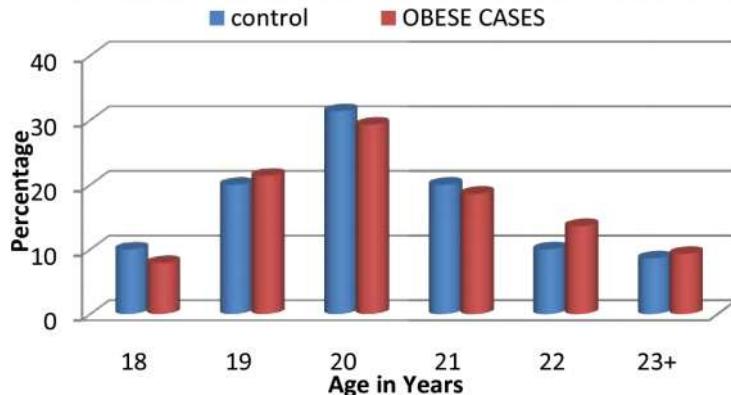
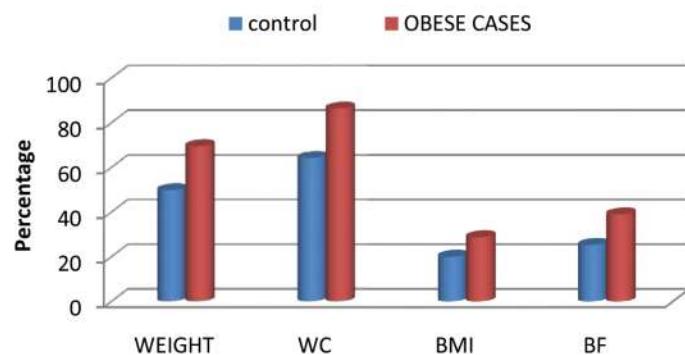



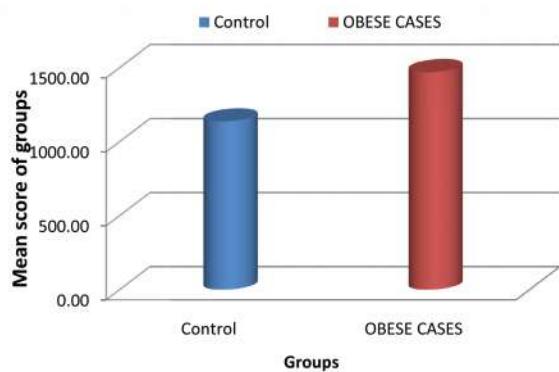
Table 1: Anthropometric measurements

Variables	Mean ± SD of Case	Mean ± SD of Control	P- Value
Height in cms	155.78 ± 5.38	157.41 ± 6.60	0.112
Weight in kg	69.58 ± 6.17	49.88 ± 6.08	0.000*
Waist circumference in cms	86.41 ± 9.47	64.28 ± 4.05	0.000*
BMI	29.77 ± 2.27	20.05 ± 1.62	0.000*
Body Fat %	38.99 ± 2.66	25.29 ± 2.74	0.000*

*p-value (<0.05): considered as significant

Graph 2: Anthropometric measurements

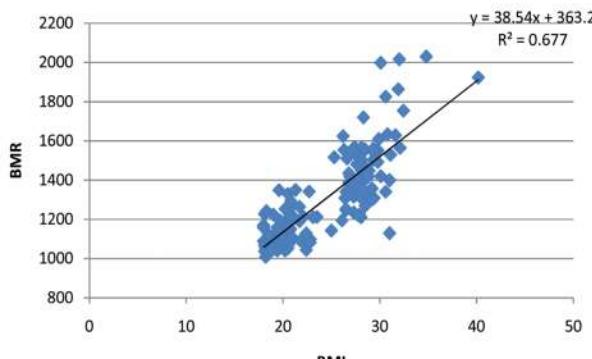
The above table and graph shows statistically significant higher values of weight, waist circumference, BMI, Body fat % in obese (p- value = 0.000) . Height is not showing any significant variation (p-value = 0.115).


Table 2: Basal Metabolic Rate

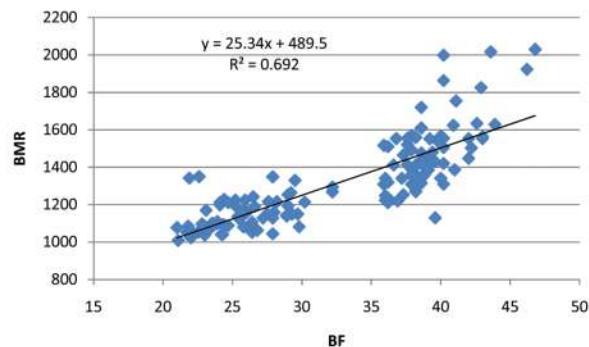
Variables	case	control	p-value
Basal Metabolic Rate	1470.74±195.08	1137.42 ± 85.43	0.000*

*p-value (<0.05): considered as significant

The above table shows statistically significant higher values of BMR in Obese (p- value = 0.000)


Graph 3: Comparison of basal metabolic rate between control and obese cases

Basal metabolic rate is higher in obese group compared to control group which is statistically highly significant with p value of 0.000.


Correlations of BMR with BMI and Body Fat %

Graph 4: BMR with BMI

The above graph shows linear positive correlation between BMI and BMR

Graph 5: BMR with Body Fat %

The above graph shows linear positive correlation between BMR and Body fat per cent.

Discussion

Obesity is a major public health problem resulting in serious social, physical and psychological damages. The prevalence of obesity and overweight among adult and children is increasing in developed and developing countries including India.

During earlier studies done during 20th century obesity prevalence was higher in middle aged individuals, in contrast to present scenario where it is showing increasing trends in children and adolescents as a result of their genetic and environmental influences. Increasing prevalence of obesity in younger age groups is contributing its major share for global epidemic of obesity [7, 8, 9]. Several studies done in different parts of the world

have shown high prevalence of obesity in females. Girls with early menarche (age \leq 11 years) are twice as likely to become obese adults as are late ones (age \geq 14 years) [10]. The probable reasons for higher incidence of obesity in females might be due to hormonal influences and intensity of physical activities. In females, oestrogen causes increased deposition of fat in the subcutaneous tissues. This leads to particular pattern of fat distribution resulting in increased fat mass in them compared to males [11].

Basal metabolic rate (BMR) is the rate of energy expenditure by humans and other animals at rest, and is measured in kJ per hour per kg body mass. The results of the present study which shows significantly high values of BMR in obese, are in accordance with a study done on prediction of the basal metabolic rate in obese by Robert S Bernstein, John C Thornton, Mei Uih Yang, et al which showed significant correlation of basal metabolic rate with weight and fat mass in both sexes and also they reported that the adipose tissue has a high basal metabolic activity compared to other cells [12]. Another study done by Bray et al [13] also found a much greater effect of body fat on BMR than Fat Free Mass (FFM).

In contrast, studies by Ljunggren et al [14] and by Halliday et al [15] have concluded that FFM and not the body fat, is the sole predictor of BMR in obese individuals. A study done by James et al [16] found that body fat had no significant influence on BMR.

Age factor greatly influences basal metabolism. Studies done by Du Bois, on Basal Energy Requirement in June, 1916 shows that basal metabolic rate (BMR) varies greatly with age [17]. It is highest during growing period till 18- 20 years of age and till forty years shows little change and falls thereafter. This increased BMR in younger age group may be due to increased active protoplasmic tissue and greater cellular activity. As age advances this is replaced by atrophic protoplasmic tissue leading to decreased metabolism [5]. As this study group consists of subjects belonging to age group of 18-25 years, this may contribute for increased BMR values in both the groups. But, it is significantly higher in obese group because, body fat beyond its contribution to FFM also has a high basal metabolic activity compared to other cells. Studies have been done to assess the separate effects of fat cell size and number because it was possible that they would have separate influences on metabolic rate. Enlarged human fat cells in vitro have increased rates of lipolysis and basal glucose utilization. In addition, their increased surface area might require increased energy utilization through Na-K ATPase in order to

maintain internal electrolyte balance. Regardless of cell size, the ratio of cell membrane surface area to cytoplasmic volume is higher in adipocytes than other cells, because most of the cell volume is occupied by the lipid. Similarly increase in fat cell number increases the number of actively respiring cells which utilises energy in the form of ATPs which are obtained as bi products of cellular metabolism and contributes for thermogenesis [6, 12, 13]. Hence there will be increased basal metabolic rate in obesity with increased adiposity which may be either in the form of increased adipocyte size or increased number or both. Adipocyte has generally been regarded as a storage depot for fat but it is also an endocrine cell that releases numerous molecules in a regulated fashion. These include the energy balance-regulating hormone leptin [18]. As obese individuals have increased adipose depots, there will be excessive leptin production and release which increases basal metabolic rate. This is in accordance to a study done by Ruffin M and Nicolaïdis S, who inferred that the adipocytokine leptin is involved in the regulation of BMR by conducting several experiments on rats with leptin infusions which led to increase in their BMR [19].

Conclusion

The present study shows significant higher values of BMR in obese females than non obese group. This is attributed by increased respiring tissue in obese individuals compared to lean ones. Maintaining optimum energy balance in these obese individuals in the form of increased physical activity which burns extra calories and increases energy expenditure and dietary modification by increased intake of low calorie, highly nutritious food helps in reducing storage of extra calories as fat. All these measures help in preventing development and progression of obesity associated complications. Thus, assessment of BMR in obese individuals plays a key role in understanding their energy dynamics and to bring modifications in their lifestyles and lead them towards healthy life.

References

1. Finucane MM, Stevens GA, Cowan MJ, et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological

studies with 960 country-years and 9.1 million participants. *Lancet*. 2011; 377: 557-67.

2. World Health Organization (WHO) 2002. The World Health Report 2002: Reducing Risks, Promoting Healthy Life. Geneva: World Health Organization.
3. McKeigue, P.M., Shah, B., & Marmot, M.G. Relation of central obesity and insulin resistance with high diabetes prevalence and cardiovascular risk in South Asians. *Lancet*, 1991; 337 (8738): 382-386.
4. Gopalan, C. (1998). Obesity in the Indian urban middle class'. *Bulletin of the Nutrition Foundation of India*, 1998; 19(1): 1-5.
5. Benedict Francis G. Factors affecting Basal Metabolism. *Journal of Biological Chemistry*. 1915; 20: 263-299.
6. Gallagher et al. *Am J Clin Nut* 2000; 72: 694-701.
7. Burstein M, Scholnic HR, Morfin R. *J Lipid Res*, 1970.
8. Kalra S, Unnikrishnan AG. Obesity in India: the weight of the nation. *J Med Nutr Nutraceut*, 2012; 1: 37-41.
9. Strauss RS. Childhood obesity. *Pediatr Clin North Am*. 2002 Feb; 49(1): 175-201.
10. Garn SM, LaVelle M, Rosenberg KR, Hawthorne VM. Maturational timing as a factor in female fatness and obesity. *Am J ClinNutr*. 1986 Jun; 43(6): 879-83.
11. Guyton and Hall. *Textbook of medical physiology*. 11th Edition; p: 1005 and 1018.
12. Robert S Bernstein, John C Thornton, Mei Uih Yang, et al Prediction of the resting metabolic rate in obese patients, *Am J Clin Nuir* 1983; 37: 595-602.
13. Bray G, Schwartz M, Rozin R, Listen J. Relationships between oxygen consumption and body composition of obese patients. *Metabolism* 1970; 19: 4 18- 29.
14. Ljunggren H, Ikkos D, Luft R. Basal metabolism in women with obesity and anorexia nervosa. *Br J Nutr* 1961; 15: 21-34.
15. Halhiday D, Hesp R, Stalley SF, Warwick P, Altman DG, Garrow iS. Resting metabolic rate, weight, surface area and body composition in obese women. *Int J Obesity* 1979; 3: 1-6.
16. James WPT, Bailes J, Davies HL, Dauncey MJ. Elevated metabolic rates in obesity. *Lancet* 1978; 1: 1122-5.
17. Du Bois, E. F.: *Basal Energy Requirement of Man* *Jour. Wash. Acad. Sc*, June 1916; 6: 347-357.
18. Harrison's principle of Internal Medicine, Sixteenth edition, 2005; p 423-424.
19. Ruffin M and Nicolaidis S. Intracerebro-ventricular injection of murine leptin enhances the postprandial metabolic rate in the rat. *Brain Res* 2000; 874: 30-36.

Red Flower Publication Pvt. Ltd.

Presents its Book Publications for sale

1. Breast Cancer: Biology, Prevention and Treatment	Rs.395/\$100
2. Child Intelligence	Rs.150/\$50
3. Pediatric Companion	Rs.250/\$50

Order from

Red Flower Publication Pvt. Ltd.
48/41-42, DSIDC, Pocket-II, Mayur Vihar, Phase-I
Delhi - 110 091 (India)
Tel: 91-11-22754205, 45796900, Fax: 91-11-22754205
E-mail: redflowerppl@gmail.org, redflowerppl@vsnl.net
Website: www.rfppl.co.in

The Involvement of ANS in Neck Shoulder Pain and Low Back Pain

Aaditya Katyal¹, Rajesh K. Sharma², Abhay Elhence³

Abstract

A large number of people suffer from musculoskeletal disorders (MSDs), including regional pain in the neck-shoulder region and lower back, or more widespread pain, e.g., fibromyalgia [1]. Chronic MSDs are characterized by a localized, regional or widespread sensation of pain affecting muscles, joints, tendons or ligaments, accompanied by symptoms such as fatigue, tenderness at palpation and muscle stiffness. An autonomic imbalance may also reflect altered regulation of the entire stress response system and may have detrimental consequences in terms of pathological conditions as mentioned above [6].

In particular, this study paid attention to the involvement of the ANS in the initiation and maintenance of chronic muscle pain.

We had incorporated patients to study the Autonomic function imbalance in the Neck Shoulder Pain and Low Back Pain patients. We intended to include 15 patients in both the test groups and 15 normal subjects (Age and Sex matched) for comparative analysis. A detailed clinical history was taken from all the patients and subjects to exclude the presence of diabetes mellitus, hypertension, alcohol dependence and other diseases that can affect autonomic functions. Both the limbs of ANS were studied using standard battery of autonomic function tests:

- Deep Breathing Test • Lying to Standing Test • Valsalva Maneuver • Hand Grip Test • Cold Pressor Test

The results were recorded and carefully evaluated. It was found that Sympathetic overactivity in low back pain patients can be the cause of this autonomic imbalance or it may be a predictor of prognostic evaluation in such patients.

We conclude that sympathetic overactivity plays a major role in the patients suffering from low back pain whereas the role of parasympathetic reactivity from the presence study is not clear.

The best way to arrive at investigative & prognostic evaluation of patients suffering from low back pain would be CPT and HGT as a standard marker of sympathetic reactivity.

Keywords: Musculoskeletal Disorders; Fibromyalgia; Palpation; Tendons; Ligaments.

Introduction

A large number of people suffer from musculoskeletal disorders (MSDs), including regional pain in the neck-shoulder region and lower back, or more widespread pain, e.g., fibromyalgia [1]. Chronic MSDs are characterized by a localized, regional or widespread sensation of pain affecting muscles, joints, tendons or ligaments, accompanied

by symptoms such as fatigue, tenderness at palpation and muscle stiffness. Diagnoses are often based on self-reported symptoms, as adequate objective markers are difficult to obtain at an individual level [2].

The etiology of MSDs is multifactorial, involving the interactions of physiological, psychological, behavioral and external mechanical factors. Physical (e.g., mechanical) or psychological stressors can

Author's Affiliations: ¹Student, MBBS 2013, ²Additional Professor, Dept. of Physiology, ³Associate Professor, Dept. of Orthopaedics, AIIMS Jodhpur.

Corresponding Author: **Rajesh K. Sharma**, Additional Professor, Department of Physiology, AIIMS, Basni Industrial Area, Phase-2, Jodhpur, Rajasthan 342005
E-mail: rajjufa@yahoo.com, sharmark@aiimsjodhpur.edu.in

facilitate chronic pain by their effects on physiological stress systems [3].

At the central level there is a strong connection between autonomic activation and nociception [4]. The ANS does not function independently, but rather constitutes an important part of a multi-stress system involving sophisticated co-activation and interaction between different homeostatic processes, and the immune and endocrine systems, including the Hypothalamic-Pituitary-Adrenal Axis and the Sympatho-Adrenomedullary axis [5]. In this sense, an autonomic imbalance may also reflect altered regulation of the entire stress response system & may have detrimental consequences in terms of pathological conditions [6]. *In particular, this study paid attention to the involvement of the ANS in the initiation and maintenance of chronic muscle pain.*

A predominance of sympathetic activity, either due reduced parasympathetic tone or excessive sympathetic activation, reduces the dynamic flexibility of the ANS and results in poor adaptation to altered internal or external demands. Taken together, it is possible that chronic muscle pain could be maintained and intensified due to pain-induced alterations in ANS regulation, particularly through the sympathetic branch of the ANS. The other objective of this study was to explore this realm.

Furthering our understanding of core mechanisms could improve prevention, diagnostics and treatment of chronic MSDs. Both the limbs of the autonomic nervous system are important in maintaining and regulating visceral functions directly and other body systems indirectly.

We had hypothesized that since nociceptive pathways are also affected by autonomic control, the study was planned to evaluate the cardiovascular autonomic responses in patients suffering from low back pain and neck shoulder pain.

Objectives

1. Involvement of the ANS in the initiation and maintenance of chronic muscle pain in MSDs like Neck-Shoulder Pain & Low Back Pain.

Table 1: Amplifier setting for autonomic function tests

Signal	Sensitivity	½ Amplitude high frequency cut	Time constant	50 Hz filter
EKG	0.5mV/cm	35 Hz	0.1 sec	off

Lying to standing test (LST)

The subjects will be asked to stand up from supine position in 2 to 3 seconds. They will stand steady for 2 minutes. The EKG and respiration will be recorded

2. To verify the dominant role of Sympathetic branch of ANS in sustenance and intensification of pain.

Methodology

We had incorporated patients to study the Autonomic function imbalance in the Neck Shoulder Pain and Low Back Pain patients.

We intended to include 15 patients in both the test groups and 15 normal subjects (Age and Sex matched) for comparative analysis.

Procedure of Recording Parameters

Clinical history

A detailed clinical history will be taken from all the patients and subjects to exclude the presence of diabetes mellitus, hypertension, alcohol dependence and other diseases that can affect autonomic functions. The vital signs of subjects, such as pulse and blood pressure will be checked. Subjects will be asked about the presence of any autonomic symptoms, like excessive sweating, loose motions, constipation, impotence, syncopal attacks and palpitation.

Prior instructions will be given before recording the physiological parameters. They will be:

- No use of medicine(s) 24 hrs before recording.
- No consumption of tea, coffee or any other caffeinated beverage at least two hours before the testing.

Pre-testing procedure

The subjects will be given proper instructions about the tests and recording procedure before starting the actual tests. The subjects will be made comfortable. Temperature of the laboratory will be comfortable ($22 \pm 1^\circ\text{C}$) and the laboratory will be kept free of noise from any kind as far as possible. EKG electrodes will be applied for standard limb leads. The jack pins of electrodes will be connected to the connection board that will be connecting to amplifier.

continuously. Blood pressure measurement will be done serially at 0.5th, 1st and 2nd minutes of standing. Then the patients will be asked to sit down comfortable. Rest of the tests will be performed in sitting position.

Deep breathing test (DBT)

The subjects will be given continuous signal in the form of raising the hand continuously up and then bringing the hand continuously down corresponding to inhalation and exhalation to their full capacity without breaking the breath during exhalation or inhalation. The frequency of the cycle will be 6 breaths per minutes for 1 minute. Phases of respiration will be marked manually on the chart paper. The average of 6 shortest inspiratory and 6 longest expiratory R-R intervals from EKG will be taken into account for the calculation of E:I ratio and heart rate difference between inspiration and expiration. The E:I ratio will be calculated by dividing the average of maximum expiratory R-R intervals by the average of minimum inspiratory R-R intervals.

Valsalva maneuver (VM)

In this test the subjects will be asked to raise the intra-thoracic pressure to 40mm of Hg through a mouthpiece connected to a mercury manometer and maintain at this level for 15 seconds. The subjects will be instructed prior to testing not to take deep breaths before and after VM. After 15 seconds as the mouthpiece will be removed the subjects will be instructed to sit quietly. The time event will be marked on the chart paper by a time marker. Artifacts arising from the movements of the limbs in EKG will be avoided by instructing the subjects to not to move their limbs. VR and latencies will be calculated from R-R interval changes in EKG.

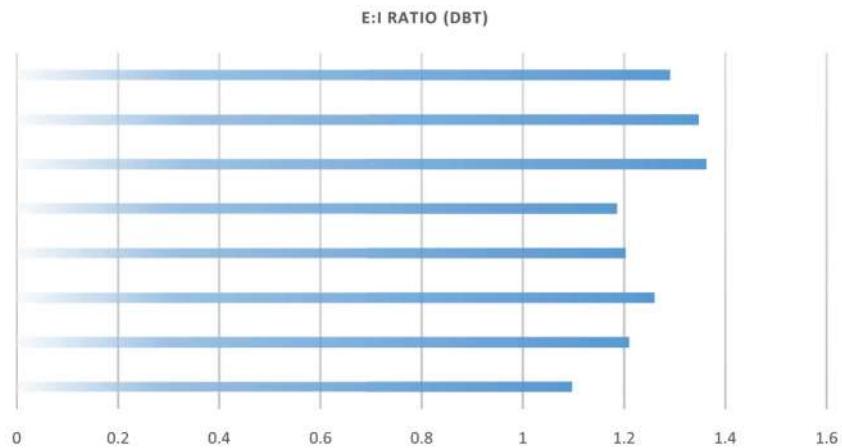
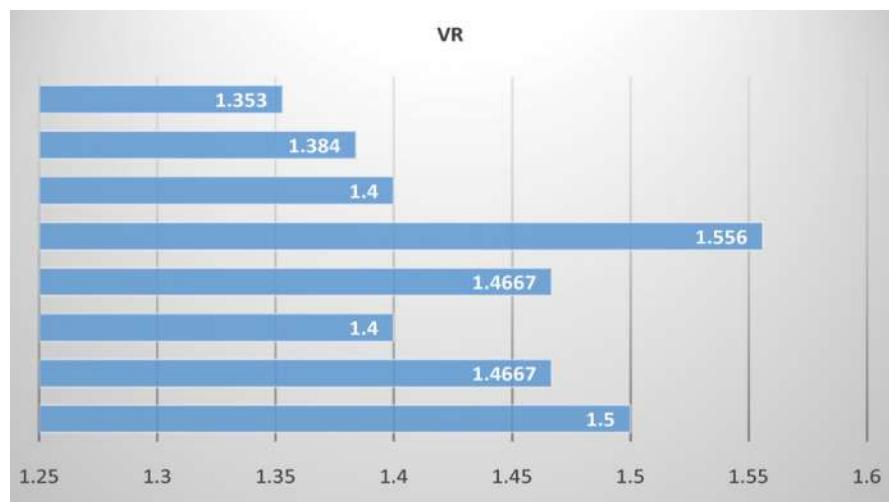
Results

Sr. No.	Age	Sex	PSNS						SNS	
			DBT		VM	LST	LST	HGT		CPT
			E:I Ratio	δ HR				δ SBP	Rise in DBP	
1	52	F	1.097	22	1.5	1.058	-6	12	2	
2	36	F	1.21	16	1.4667	1.0625	-8	16	6	
3	43	F	1.26	19	1.4	1.461	4	18	6	
4	52	F	1.203	15	1.4667	1.105	-6	42	-14	
5	36	F	1.186	3	1.556	1.02	-4	18	-2	
6	29	M	1.363	7	1.4	1.217	14	8	-2	
7	37	F	1.348	19	1.384	1.0625	4	14	-4	
8	28	M	1.291	5	1.353	1.277	-2	38	40	

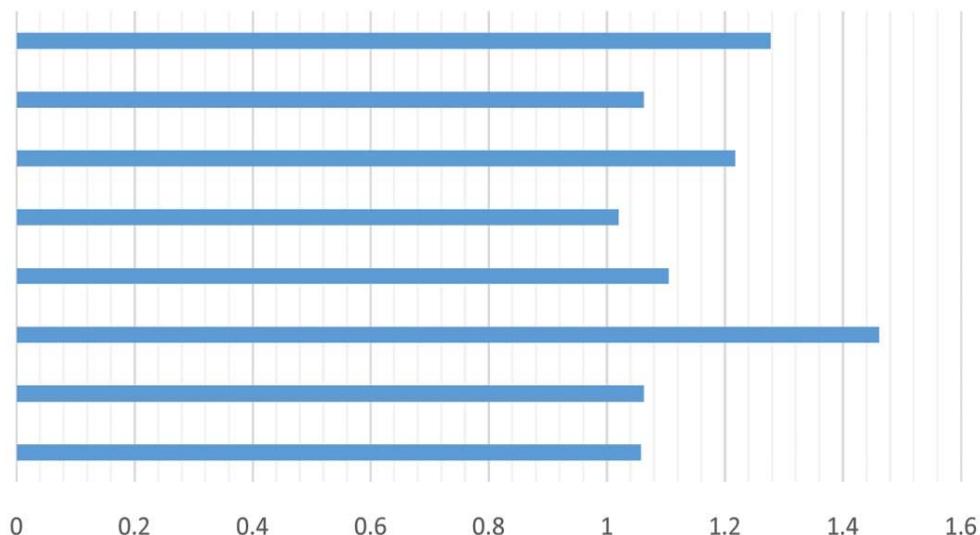
Both the limbs of ANS were studied using standard battery of autonomic function tests. The results are tabulated & graphically represented as follows.

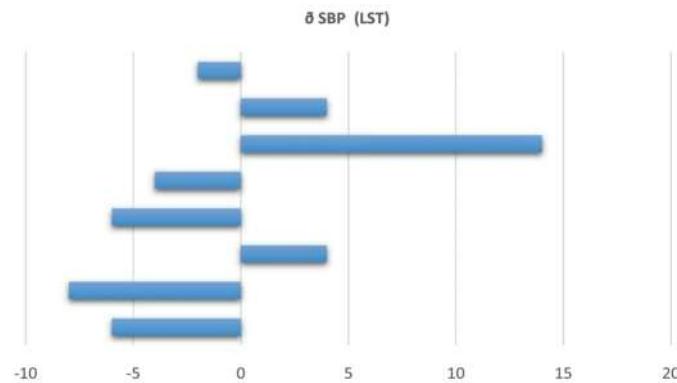
Handgrip test (HGT)

Just before the test, baseline BP will be recorded in sitting posture. Then the subjects will be instructed to press the dynamometer with their dominant hands with maximum possible force. This gave the value of maximum voluntary contraction (MVC). The 30% of the MVC will be calculated and the subjects will be instructed to press the dynamometer continuously at 30% of their MVC for 4 minutes by their dominant hand. During the isometric contraction, BP will be recorded at 1st, 2nd, 4th and 6th minutes.

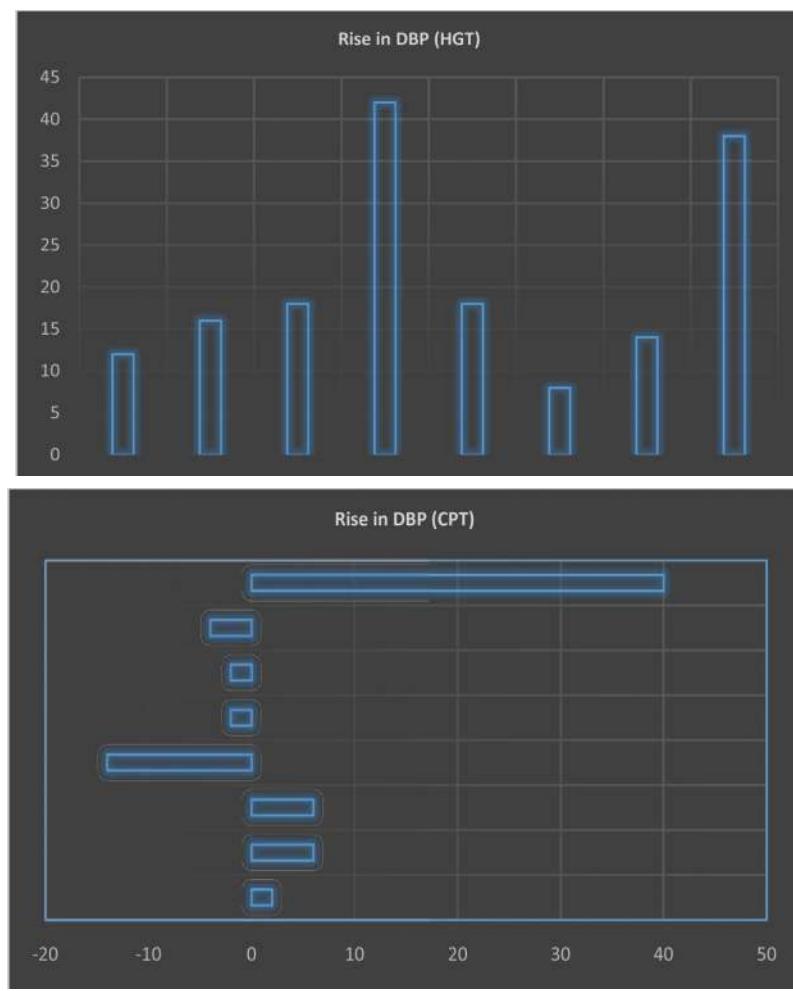


The EKG will be recorded continuously on Polyrite.

Cold presser test (CPT)

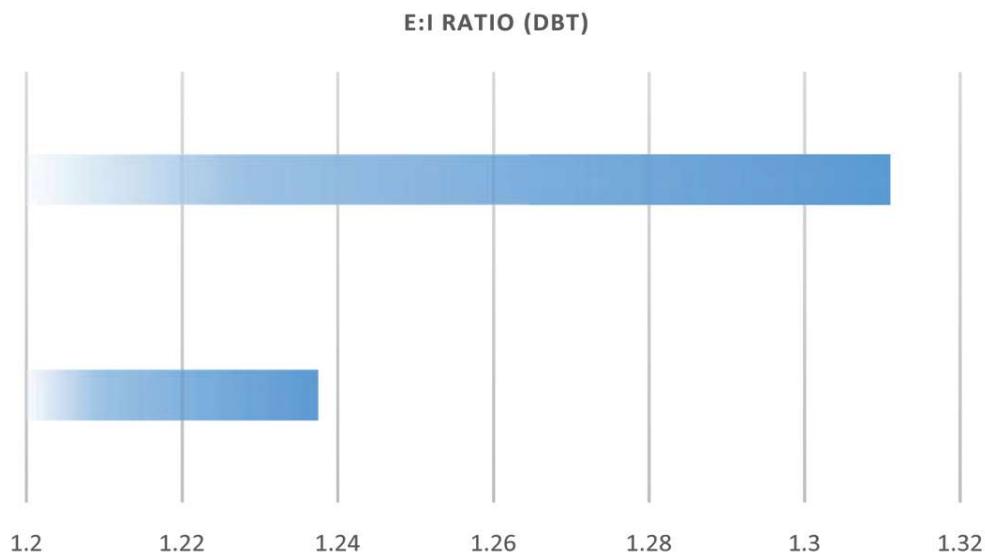
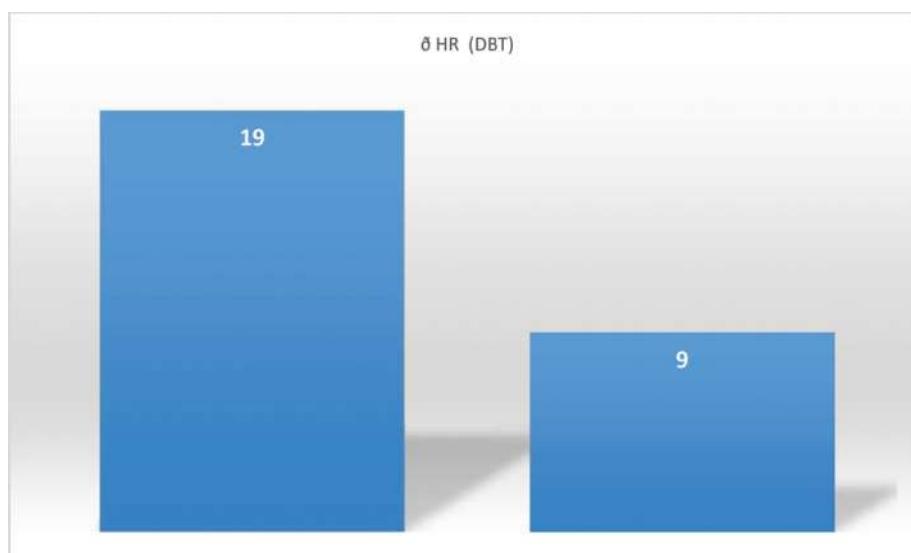
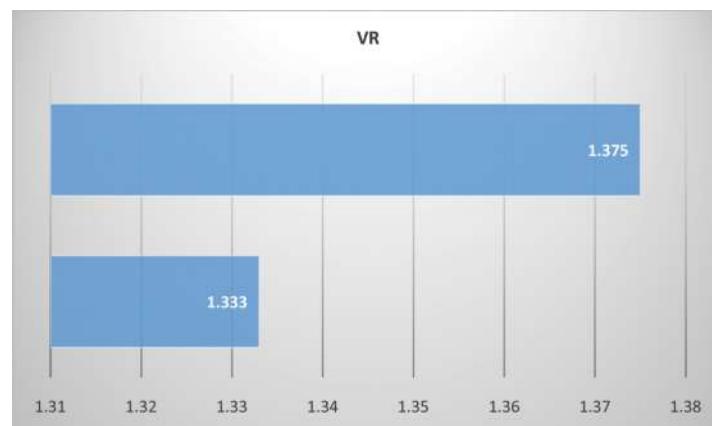

Prior to the test, the baseline blood pressure will be recorded. The subjects will be asked to immerse their hand up to the wrist in 10°C cold water for 1 minute (Low, 1984). BP will be measured at 1st and 2.5th minute of hand immersion. The EKG will be continuously recorded on the Polyrite.


Statistical Analysis

The data was supposed to be statistically analyzed by using unpaired t-Test between the two test groups and Anova among all the three groups. But because of a very few number of neck-shoulder pain patients, the results would have been skewed and statistically non-relevant. Since, it was an observational study; we feel that whatever result we got; though not statistically analyzed because of the paucity of data in one particular group, we could get a trend favoring our hypothesis.


Graph 1: Autonomic Reactivity as measured by HR & BP changes in low back pain patients.**Graph 2:** Autonomic Reactivity as measured by HR & BP changes in low back pain patients

30:15 Ratio (LST)

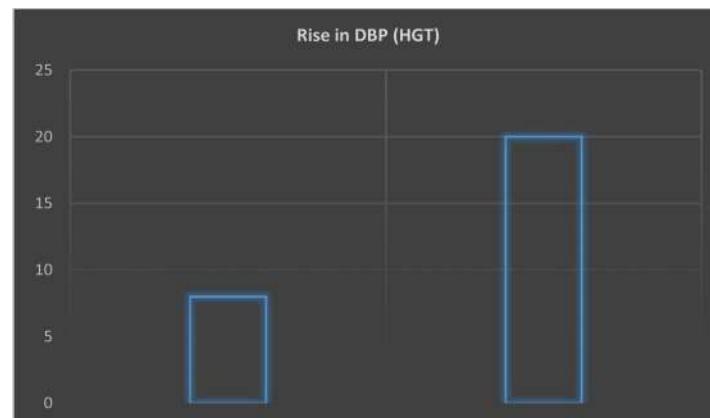
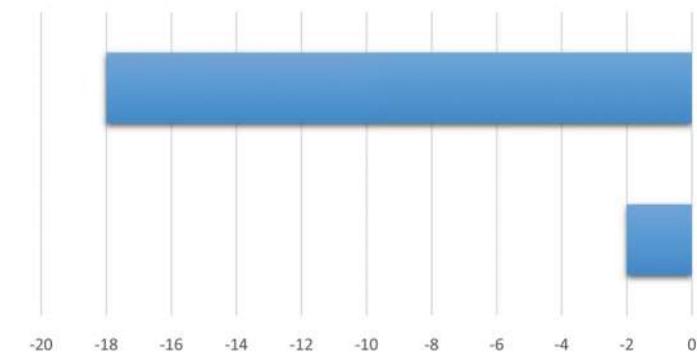
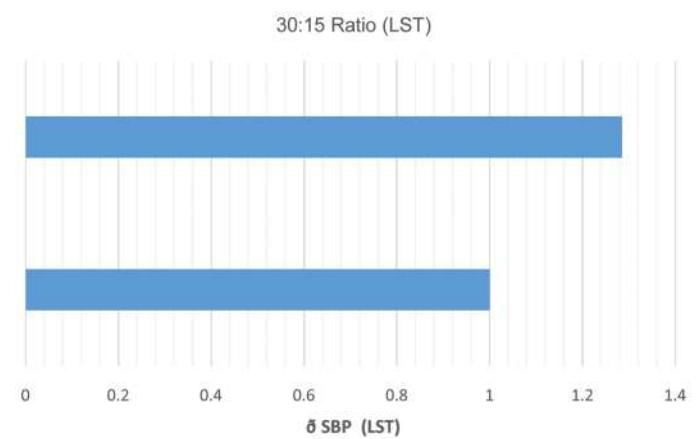
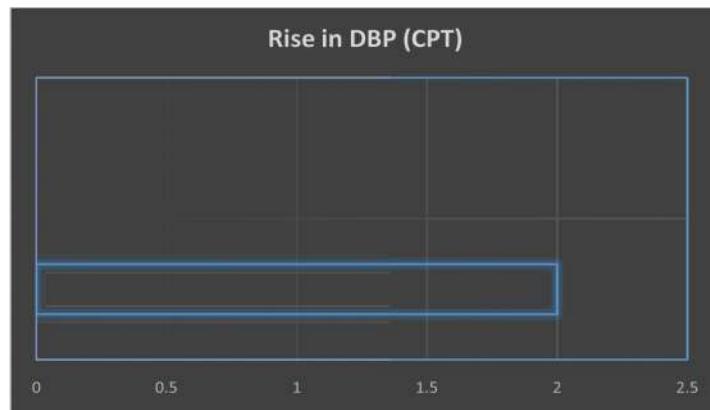




Graph 3: Autonomic Reactivity as measured by HR & BP changes in low back pain patients

Table 2: Autonomic Reactivity as measured by HR & BP changes in low back pain patients.

Sr. No.	Age	Sex	PSNS					SNS		
			DBP		VM	LST	LST	HGT	CPT	
			E:I Ratio	δ HR			30:15 Ratio	δ SBP	Rise in DBP	Rise in DBP
1	38	F	1.2375	19	1.333		1	-2	8	2
2	50	F	1.311	9	1.375		1.285	-18	20	0

Autonomic Reactivity as measured by HR & BP changes in neck shoulder pain patients**Autonomic Reactivity as measured by HR & BP changes in neck shoulder pain patients****Autonomic Reactivity as measured by HR & BP changes in neck shoulder pain patients**

Autonomic Reactivity as measured by HR & BP changes in neck shoulder pain patients**Autonomic Reactivity as measured by HR & BP changes in neck shoulder pain patients**

Discussion

To start with the study we had two primary objectives: One was to evaluate the autonomic imbalance, if any; in MSDs. The second was to look for any difference in autonomic control in low back pain & neck shoulder pain patients.

The prevalence of low back pain patients especially in older age is far more compared to neck shoulder pain patients. We couldn't analyze many neck shoulder pain patients because the study was designed to have a comparison between the two groups which are age & sex matched. The general trend of our study indicates that the parasympathetic reactivity was within normal range as compared with the normative data. But there was a significant trend of reduction in the rise in DBP in CPT & a trend of decreased SBP in LST. This trend indicates that Sympathetic overactivity in low back pain patients can be the cause of this autonomic imbalance or it may be a predictor of prognostic evaluation in such patients. We realize that the discrepancy between parasympathetic and sympathetic control of these patients were due to lack of normative to compare. Autonomic latency is a key factor in baroreflex mechanism as well as autonomic responses. We infer that such studies should be done on a population basis to concur on a conclusive decision.

Conclusion

We conclude that sympathetic overactivity plays a major role in the patients suffering from low back pain whereas the role of parasympathetic reactivity from the presence study is not clear. The best way to arrive at investigative & prognostic evaluation of patients suffering from low back pain would be CPT & HGT as a standard marker of sympathetic reactivity.

We intended to find out the correlation between the back pain patients and the autonomic imbalance which can manifest in terms of autonomic neuropathy, especially cardiovascular autonomic disturbance.

With a limited no. of patients at our hand, we can predict that autonomic evaluation of MSDs can be a useful tool to assess, evaluate & prognosticate them.

References

1. Lindell et al. 2000; Côté et al. 2009.
2. Larsson et al. 2007.
3. Kalezic et al. 2003.
4. Jänig 2003; Schlereth and Birklein 2008.
5. Ulrich-Lai and Herman 2009.
6. Thayer et al. 2010.

Effect of Pranava Yoga on Cardiac Output and Systemic Peripheral Resistance

Sharad Jain

Abstract

Pranava yoga is one of the most popular pranayama yogic exercises. The present study was done to find out direct effect of Pranava yoga on cardiac output and peripheral resistance by using Impedance Cardiovasograph (Nivomon, L&T Medical's). One hundred asymptomatic healthy male subjects, aged 17-23 years, participated voluntarily in the present study. Cardiac output, systemic peripheral resistance and other cardiovascular parameters were measured before and after Pranava yoga of 15 minutes. Statistically significant decrement was observed in all cardiovascular parameters after Pranava yoga but decrement was more pronounced in systolic blood pressure (SBP), heart rate (HR), cardiac output (CO), stroke volume (SV), cardiac index (CI), stroke volume Index (SI) in comparison to decrement in diastolic blood pressure (DBP), Systemic Peripheral Resistance (SPR) and Systemic Vascular Resistance Index (SVRI).

Keywords: Pranava Yoga; Impedance Cardiovasograph; Cardiac Output; Systemic Peripheral Resistance .

Introduction

Human life is full of stress and tension. In the present scenario people have to face challenges at every step of life, which create a stressful life to a person. Failure to cope with stress leads to depression, anxiety and related disorders. Some studies have shown that people having spiritual life style are able to face the day to day stress more efficiently. Yoga and meditation are practiced from Vedic period in ancient India. Various methods of yoga and meditation are described in Upnishads and Yoga Sutras of Patanjali. These also consist of chanting of various mantras and performing Hawan etc. These meditation and yoga practices were performed daily as part of religious act in ancient India, but not common in present days in majority of population [1]. However now again practice of yoga and meditation is becoming popular throughout the world including India for improving the quality of life [2,3]. Many researches have proven multiple beneficial effects of yoga and meditation. Awareness and control over breathing is the key feature of yogic exercises. Yoga is claimed to be very effective in

relaxing the mind and body. It has been found to reduce life stress [4,5]. It may alter cardio respiratory and autonomic parameters. Several investigations have been conducted to determine the long-term effects of pranayama and meditation techniques on the cardiovascular and autonomic nervous systems in healthy and clinical populations like hypothyroidism and rheumatoid arthritis[6-8]. Many of these studies have suggested that yoga leads to a shift in sympathovagal balance towards parasympathetic dominance [9,10]. Yoga has been advocated as adjunct therapy in hypertension and to reduce the dose of antihypertensive drug to control blood pressure in hypertensive patients[11,12]. These beneficial effects might be brought by altering the autonomic status of the body. Pranava yoga is a very simple exercise among various yogic exercises. According to Hindu philosophy, Aum is sound of power and whole universe is formed by this power of Aum. Pranava yoga (Aum yoga) is simple chanting of word Aum and focus the mind on the sound and vibrations produced during Aum Chanting.

Studies have shown that Pranava pranayama produces an immediate decrease in heart rate and systolic blood pressure in hypertensive patients and

Author's Affiliations: Associate Professor, Department of Physiology, Saraswathi Institute of Medical Sciences, Hapur, (U.P.)

Corresponding Author: Sharad Jain, Associate Professor, Department of Physiology, Saraswathi Institute of Medical Sciences, Hapur Road, Anwarpur, Uttar Pradesh- 245304

E-mail: drsharadjain@yahoo.co.in

advocated for management of hypertensive patients in addition to the regular medical management and suggested the need of further studies to enable a deeper understanding of the mechanisms involved and its usefulness in the long term management of hypertension [13].

Therefore, the present study aims to study the effect of Pranava yoga on cardiac output and systemic peripheral resistance. Since any maneuver which may decrease cardiac output or peripheral resistance or both may be helpful for the patients suffering from hypertension and other cardiovascular diseases.

Cardiac output and peripheral resistance can be measured non invasively by using Impedance Cardiovasograph (Nivomon, L&T Medical's). It is a Non Invasive vasography monitoring system. It measures the Cardiac Output (CO) and Blood Flow Index (BFI) of the patient non-invasively. It computes the Cardiac Output (CO), Stroke Volume (SV), Systemic Vascular Resistance (SVR), Cardiac Index (CI), Stroke volume Index (SI), Systemic Vascular Resistance Index (SVRI), Pulse Rate (PR) and various other cardiovascular parameters [14].

Material and Methods

The present study was conducted in the department of physiology, Saraswathi Institute of Medical Sciences, Hapur. One hundred asymptomatic healthy male subjects, aged 17-23 years, participated voluntarily in the present study, undertaken, to assess the effect of Pranava yoga on cardiac output and peripheral resistance and other cardiovascular parameters. Experiment procedures were in accordance with the ethical committee on human experimentation. Study was carried out at ambient temperature with minimal external or internal sound disturbances and little light in the room. Subjects reported to laboratory 2 hours after light lunch. They were explained in detail about the experimental procedure. Informed consent was taken from all subjects. Subjects were asked to lie in supine position. The color coded 8 leads of NICO patient cable were connected at their respective locations as given below:

1. Red leads (I1 and I1') -Behind the ears (Top pair)

2. Yellow leads (V1 and V1') -Roof of the neck (Second pair)
3. Violet leads (V2 and V2') -Level of xiphisternum (Third pair)
4. Green leads (I2 and I2') End of ribcage or >5 cm from third pair (Bottom pair)

Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were recorded by using mercury sphygmomanometer. Cardiac output, peripheral resistance and other parameters were recorded using Impedance Cardiovasograph (Nivomon). Subjects were asked to sit in comfortable position with back support.

Then they practiced Pranava yoga for 15 minutes as per instructions mentioned below.

1. Sit up with back rest in comfortable position taking care of the cables remain attached.
2. Close the eyes and relax all parts of body completely.
3. Keep breathing slowly and deeply without any jerky movements.
4. After slow deep inspiration, start chanting Aum during slow expiration phase.
5. At the end of expiration, repeat the procedure of slow deep inspiration followed by Aum chanting in expiration phase.
6. Focus the mind on the vibrations produced by Aum chanting.
7. After 15 minutes of Aum chanting subjects were asked lie down slowly in supine position.

After 15 minutes Pranava yoga, again all parameters were recorded.

All data were collected and statistical analysis was done by paired t-test using the window SPSS Statistics 20.0 version.

Result

Table 2 shows comparison of parameters before and after Pranava yoga. There was significant decrease in all cardiovascular parameters after performing 15 minutes Pranava yoga.

Table 1: Baseline characteristics of all subjects

S.N.		
1	Age (in years)	21.1±1.1
2	Height (cms)	172.5±2.3
3	Weight (Kg)	64.4±4.4
4	BSA (m ²)	1.75±0.06

Table 2: Comparison of cardiac output and peripheral resistance and other cardiovascular parameters before and after Pranava yoga

S.N.		Before Pranava yoga	After Pranava yoga
1	Systolic blood pressure (SBP) (mm Hg)	116.4±1.5	104.4±1.1**
2	Diastolic blood pressure (DBP) (mm Hg)	74.12±1.6	65.32±1.4*
3	Heart rate (HR) (per minute)	73.08±0.9	66.2±0.4**
4	Cardiac Output (CO) (L/min)	5.16±0.12	4.74±0.16**
5	Stroke volume (SV) (ml/ beat)	72.26±0.6	70.22±0.4**
6	Systemic Peripheral Resistance (SPR) (dyne.sec/cm ⁵)	1358.1±7.3	1328.2±5.4*
7	Cardiac Index (CI) (L/min/m ²)	2.94±0.06	2.61±0.04**
8	Stroke volume Index (SI) (ml/ beat/m ²)	41.31±0.13	40.53±0.03**
9	Systemic Vascular Resistance Index (SVRI) ((dyne.sec/cm ⁵ /m ²)	770.1±4.2	753.25±3.8*

*p<0.05 (significant), **p<0.001 (highly significant)

Decrease in Systolic blood pressure (SBP), heart rate (HR), Cardiac Output (CO), Stroke volume (SV), Cardiac Index (CI), Stroke volume Index (SI) were highly significant ($p<0.001$). while decrease in Diastolic blood pressure (DBP), Systemic Peripheral Resistance (SPR) and Systemic Vascular Resistance Index (SVRI) were less significant ($p<0.05$).

Discussion

It is a proven fact that regular yoga exercises improve the life and give sense of subjective well being in normal people as well as in patients suffering from diseases. It can be used as powerful tool to combat stress. Aum chanting is very easy exercise and can be done any time in sitting posture. Previous studies have shown a significant decrease in heart rate during Aum chanting, insignificant reduction in oxygen consumption and significant decrease in finger plethysmogram amplitude (i.e. increased peripheral vascular resistance) indicating that chanting "Aum" mentally causes increased alertness (reduced finger plethysmogram amplitude), along with simultaneous relaxation of body (reduced heart rate) [15]. In contrast to this, present study showed significant decrease both in heart rate and systemic vascular resistance; however decrease in heart rate was more pronounced. Aum chanting shifted the sympathetic vagal balance towards vagal side and resulted in a decrease in sympathetic activity.

Change in cardiac output and peripheral resistance is very good indicator of change in autonomic status. As they tend to increase with sympathetic stimulation and tend to decrease with increase in parasympathetic activity. Cardiac output and peripheral resistance are the key determinant of

blood pressure. Blood pressure and heart rate are important cardiovascular parameters. Both are controlled by autonomic nervous system mediated via baroreceptor reflex mechanism. Cardiac output is product of stroke volume and heart rate. Stroke volume decreases with decrease in venous return & decrease force of contraction of heart and vice-versa. Increase in parasympathetic activity decreases venous return by producing venodilation in splanchnic circulation and other parts of body and also decrease force of contraction of heart leading to less pumping of blood in each cardiac cycle leading to decreased systolic blood pressure. Decreased sympathetic activity also produces vasodilatation of arterioles and decreases total peripheral resistance leading to decrease in diastolic blood pressure. Impulses of afferent nerves from arterial baroreceptors reach the medulla and affect the heart rate via vagal discharge to the heart. The neurons from which the vagal fibers arise are in the dorsal motor nucleus of the vagus and the nucleus ambiguus[16]. So, decreased sympathetic activity is responsible for decreased cardiac output and heart rate and vice versa. Any maneuver which can decrease the sympathetic activity or increase parasympathetic activity will decrease blood pressure, cardiac output, total peripheral resistance and heart rate.

Pranava yoga results in decrease in sympathetic activity and increase in parasympathetic activity. As a result of this decrease in sympathetic activity there is vasodilatation which causes decrease in peripheral resistance. It also decreases heart rate and myocardial contractility leading to decreased cardiac output. Decrease in cardiac output and peripheral resistance both result in decrease in systolic as well as diastolic blood pressure. So Pranava yoga can be a useful exercise for the patients suffering from hypertension

and other cardiac disease and other stress related problems.

References

1. Bhavanani AB. Are we practicing yoga therapy or yogopathy ? *Yoga Therapy Today* 2011; 7: 26-28.
2. Malathi A, Damodaran A, Shah N, Patil N, Maratha S. Effect Of Yogic Practices On Subjective Well Being. *Indian J Physiol Pharmacol*. 2000; 44(2):202-6.
3. Madanmohan, Udupa K, Bhavanani AB, Shatapathy CS, Sahai A. Modulation of cardiovascular response to exercise by yoga training. *Indian J Physiol Pharmacol* 2004; 48: 461-465.
4. Sharma R, Gupta N, Bijlani R. Effect of yoga based lifestyle intervention on subjective well being. *Indian J Physiol Pharmacol* 2008; 52: 123- 131.
5. Kim SD. Effects of yogic exercises on life stress and blood glucose levels in nursing students. *J Phys Ther Sci.* 2014; 26(12):2003-2006.
6. Swami G, Singh S, Singh KP, Gupta M. Effect of yoga on pulmonary function tests of hypothyroid patients. *Indian J Physiol Pharmacol* 2009; 54 (1): 51-56.
7. Singh VK, Bhandari RB, Rana BB. Effect of yogic package on rheumatoid arthritis. *Indian J Physiol Pharmacol* 2011; 55 (4): 329-335.
8. Haslock I, Monro R, Nagarathna R, Nagendra HR, Raghuram NV. Measuring the effects of yoga in rheumatoid arthritis. *Br J Rheumatol* 1994; 33: 787-788.
9. Bhavnani AB, Ramanathan M, Balaji R, Pushpa D. Comparative immediate effect of different yoga asanas on heart rate and blood pressure in healthy young volunteers. *Int J Yoga*. 2014; 7(2): 89-95.
10. Raghuraj P, Telles S. Immediate effect of specific nostril manipulating yoga breathing practices on autonomic and respiratory variables. *Appl Psychophysiol Biofeedback* 2008; 33: 65-75.
11. Kaushika RM, Kaushika R, Mahajana SK et al. Effects of mental relaxation and slow breathing in essential hypertension. *Complement Ther Med* 2006; 14: 120-126.
12. Sundar S, Agrawal SK, Singh VP, Bhattacharya SK, Udupa KN, Vaish SK. Role of yoga in management of essential hypertension. *Acta Cardiol*. 1984;39(3): 203-208.
13. Bhavanani AB, Madanmohan, Sanjay Z, Basavaraddi IV. Immediate cardiovascular effects of pranava pranayama in hypertensive patients. *Indian J Physiol Pharmacol*. 2012; 56(3):273-8.
14. Parashar R, Bajpai M, Goyal M, Singh S, Tiwari S, Narayan VS. Impedance cardiography for monitoring changes in cardiac output. *Indian J Physiol Pharmacol* 2012; 56(2): 117-124.
15. Telles S, Nagarathnaand R, Nagendra R. Autonomic changes during "om" meditation. *Indian J Physiol Pharmacol* 1995; 39(4): 418-420.
16. Ganong WF. The heart as a pump. In: Ganong WF, ed. *Review of Medical Physiology* 22nd ed. India. Appleton & Lange, 2009; 565-576.

Relationship between Big Five Personality Traits and Total Peripheral Lymphocyte Count (TPLC)

Sunita Nighute¹, Sadavarte Sahebrao²

Abstract

It is often argued that a blend of personality characteristics is known to affect the immune system. It has been identified that The Limbic Hypothalamic Pituitary Adrenal (LHPA) axis acts as the principal path of the communication between the immune system and the central nervous system. so this study was done to find out the relationship between Big Five personality traits and Total Peripheral Lymphocyte Count (TPLC) as a parameter of immunity in an undergraduate medical students (n=150). We calculated the correlation between personality variables and Total Peripheral Lymphocyte Count (TPLC). Further regression analyses were performed using personality variables as predictors and Total Peripheral Lymphocyte Count (TPLC) as criteria by using various statistical measures.

The results demonstrated that the Agreeableness and the Conscientiousness are the strongest predictors of lymphocyte count of all the personality traits. The results offer support for the hypothesis that stressed the essential links between personality and immune regulation.

Keywords: Big five; Personality Traits; Total Peripheral Lymphocyte Count (TPLC); Medical Students.

Introduction

Today it is well known that psychological stress has effects on the immune system, which can result in increased susceptibility to various infections, latent virus reactivation, and also influence immune-regulatory circuits [1]. A group of seven researchers, each of whom has uncovered a particular personality trait associated with psychological and physical well-being, since each trait has been directly or indirectly linked to a vigorous immune system, called as Immune Power traits [2]. The principal path of the communication between the immune system and the central nervous system has been linked to the HPA axis, which can also be influenced by psychological factors [3].

Our own psychological resources can be activated to prevent and to heal diseases affecting every organ and system of the body. Studies associated personality characteristics such as aggression and hostility as some of the variables that can affect the activity and number of lymphocyte populations [4, 5].

Now mind-body scientists are demonstrating the role of healthy traits in maintaining a healthy state of body. However, up until now less research has been conducted in regard to the possible connections of personality dimensions and the parameters of the immune system. The purpose of this study is, therefore, to examine the impact of personality type on the immune system with the help of Total Peripheral Lymphocyte Count (TPLC) of the students in the medical college using five-factor model of personality.

Aims and Objectives

- To investigate the relationship between Five Factor Model of Personality (FFM) and immunity with the help of Total Peripheral Lymphocyte Count (TPLC) in medical college Students.
- To find out which personality traits predict immune power personality in medical students.

Author's Affiliations: ¹Associate Professor, Dept of Physiology, PDVVPFS Medical College, Ahmednagar, Opposite Govt Milk Dairy, Vilad Ghat, Ahmednagar-414111. Maharashtra. ²Professor & head, Dept of Physiology, PCMS & RC, Bhopal (MP).

Corresponding Author: Sunita Nighute, Associate Professor, Dept of Physiology, PDVVPFS Medical College, Ahmednagar, Opposite Govt Milk Dairy, Vilad Ghat, Ahmednagar-414111. Maharashtra.

E-mail: drsunitanighute@gmail.com

Segerstrom, Castaneda & Spencer (2003) [6] used the five factor model of personality to evaluate effects of optimism on immunity. The five factor model (FFM) is widely accepted as the most salient taxonomy of the basic personality structure [7]. The Big-5 are commonly used because they combine the best of Cattell's (1970) [8]. Authors' comprehensive list of personality traits with the best of Eysenck's (1991) [9] concise lists. They are:

Extroversion	—	Introversion
Neuroticism	—	Stability
Agreeableness	—	Antagonism
Conscientiousness	—	Un-directedness
Openness	—	Non-openness

Extroversion

Extraverts are usually sociable, talkative and communicative, and friendly. They are described as active, bold, assertive, exciting, and stimulating. Introverts on the other hand tend to be reserved, even-paced and independent.

Conscientiousness

They are predisposed to be organized, exacting, disciplined, diligent, dependable, methodical, and purposeful. They have an intrinsic motivation and a positive attitude. Students low in conscientiousness tends to be less careful, less focused and more likely to be distracted from tasks.

Agreeableness

Agreeableness or likeability refers to such traits as selflessness, good-natured, gentle, co-operative, flexible, tolerance, generous, sympathetic, courteous, striving for common understanding, and maintaining social affiliations.

Students low in agreeableness tends to be more aggressive and less cooperative.

Neuroticism

The individuals who score high on neuroticism tend to experience effects such as fear, sadness, embarrassment, disgust and anger. Those who score low in this area are usually calm, even-tempered and relaxed at work and in their personal lives.

Openness to experience

These individuals feel both the good and the bad deeply, rendering its directional influence on

affective reactions like subjective well-being or performance satisfaction unclear.

The past ten years have seen a growing number of studies on the personality correlate of immune system. Segerstrom, Castaneda & Spencer (2003) [6] found that only Conscientiousness had an effect on the parameters of the immune system, measured by the DTH (delayed-type hypersensitivity) response. Although the associations between WBCs and broad personality traits tend to be mixed [10], narrower traits, such as impulsivity, may share stronger relations with health related variables than the broad domains [11].

A study by Miller, Cohen, Rabin, Skoner & Doyle (1999) [10] examined three dimensions of the five factor model (Extraversion, Agreeableness and Neuroticism) and found no differences in leukocyte subsets for any of the dimensions. The current study focuses on the relationship between the Big Five and Total Peripheral Lymphocyte Count (TPLC) as the measures of the immune system function.

Neutrophils and lymphocytes account for most WBCs. Neutrophils, as part of the innate immune system, respond to acute injuries, whereas lymphocytes, as part of the adaptive immune system, determine the specificity of immune response. Neutrophils have a short lifespan, ranging from hours up to a few days, whereas lymphocytes may remain in the blood stream for years. at least some of the Big Five could be connected with the Total Peripheral lymphocyte Count (TPLC) as the measures of the immune system, we could predict substantial correlations with immune system measures for Conscientiousness on the basis of the Segerstrom et al. (2003) [6] study, and for Neuroticism because of its known relatedness to distress and coping [12]. It can also be expected that there is the connections between Agreeableness and lymphocyte measures, due to the role of this personality factor in risk, stress, and burnout management [13] and in the activation of the autonomous nervous system. Consequently we can also assume that the Big Five could have an essential predictive function in relation to immune system parameters.

Materials and Methods

This study was conducted in the people's medical college and research centre, Bhopal (MP). We collected data from 150 students of first MBBS 2011-2012 batch. Of these individuals, 85% were males and 65% were females. Demographic information

such as age, gender was collected, Inclusion criteria was 150 healthy medical students of first MBBS batch 2011-2012, Exclusion criteria- Students who are having any major illness were excluded from the study.

Ethical clearance was taken from institutional ethical committee and written consent was taken from the students of first MBBS those who are involved in the study.

At the start of the semester during classes a personality inventory was administered to the students. We used personality inventory questionnaire of Buchanan (2001) based on Five-Factor Modality (FFM). The students rated each item on a 5-point Likert-type scale (1= strongly disagree, 5 = strongly agree). The FFM is based in a belief that people are rational beings and count for their own personality and behaving, can analyze their own actions and reactions (McCrae & Costa, 1996).

Immunological Assessment

Peripheral human blood leucocytes were collected by the finger prick method by taking all aseptic precautions in the haematology lab of department of physiology. Then Total Leukocyte Count (TLC) using Turk's fluid was performed on the improved Neubauer's chamber. While the differential count from peripheral blood smear was done by using Leishmans stain and from total 100 different white blood cells percentage distribution of lymphocytes were counted. Both Total and Differential white cell count was done by using Electron microscope and by following all the standard criterias.

By using above readings Total Peripheral Lymphocyte Count (TPLC) was calculated by the formula: $TPLC = TLC \times \text{percentage of lymphocytes in differential count}$. Then correlation between big five personality traits and Total Peripheral Lymphocyte Count (TPLC) was calculated by using various statistical methods.

Table 1: Statistic of personality scale and Total Peripheral Lymphocyte Count (TPLC)

Personality traits	Mean	SD	Total Peripheral Lymphocyte Count(TPLC)
Agree	3.43	0.50	.840
Cons	22.78	4.36	.737
Open	30.53	6.62	.252
Extra	24.34	6.5	.095
Neuro	30.60	5.37	.080

Table 2: Regression analysis of personality traits and Total Peripheral Lymphocyte Count (TPLC)

Personality traits	Total Peripheral Lymphocyte Count(TPLC)	Significance level
Agree	0.840	0.003*
Cons	0.737	0.004*
Open	- 0.252	0.179
Extra	0.095	0.633
Neuro	0.080	0.530

Result

Table 1 presents the results of statistics of personality scales and lymphocyte count. The table shows the mean of lymphocyte count and the means of their personality traits (agreeableness, conscientiousness, openness, extroversion, and neuroticism) According to the findings there is higher lymphocyte count with Agreeableness as well as Conscientiousness personality traits than other personality traits.

Table 2 shows Relationships between Personality Traits and lymphocyte count. Regression analysis was done to find out the influence of the students personality traits as predictor and Lymphocyte count as criteria. All five personality factors show substantial percentages of variance of Lymphocyte count.

The Agreeableness and Conscientiousness factor was the only significant predictors of Lymphocyte count.

Agreeableness (0.840) and Conscientiousness (0.737) are the strongest predictors among

personality variables. The Openness, (- 0.252), Extraversion (0.095), and Neuroticism (0.080) these personality traits are not significant statically.

It is thus conclude that the students high on Agreeableness and Conscientiousness traits had higher Total Peripheral Lymphocyte Count (TPLC) in our study.

Discussion

In this study we focused on the connection between personality factors and lymphocyte count. The results of the study suggest that the Big five factors can predict immune status of the body with the help of Total Peripheral Lymphocyte Count (TPLC).

results of this study shows that Agreeableness and Conscientiousness are the most important predictive factors of immunity. This is consistence with the study by Ana Ožura, et al, 2012 and Cohen et al, 1997 [14, 15]. The possible link between Agreeableness and immune function may be elucidated by the fact that both are associated with the quality of social relationships. More agreeable persons enjoy more social support which in turn increases their immunological effectiveness. Individuals high on Agreeableness are altruistic, emphatic, cooperative, and moral and trusting [16], those who are low on this trait might experience more stress and less support from colleagues and superiors. In stress research, Agreeableness was found to be the main protective factor (when highly expressed) and main risk factor (when it is low) for burnout [17]. Furthermore it is possible that Agreeableness is connected with sympathetic nervous system activity. Miller (1999) [1] found that individuals with low Agreeableness tended to have higher blood pressure and epinephrine due to increased catecholamine production and which in turn suppresses the immune functions, since it is hypothesized that chronic secretion of catecholamine's down regulates glucocorticoid receptor expression [1].

While individuals with high level of Conscientiousness demonstrate greater self discipline, greater adherence to ethical and moral standards and strong sense of order. Further they strive for achievement and are cautious in their action. Conscientiousness is most likely to influence immunity through its relationship with better health practice and adherence to medication regimen. The association between Conscientiousness and immunity has been addressed in four studies [15]. Study addressing the connection of the

conscientiousness trait with immune parameters found that conscientiousness has an effect on DTH (delayed-type hypersensitivity) response due to the association of this trait to optimism [6]. A number of other studies suggested that optimism is related to immune parameters [6, 15] depending on the type of the stressors involved.

In this study there are no correlations between Neuroticism and Lymphocyte counts. Although Miller [1] (1999) did find higher cortisol levels he did not obtain any differences in white blood counts in individuals with high Neuroticism. He concluded that individuals with high Neuroticism often report somatic complaints but have no physiological, objective basis for them. One could speculate that, although Neuroticism is connected with higher distress [12]. It is more an indicator of heightened sensibility than a predictor of objective differences in health status. Also there is no positive correlation between openness and Extraversion type of personality with the immunity in this study.

The results of regression analyses revealed a possible role of the Big five factors in predicting Total Peripheral Lymphocyte Count (TPLC).

Reports show that reduction of T lymphocyte is connected with an increased risk of inflammation [18] while the reduction in B lymphocyte counts affects humoral immunity and reduces the protective function of antibodies [19].

It is therefore interesting to note that certain personality factors can be associated with increased Lymphocyte count. The association between these traits and higher lymphocyte counts may reflect the tendency of these individuals to get in to situations that expose their immune systems to more pathogens. The relation between lymphocytes and immune function is complex; some types of lymphocytes promote good immune function, whereas others contribute to chronic inflammation [20]. In the present research, although we did not distinguish between different types of lymphocytes, these associations suggest that the total lymphocyte count may predominantly reflect the types of cells that contribute to pathological states.

There are several possible interpretations of how personality factors and Lymphocyte counts could be related. As already mentioned, the personality dimensions have influence on stress behaviour, and may consequently affect the functioning of the immune system (and vice versa) in its entire neuro-endocrine context. Solomon and Moos (1964) [21] wrote about the influence of stress and emotions on adrenal cortical steroid hormones 40 years ago.

However, it is questionable whether the general explanatory model linking psychological factors to neuroendocrine responses to stress by HPA (Hypothalamo-pituitary axis) axis activation could explain all the variance in blood cell count associated with personality factors [14].

In addition the possibility of the vice versa effect (the immune system factors influencing personality) should be considered similarly to the process seen in long-term sickness behaviour [22]. Both personality and immune system factors are genetically determined [23, 24, 7] a possible genetic relation between them seems possible [23].

Both personality dimensions and immune function are related to the activity of the most investigated neurotransmitter systems in the brain, especially noradrenergic, cholinergic, serotonergic, and dopaminergic systems [25].

Differences in affect and optimism are related both with personality dimensions and immunological regulation and can therefore contribute to the general relationship between personality and the immune system. Personal relationships, especially social support, are also linked with immune function [26].

On the whole, the results of our study offer some support for the hypothesis that stressed the role of personality factors in the activity of the immune system but further research is needed [27, 6, 14]. This research has implications for how we understand the connection between psychological processes and physical health. Our findings suggest that characteristic ways of thinking, feeling, and behaving share relations with immune response.

Our study has several limitations the most important of them is the small number of participants and also we have not considered the different types of lymphocytes.

And quantitative measures of the immune system parameters (such as Lymphocyte counts) might not be the best way of assessing the immune status. Qualitative measures (such as DTH response) are clinically more relevant [6].

References

1. Marshall GD. The Adverse Effects of Psychological Stress on Immunoregulatory Balance: Applications to Human Inflammatory Diseases. *Immunol Allergy Clin*. 2011; 31: 133-140
2. The Immune Power Personality: 7 Traits You Can Develop to Stay Healthy, by Henry Dreher Penguin Books USA, Inc.1995.
3. Keller SE, Schleifer SJ, Bartlett JA, Shiflett SC & Rameshwar P. Stress, Depression, Immunity, and Health. In Goodkin K & Visser AP (eds): *Psycho-neuroimmunology: stress mental disorders and health*, 1-26. American Psychiatric Press, 2000.
4. Granger DA, Booth A & Johnson DR. Human aggression and enumerative measures of immunity. *PsychosomMed* 2000; 62: 583-590.
5. Christensen AJ, Edwards DL, Wiebe JS, Benotsch EG, McKelvey L, Andrews M & Lubaroff DM. Effect of verbal self disclosure on natural killer cell activity: moderating influence of cynical hostility. *Psychosom Med* 1996; 58: 150-155.
6. Segerstrom SC, Castaneda, JO & Spencer, TE. Optimism effects on cellular immunity: testing the affective and persistence models. *Pers Individ Dif* 2003; 35: 1615-1624.
7. McCrae RP & Costa PT. Personality Trait Structure as a Human Universal. *Am Psychol* 1997; 52: 509-516.
8. Cattell, R.B., Eber H.W., and Tatsuka, M.M. The handbook of the sixteen-prsonality factor questionnaire. Champaign, IL: Institute for Personality and Ability Testing. (1970).
9. Eysenck, HJ. Dimensions of personality. Criteria for a taxonomic paradigm. *Personality and Individual Diff*. 1991; 12: 773-790.
10. Miller GE, Cohen S, Rabin BS, Skoner DP & Doyle Personality and Tonic Cardiovascular, Neuroendocrine, and Immune Parameters. *Brain Behav Immun* 1999; 13: 109-123.
11. Paunonen SV, Haddock G, Forsterling F, Keinonen M. Broad versus narrow personality measures and the prediction of behaviour across cultures. *European Journal of Personality*. 2003; 17: 413-433.
12. Rantanen J, Pulkkinen L & Kinnunen U. The Big Five Personality Dimensions, Work-Family Conflict, and Psychological Distress: A Longitudinal View. *J Individ Dif* 2005; 26: 155-166.
13. Cano-Garcia FJ, Padilla-Munoz EM & Carrasco-Ortiz MA. Personality and contextual variables in teacher burnout. *Pers Individ Dif* 2005; 38: 929-940.
14. Ana Ožura, Alojz Ihan & Janek Musek, 2012 CAN THE BIG FIVE FACTORS OF PERSONALITY PREDICT LYMPHOCYTE

COUNTS? *Psychiatria Danubina*, 2012; 24 (1): 66-72.

15. Cohen F, Kearney KA, Zegans LS, Kemeny ME, Neuhaus JM & Stites DP. Differential Immune System Changes with Acute and Persistent Stress for Optimists vs. Pessimists. *Brain Behav Immun.* 1999; 13: 155-174.
16. Lim B & Ployhart RE. Transformational Leadership: Relations to the Five-Factor Model and Team Performance in Typical and Maximum Contexts. *J Appl Psychol* 2004; 89: 610-621.
17. Cano-Garcia FJ, Padilla-Munoz EM & Carrasco-Ortiz MA. Personality and contextual variables in teacher burnout. *Pers Individ Dif* 2005; 38: 929-940.
18. Colonna-Romano G, Aquino A, Bulatia M, Lioa D, Candorea G, Oddob G, Scialabba G, Vitellob S & Carusoa C. Impairment of gamma/delta T lymphocytes in elderly: implications for immunosenescence. *Exp Gerontol* 2004; 39: 1439-1446.
19. Linton PJ & Dorshkind K. Age related changes in lymphocyte development and function. *Nat Immunol* 2004; 5: 133-139.
20. Hansson GK, Libby P, Schonbeck U, Yan ZQ. Innate and adaptive immunity in the pathogenesis of atherosclerosis. *Circulation Research.* 2002; 91:281-291.
21. Solomon GF & Moos RH. Emotions, Immunity and Disease. *Arch Gen Psychiatry* 1964; 11: 637-674.
22. Viljoen M & Panzer A: Non-termination of sickness behaviour as precipitating factor for mental disorders. *Med Hypoth* 2005; 65: 316-2.
23. Petitto JM, Gariepy J, Gendreau PL, Rodriguez R, Lewis MH & Lysle DT. Differences in NK Cell Function in Mice Bred for High and Low Aggression: Genetic Linkage between Complex Behavioural and Immunological Traits? *Brain Behav Immun.* 1999; 13: 175-186.
24. Jang KL, Livesley WJ, Angleitner A, Riemann R & Vernon PA. Genetic and environmental influences on the covariance of facets defining the domains of the five-factor model of personality. *Pers Individ Dif* 2002; 33: 83-101.
25. Depue RA & Collins PF: Neurobiology of the structure of personality. Dopamine, facilitation of incentive motivation, and extraversion. *Behav Brain Sci* 1999; 22: 491-569.
26. Ader R & Cohen N. Behaviourally Conditioned Immunosuppressant. *Psychosom Med* 1975; 37: 333-340.
27. Kiecolt-Glaser JK, McGuire L, Robles FR & Glaser R. Psychoneuroimmunology and Psychosomatic Medicine: Back to the Future. *Psychosom Med* 2002; 64: 15-28.

Circadian Oscillations of Oxidative Stress Affects Nociception Sensitivity and Opioid Induced Antinociception: A Hypothetical Preview

Amit Kant Singh^{1,*}, Brig. T. Prabhakar^{2,*}, Santosh Kumar Sant^{3,*}, Narsingh Verma⁴, Ramji Singh⁵, Arun Goel⁶

Abstract

Circadian rhythms are physical, mental, and behavioral changes that follow 24 hr cycle. The production of antioxidants and protective enzymes, have been reported to be regulated or expressed in rhythmic fashions. Thus, oxidative stress seems to have a circadian rhythm connection. Oxidative stress has been implicated in aging and neurodegenerative diseases. Reactive oxygen species have role in pain associated with peripheral nerve injury. Increase in oxidative stress as in aging cause profound decline in opioid system at supraspinal level than at spinal level and also the nociceptive threshold. Oxidative stress decreases the nociceptive threshold and also opioid receptor function leading to decreased opioid induced antinociceptive effects. Thus it is hypothesised that the circadian pattern of nociception is due to oxidative stress level in the brain areas.

Keywords: Circadian Rhythm; Nociception; Oxidative Stress.

Introduction

Circadian rhythms are intimately involved in living systems at environmental, organismal, and cellular levels. Circadian rhythms, by definition, are physical, mental, and behavioral changes that follow a 24 hr cycle. This cycle is generally slightly longer than 24 h (an average of 24.2 h in sighted humans, and 24.5 h in blind humans), but can vary from person to person [1, 2]. It is believed that the development of circadian rhythms is a response to the earth's rotation, both around its axis and around the sun, which dictates daily light and temperature changes [3]. The production of antioxidants and protective enzymes, have been reported to be regulated or expressed in rhythmic fashions. Thus, oxidative stress seems to have a circadian rhythm connection.

Oxidative Stress and Circadian Pattern

Reactive Oxygen Species (ROS), such as superoxide radicals (O_2^-), peroxides (ROOR), and

hydroxyl radicals (OH^-), are by products of normal cellular metabolism, mainly in the mitochondria. These molecules can benefit the cell by playing critical roles in cellular defense and other important cellular processes [4, 5]. One such role that many of the ROS have, especially O_2^- and hydrogen peroxide (H_2O_2), is in cellular signalling controlling a variety of biological processes. The ROS have many features that make them excellent signalling molecules, and have been shown to be involved in many pathways, from kinase activation to insulin action [6, 7].

However, a tight regulation of ROS is needed, as they may inflict serious detrimental effects if left unchecked. To place checks and balances on ROS, the cellular machinery has a sophisticated system to neutralize them before they become problematic. This includes producing protective enzymes (e.g., catalases [CATs], superoxide dismutase [SODs], and glutathione peroxidases [GPxs]) and physiologically generated small molecule antioxidants (e.g., Vitamins C and E, glutathione [GSH], and uric acid) [8, 9]. If these protective measures are not enough, due to exposure to environmental stresses (such as

Author's Affiliations: ¹Associate Professor, ²Director, ³Professor & Head, Dept. of Physiology, ^{*UP RIMS & R, Saifai, Etawah, India.} ⁴Professor, Dept. of Physiology, KGMU, Lucknow, India. ⁵Additional Professor & Head, Dept. of Physiology, AIIMS, Patna, India. ⁶Assistant Professor, Dept. of Physiology, AIIMS, Rishikesh, India.

Corresponding Author: Dr. Amit Kant Singh, Associate Professor, Dept. of Physiology, UP RIMS & R, Saifai, Etawah, India- 2016130.

E-mail: amitbhu2008@gmail.com

ultraviolet [UV] light, chemical pollutants, or heat) or due to other physiological reasons (poor or inappropriate diet, life style, etc.), the cell enters a state of oxidative stress. When this happens, it can be disastrous for the cells, causing DNA damage, lipid peroxidation, oxidation of amino acids, and ultimately death of the cell or disease in the host [5].

Reactive nitrogen species (RNS), including nitric oxide (NO) and peroxy nitrite (ONOO⁻), also play an important role in oxidative stress. NO is produced in normal cells as an integral part of cellular signalling and is a mediator of cellular damage [10]. NO can diffuse easily through cells, which makes it especially useful as a biological messenger, and although it is only mildly reactive, its chemical properties make it a very potent intermediate messenger for production of more reactive RNS [11, 12], as well as other biological processes such as vasodilation [10]. Excess NO is normally inactivated by various cellular responses, including in the blood by a reaction with oxyhemoglobin to form nitrate [12]. However, since NO is poorly reactive, it has been suggested that much of the cellular damage that occurs during oxidative stress comes from the oxidation products of NO, especially peroxy nitrite [13, 5]. This compound is formed from the reaction of O₂⁻ and NO, is a particularly active oxidative molecule, and has been implicated in several diseases and disorders, including hypertension, arthritis, and cancer [12, 5].

As mentioned above, these reactive species can be produced in the mitochondria as a by product of metabolism or by environmental stressors such as exposure to UV light or exposure to chemical pollutants. Since it is difficult to directly measure the very short-lived ROS, much research has focused on studying the presence of the antioxidants and other enzymes produced by the body that work against the oxidant radicals [8]. Interestingly, the cellular concentrations or activity levels of many of these antioxidants and protective small molecules (such as SOD, GPx, melatonin, and several others discussed in the next section) have been found to have circadian rhythmicity [14, 15, 16]. This suggests an importance of both oxidative stress and the circadian rhythm in human diseases.

The cyclic pattern in the expression of circadian proteins and other rhythmic elements is dependent on a number of external cues or melatonin, including light exposure, feeding patterns, exercise, and temperature change [17, 18]. The strongest zeitgeber, light, initiates synchronization of rhythms when the retinorecipient cells within the suprachiasmatic nucleus (SCN) in the hypothalamus region of the

brain receive the light impulses from the retina [17]. The SCN has been found to be the main regulator of circadian rhythms, which then sends signals to peripheral cells throughout the body, causing that rhythm to be passed on to the proper cells and tissues [19]. However, the SCN can be stimulated by zeitgebers other than light, especially by serotonin and melatonin, although these are thought to be internal feedback regulators as opposed to primary circadian rhythm initiators [20, 21, 22]. Melatonin has also been found to be one of the signalling molecules used by the body to synchronize certain peripheral cells. However, it is believed that many more molecules and hormones, including insulin and glucocorticoids, may be involved in this process [23, 24].

Rhythmicity of the Cellular Antioxidant System

Data from various studies suggest that the circadian regulation of protein expression plays a significant role in the cellular response to oxidative stress. Several studies have shown evidence of differences in DNA damage, lipid peroxidation, and protein oxidation at different times of the day, thus indicating circadian oscillations of oxidative stress responses [25, 26, 27, 28, 29]. These oscillations relate directly to the daily rhythm of antioxidant expression and protective enzyme activity levels. This rhythmicity in antioxidant levels may be exploited for a more precise targeting of the ROS, thereby offering better protection for the cells.

One of the biggest causes of oxidative damage in the cell is the O₂⁻ molecule, many of the enzymes used to transform it into less-reactive species are rhythmically expressed. One key group of antioxidant enzymes that oscillate with circadian rhythmicity is SODs. These enzymes protect against oxidative damage by catalyzing the dismutation of O₂⁻ into O₂ and H₂O₂. In eukaryotes, there are two main types of SODs: copper/zinc (Cu/Zn), found cytoplasmically and extracellularly, and manganese (Mn), found mitochondrially [30]. Mn SOD is thought to be especially important in maintaining and influencing the redox status of the cell, since it is the form present in the mitochondria where most ROS are produced. Also, it can directly influence the flux of certain ROS in some instances [31]. Daily rhythmicity in SOD activity was first reported by Diaz-Munoz et al. in 1985. They found that in the rat cerebral cortex, SOD activity peaks in the dark phase, coinciding with the peak level of malondialdehyde, which is a product of lipid peroxidation [32]. SOD

converts O_2^- into O_2 and H_2O_2 . CAT is one enzyme that offers further protection by catalyzing the decomposition of H_2O_2 to H_2O and O_2 [33].

The rhythmicity of CAT activity was established over 25 years ago, and has been studied in many model organisms, as well as in humans [34, 33]. CAT activity oscillation has been shown to peak in the middle of the dark phase in the liver and kidneys of nocturnal mice [33]. However, in diurnal humans, the peak occurs in the beginning of the light phase as detected in plasma samples [35], illustrating the difference in circadian oscillation between nocturnal and diurnal species that would be expected due to their opposing patterns of sleep/wake cycles and the differences in their feeding patterns and light exposure.

Circadian rhythms and oxidative stress components oscillate in humans. Many antioxidants and enzymes that protect the cell from oxidative stress exhibit daily cycles in their expression or activity levels. Levels of by products of oxidative stress, such as those indicating DNA damage, protein damage, or lipid peroxidation, also oscillate with circadian rhythmicity. In addition, the peak time of expression for the circadian period and CRY proteins are listed for comparison. Those that peak in the morning include glutathione peroxidise (GPx) [36], glutathione reductase (GR) [36], catalase [36], superoxide dismutase (SOD) [36], uric acid [36], and peroxiredoxins (Prxs) [38]. Peaks in the evening have been observed in melatonin [39], plasma thiols [40], lipid peroxidation [40, 36], ascorbic acid [36], Period 1 and 2 [37], and the CRYs [37].

Another group of enzymes that regulate the effects of oxidative stress on the cell by removing peroxides is the Prxs. In Syrian hamsters, Prxs have been shown to oscillate with circadian rhythmicity in both the SCN region of the brain, as well as in the peripheral tissue of the liver, although the two rhythms are not in sync with each other [29]. As mentioned earlier, Prxs have also been studied in mature red blood cells (as they do not have a nucleus or most other organelles, including mitochondria), and O'Neill and Reddy found that there was still rhythmicity of the Prxs, in the absence of external cues [38].

Finally, circadian oscillation is highly involved in the regulation of the GSH system. GSH is a powerful antioxidant that neutralizes ROS in a process catalyzed by one of the 4 selenium-dependant GPx proteins, thereby converting GSH to the oxidized state of glutathione disulfide (GSSG). Glutathione reductase (GR) then catalyzes the

reaction in which GSSG is reduced to GSH, allowing for additional neutralization of ROS (41). An additional component of the GSH system, the glutathione S-transferases (GSTs), is a group of enzymes separated into three major classes in mammals (cytosolic, mitochondrial, and microsomal), with at least 18 different isoforms expressed in humans. They play important roles in oxidative stress defense through the inactivation of cytotoxic and mutagenic byproducts of the process, including a,b-unsaturated aldehydes, quinones, epoxides, and hydroperoxides [42, 43].

Oxidative Stress: Nociception Sensitivity and Opiod Antinociception

Oxidative stress has been implicated in aging and neurodegenerative diseases [44, 45, 46, 47]. The aging process is associated with cellular damage caused by reactive oxygen species. There was a significant increase in protein oxidation in aged mice brain regions such as the cortex, hippocampus, striatum, and midbrain [48, 49, 50]. The cortex, striatum, hippocampus, and midbrain express opioid receptors [51, 52, 53, 54] and contribute to pain processing [55], therefore age-related oxidative damage in these regions increase pain sensitivity and decrease opioid analgesia. Recent studies suggested a mediatory role of reactive oxygen species in pain associated with peripheral nerve injury [56, 57].

As per Raut and Ratka [58] due to increase in oxidative stress as in aging the protein carbonyl content which is the marker for protein oxidation and TBARS content a marker for lipid peroxidation showed a gradual increase in cerebral cortex, hippocampus, striatum, and midbrain. Further there was a significant negative correlation between the antinociceptive effect of morphine (15 mg/kg at 60 minutes) and protein oxidation and lipid peroxidation in the cortex, striatum, midbrain and hippocampus also a significant negative correlation was observed between fentanyl-induced antinociception at 30 minutes after 50 mg/kg, and protein oxidation and lipid peroxidation in the cortex, striatum, midbrain and in the hippocampus. Oxidation of opioid receptor proteins can result in decreased opioid receptor function. One study reported significantly reduced binding density of mu opioid receptors (MOR) in the striatum. Increase in oxidative stress as in aging may cause profound decline in opioid system at supraspinal level than at spinal level and also the nociceptive threshold.

Conclusion and Hypothesis

As evident by these studies it is concluded that oxidative stress decreases the nociceptive threshold and also opioid receptor function leading to decreased opioid induced antinociceptive effects. Further, there is circadian oscillation of oxidative stress level. Thus it is hypothesised that the circadian pattern of nociception is due to oxidative stress level in the brain areas.

References

- Duffy JF and Wright KP, Jr. Entrainment of the human circadian system by light. *J Biol Rhythms*, 2005; 20: 326-338.
- Sack RL, Brandes RW, Kendall AR, and Lewy AJ. Entrainment of free-running circadian rhythms by melatonin in blind people. *N Engl J Med*.2000; 343: 1070-1077.
- Mazzoccoli G, Pazienza V, and Vinciguerra M. Clock genes and clock-controlled genes in the regulation of metabolic rhythms. *Chronobiol Int*.2012; 29: 227-251.
- Brigelius-Flohe R and Flohe L. Basic principles and emerging concepts in the redox control of transcription factors. *Antioxid Redox Signal*, 2011; 15: 2335-2381.
- Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, and Telser J. Free radicals and antioxidants in normal physiological functions and human disease. *Int J Biochem Cell Biol*.2007; 39: 44-84.
- Bartosz G. Reactive oxygen species: destroyers or messengers? *Biochem Pharmacol*. 2009; 77: 1303-1315.
- Forman HJ, Maiorino M, and Ursini F. Signaling functions of reactive oxygen species. *Biochemistry*, 2010; 49: 835-842.
- Hardeland R, Coto-Montes A, and Poeggeler B. Circadian rhythms, oxidative stress, and antioxidative defense mechanisms. *Chronobiol Int* 203; 20: 921-962.
- Mates JM, Perez-Gomez C, and Nunez de Castro I. Antioxidantenzymes and human diseases. *Clin Biochem*.1999; 32: 595-603.
- Toledo JC, Jr., and Augusto O. Connecting the chemical and biological properties of nitric oxide. *Chem Res Toxicol*. May 2012; 25(5): 975-89.
- Calcerrada P, Peluffo G, and Radi R. Nitric oxide-derived oxidants with a focus on peroxynitrite: molecular targets, cellular responses and therapeutic implications. *Curr Pharm Des*. 2011; 17: 3905-3932.
- Pacher P, Beckman JS, and Liaudet L. Nitric oxide and peroxynitrite in health and disease. *Physiol Rev*.2007; 87: 315-424.
- Beckman JS and Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. *Am J Physiol*.1996; 271: C1424-C1437.
- Coto-Montes A, Boga JA, Tomas-Zapico C, Rodriguez- Colunga MJ, Martinez-Fraga J, Tolivia-Cadrecha D, Menendez G, Hardeland R, and Tolivia D. Physiological oxidative stress model: Syrian hamster Harderian glandsex differences in antioxidant enzymes. *Free Radic Biol Med*.2001; 30: 785-792.
- Martin V, Sainz RM, Mayo JC, Antolin I, Herrera F, and Rodriguez C. Daily rhythm of gene expression in rat superoxide desmutase. *Endocr*, 2003; Res 29: 83-95.
- Quay WB. Circadian and estrous rhythms in pineal melatonin and 5-hydroxy indole-3-acetic acid. *Proc Soc Exp Biol Med*.1964; 115: 710-713.
- Golombek DA and Rosenstein RE. Physiology of circadian entrainment. *Physiol Rev*. 2010; 90: 1063-1102.
- Van Someren EJ and Riemersma-Van Der Lek RF. Live to the rhythm, slave to the rhythm. *Sleep Med Rev*.2007; 11: 465-484.
- Froy O, Chapnik N, and Miskin R. The suprachiasmatic nuclei are involved in determining circadian rhythms during restricted feeding. *Neuroscience*, 2008; 155: 1152-1159.
- Meyer-Bernstein EL and Morin LP. Differential serotonergic innervation of the suprachiasmatic nucleus and the intergeniculate leaflet and its role in circadian rhythm modulation. *J Neurosci*. 1996; 16: 2097-2111.
- Mintz EM, Gillespie CF, Marvel CL, Huhman KL, and Albers HE. Serotonergic regulation of circadian rhythms in Syrian hamsters. *Neuroscience* 1997; 79: 563-569.
- Pfeffer M, Rauch A, Korf HW, and von Gall C. The endogenous melatonin (MT) signal facilitates reentrainment of the circadian system to light-induced phase advances by acting upon MT2 receptors. *Chronobiol Int*.2012; 29: 415-429.
- Saini C, Suter DM, Liani A, Gos P, and Schibler U. The mammalian circadian timing system: synchronization of peripheral clocks. *Cold Spring Harb Symp Quant Biol*.2011; 76: 39- 47.

24. Schibler U and Sassone-Corsi P. A web of circadian pacemakers. *Cell*, 2002; 111: 919-922.
25. Fanjul-Moles ML, Prieto-Sagredo J, Lopez DS, Bartolo-Orozco R, and Cruz-Rosas H. Crayfish Procambarus clarkia retina and nervous system exhibit antioxidant circadian rhythms coupled with metabolic and luminous daily cycles. *Photochem Photobiol*. 2009; 85: 78-87.
26. Kanabrocki EL, Murray D, Hermida RC, Scott GS, Bremner WF, Ryan MD, Ayala DE, Third JL, Shirazi P, Nemchausky BA, and Hooper DC. Circadian variation in oxidative stress markers in healthy and type II diabetic men. *Chronobiol Int*. 2002; 19: 423-439.
27. Krishnan N, Davis AJ, and Giebultowicz JM. Circadian regulation of response to oxidative stress in *Drosophila melanogaster*. *Biochem Biophys Res Commun*. 2008; 374: 299-303.
28. Lapenna D, De Gioia S, Mezzetti A, Porreca E, Ciofani G, Marzio L, Capani F, Di Ilio C, and Cuccurullo F. Circadian variations in antioxidant defences and lipid peroxidation in the rat heart. *Free Radic Res Commun*. 1992; 17: 187-194.
29. Toma's-Zapico C, Coto-Montes A, Martínez-Fraga J, Rodríguez-Gómez-Colunga MJ, and Tolivia D. Effects of continuous light exposure on antioxidant enzymes, porphyric enzymes and cellular damage in the Harderian gland of the Syrian hamster. *J Pineal Res*. 2003; 34: 60-68.
30. Perry JJ, Shin DS, Getzoff ED, and Tainer JA. The structural biochemistry of the superoxide dismutase. *Biochim Biophys Acta*. 2010; 1804: 245-262.
31. Buettner GR. Superoxide dismutase in redox biology: the roles of superoxide and hydrogen peroxide. *Anticancer Agents Med Chem*. 2011; 11: 341-346.
32. Diaz-Munoz M, Hernandez-Munoz R, Suarez J, and Chagoya de Sanchez V. Day-night cycle of lipid peroxidation in rat cerebral cortex and their relationship to the glutathione cycle and superoxide dismutase activity. *Neuroscience*, 1985; 16: 859-863.
33. Sani M, Sebai H, Gadacha W, Boughattas NA, Reinberg A, and Mossadok BA. Catalase activity and rhythmic patterns in mouse brain, kidney and liver. *Comp Biochem Physiol B Biochem Mol Biol*. 2006; 145: 331-337.
34. Coto-Montes A, Tomas-Zapico C, Rodriguez-Colunga MJ, Tolivia-Cadrecha D, Martinez-Fraga J, Hardeland R, and Tolivia D. Effects of the circadian mutation 'tau' on the Harderian glands of Syrian hamsters. *J Cell Biochem*. 2001; 83: 426-434.
35. Singh R, Singh RK, Tripathi AK, Cornelissen G, Schwartzkopff O, Otsuka K, and Halberg F. Chronomics of circulating plasma lipid peroxides and anti-oxidant enzymes and other related molecules in cirrhosis of liver. In the memory of late Shri Chetan Singh. *Biomed Pharmacother*, 2005; 59 Suppl 1: S229- S235.
36. Singh R, Singh RK, Mahdi AA, Kumar A, Tripathi AK, Rai R, Singh U, Cornelissen G, Schwartzkopff O, and Halberg F. Circadian periodicity of plasma lipid peroxides and other anti-oxidants as putative markers in gynaecological malignancies. *In Vivo*. 2003; 17: 593-600.
37. Sahar S and Sassone-Corsi P. Metabolism and cancer: the circadian clock connection. *Nat Rev Cancer*, 2009; 9: 886-896.
38. O'Neill JS and Reddy AB. Circadian clocks in human red blood cells. *Nature*, 2011; 469: 498-503.
39. Lynch HJ, Wurtman RJ, Moskowitz MA, Archer MC, and Ho MH. Daily rhythm in human urinary melatonin. *Science*. 1975; 187: 169-171.
40. Bridges AB, Scott NA, McNeill GP, Pringle TH, and Belch JJ. Circadian variation of white blood cell aggregation and free radical indices in men with ischaemic heart disease. *Eur Heart J*, 1992; 13: 1632-1636.
41. Mannervik B. The enzymes of glutathione metabolism: and overview. *Biochem Soc Trans*. 1987; 15: 717-718.
42. Atkinson HJ and Babbitt PC. Glutathione transferases are structural and functional outliers in the thioredoxin fold. *Biochemistry*, 2009; 48: 11108-11116.
43. Hayes JD, Flanagan JU, and Jowsey IR. Glutathione transferases. *Annu Rev Pharmacol Toxicol*. 2005; 45: 51-88.
44. Floyd RA. Antioxidant, oxidative stress and degenerative neurological disorders. *Proc Soc Exp Biol Med*. 1999; 222: 236-245.
45. Fukagawa NK. Aging: is oxidative stress a marker or is it causal? *Proc Soc Exp Biol Med*. 1999; 222: 293- 298.
46. Kasapoglu M, Ozben T. Alterations of antioxidant enzymes and oxidative stress markers in aging. *Exp Gerontol*, 2001; 36: 209-220.

47. Nohl H. Involvement of free radicals in ageing; a consequence or cause of senescence. *Br Med Bull*.1993; 49: 653-667.
48. Dubey A, Forster MJ, Lal H, Sohal RS. Effect of age and caloric intake on protein oxidation in different brain regions and on behavioral functions of the mouse. *Arch Biochem Biophys*, 1996; 333: 189-197.
49. Forster MJ, Sohal BH, Sohal RS. Reversible effects of long-term caloric restriction on protein oxidative damage. *J. Gerontol Sr. A- Biol. Sci. Med. Sci*.2000; 55: B522-529.
50. Rebrin I, Forster MJ, Sohal RS. Effects of age and caloric intake on glutathione redox state in different brain regions of CG7BL/6 and DA/2 mice. *Brain Res*.2007; 1127: 10-18.
51. Delfs JM, Kong H, Mestek A, Chen Y, Yu L, Reisine T, Chesselet M-F. Expression of *mu* opioid receptor mRNA in rat brain: an *in-situ* hybridization study at the single cell level. *J Comp Neurol*.1994; 345: 46- 68.
52. Mansour A, Khachaturian H, Lewis ME, Akil H, Watson SJ. Anatomy of C.N.S. opioid receptors. *Trends Neurosci*.1988; 11: 308-314.
53. Pasternak GW. Pharmacological mechanisms of opioid analgesics. *Clin Neuropharm* 1993; 16: 1-18.
54. Zastawny RL, George SR, Nguyen T, Cheng R, Tsatsos J, O'Dowd BF. Cloning, characterization and distribution of mu opioid receptors in rat brain. *J Neurochem*, 1994; 62: 2099-2105.
55. Basbaum, AI.; Jessell, TM. The perception of pain. In: Kandel, ER, Schwartz, JH, Jessell, TM., editors. *Principles of Neural Science*. McGraw Hill; New York, 2000; 472-490.
56. Crisp T, Minus TO, Coleman ML, Giles JR, Cibula C, Finnerty EP. Aging, peripheral nerve injury and nociception: Effects of the antioxidant 16-desmethyltirilazad. *Behav. Brain Res*. 2006; 166: 159-165.
57. Hacimuftuoglu A, Handy CR, Goettl VM, Lin CG, Dane S, Stephens RL Jr. Antioxidants attenuate multiple phases of formalin-induced nociceptive response in mice. *Behav. Brain Res*.2006; 173: 211-216.
58. Raut A and Ratka A. Oxidative damage and sensitivity to nociceptive stimulus and opioids in aging rats. *Neurobiol Aging*, 2009; 30 (6): 910-919.

Memory and Physiological Basis of Gender Variations

Preeti Gupta¹, Amit Kant Singh¹, Santosh Kumar Sant¹, Kirti Jaiswal¹, Anamika Singh¹, ANG Hyder¹, Nand Kishor Gupta², Sunita Mittal³, Neeru Garg³, Satendri Devi³, Nidhi Jain³

Abstract

Memory is our ability to encode, store, retain and subsequently recall information and past experiences in the human brain. In order to process and store memory, first it has to be 'fed' with bits and pieces of information, most of which are sourced from auditory and visual bodily facilities. Memory is of two types: short term memory and long term memory. Hippocampus is responsible for immediate memory and for selecting the experiences which need to be transferred to the long term memory.

Keywords: Memory; Short term Memory; Long Term Memory; Hippocampus.

Introduction

Memory is our ability to encode, store, retain and subsequently recall information and past experiences in the human brain [1]. In order to process and store memory, first it has to be 'fed' with bits and pieces of information, most of which are sourced from auditory and visual bodily facilities [2]. Memory is of two types: short term memory and long term memory. Hippocampus is responsible for immediate memory and for selecting the experiences which need to be transferred to the long- term memory [3].

Short term and Long term Memory

Short term memory can be defined as an initial memory buffer that allows us to hold a few units of information for a short period of time while we determine their importance [4]. Short term memory is limited in capacity which could vary in time from seconds to minutes and readily available to conscious awareness. Because of the limited capacity of short term memory, it may work better to rapidly combine the related pieces of information into larger units based on similarities, differences or other patterns

this combining process is called chunking and it is important to make short term memory work more effectively [5].

The fundamental difference between short term and long term memory is that, short term memory involves merely modulation of synaptic transmission by modification of pre-existing proteins. On the other hand, long term memory involves formation of new synaptic connection and synthesis of new protein. The link between short term memory and long term memory, at least in some cases, is cyclic AMP, which can induce only modification of existing proteins in a short time, but if elevation of cyclic AMP is persistent, it can phosphorylate transcriptional regulator proteins, and thereby influence synthesis of new proteins [3].

Short memory is an example of how the brain processes information differently when it is either received through visual stimuli or through auditory stimuli, which are both sensory processes [6]. What we hear and see enters our consciousness and are either accepted or disregarded. Thus accepted information is processed in the brain and stored as memory. Disregarded information is soon forgotten. There are also certain factors that affect auditory and visual memory such as hearing and visual

Author's Affiliations: ¹Department of Physiology, ²Department of Anatomy, UP RIMS & R, Saifai, Etawah, 206130, India. ³Department of Physiology, SGRRIM & HS, Dehradun, India.

Corresponding Author: Nidhi Jain, Professor, Department of Physiology, SGRRIM & HS, Dehradun, India.
E-mail:5124lovely@gmail.com

impairments, emotional and physical conditions. To ensure that the brain is effective in processing information, it is important that it has the capability to hold specific pieces of data and information and view it as a whole. It must do this by arranging the information into a particular order. Once this order is established, the brain can then form associations between certain elements, piece them together and form a complete memory out of the auditory and visual memories it processes [2].

Short term memory is formed by both auditory and visual information but cortex can process more auditory than visual information at one time, especially when broken into manageable "chunks" thus in the short term memory, auditory information plays a more important role than visual information. Although we usually remember only about seven items in the short term, we can remember longer strings of information, such as telephone or social security numbers, by breaking them into chunks. The way that different sensations are recorded in the brain makes the most difference in how short term memories are formed. Visual data, sensed by the eyes, must be processed by the visual cortex before it is stored in memory and auditory data sensed by the ears and processed by the auditory cortex. Short term memories form largely in the prefrontal cerebral cortex, an area of the brain that continues to process information such as image and speech [7].

Gender and Memory

On the basis of various theories to determine which gender has better short term memory or better capacity to retain recent events; many conclusions are being contemplated. Intellectually, genders seem to be fairly equal; however, cognitive abilities differ greatly among males and females. Because thought processes occur in the brain, it is not surprising that males and females could differ how they process information. The men have better short term memory for certain instances such as logical manoeuvres like direction, electronic circuitry, mathematical reasoning and navigation etc [8].

Women, on average, excel on tests that measure recall of words and on tests that challenge the person to find words that begin with a specific letter or fulfil some other constraint. They also tend to be better than men at rapidly identifying matching items and performing certain precision manual tasks, such as placing pegs in designated holes on a board. Whereas women perform better than men in both verbal memory and verbal fluency we find a large difference in memory [9].

References

1. <http://en.wikipedia.org/wiki/Memory>
2. Matt W. Remembering with eyes and ears auditory versus visual memory. <http://www.easybib.com/Research/Index> Dec 25, 2007.
3. Bijlani RL, Manjunatha S. Physiology of speech, learning, and memory. In: Understanding medical physiology, 4TH ed. Jaypee publication; India: 2011; 702-38.
4. Kloet DER, Vregdenhil E, Oitzl MS, Joel M. Brain corticosteroid receptor balance in health and disease. *J Endocrine Review* 1998; 19: 2696-301.
5. Üster S. The Role of Brain Based Gender Differences on the Vocabulary Learning and Consolidation Skills and Strategies. *J Graduate School of Social Sciences*, 2008; 1-169.
6. Hilton E. Differences in visual and auditory short term memory. *J Undergraduate Research* 2001; 4.
7. Levenberg L. Difference Between Short Term Auditory and Visual Memory. http://www.ehow.com/info_8568100_difference-term-auditory-visual-memory.html.
8. Nirmal A. Does gender affect short term memory. <http://www.buzzle.com/article/accesedjuly212009>.
9. Kimura D. Sex difference in the brain. *J Scientific American*, 2002; 32-7.

Insulin Resistance in Type 2 Diabetes Mellitus & Scope of Triglyceride / High Density Lipoprotein-C Ratio as a Marker of Insulin Resistance in Patients with Metabolic Syndrome

Zingade

Insulin resistance is a hallmark of Metabolic Syndrome. It is important to identify insulin resistance at an early stage of Diabetes mellitus. There are many indicators used traditionally for measurement of insulin resistance like HOMA-IR (Homeostasis Model Assessment of Insulin Resistance); QUICKI (Quantitative Insulin Sensitivity Check Index) and ratio of Triglyceride / High density Lipoprotein-C. There is a positive correlation between HOMA-IR and TG/HDL-C ratio and negative correlation between QUICKI and TG/HDL-C ratio. In following discussion; the pathophysiology of metabolic syndrome and it's relation with Insulin Resistance is discussed.

Pathophysiology of Insulin Resistance in Metabolic Syndrome

Patients with type 2 DM share a pathophysiology that involves pancreatic β cells, liver and peripheral target tissues namely skeletal muscles, adipose tissue. Both β cell dysfunction and insulin insensitivity result in hyperglycemia. Glucose uptake in skeletal muscles requires insulin binding to cell receptors; which facilitates movement of glucose across cell membrane. The glucose is then utilized as a source of energy via glycolysis to produce lactate or mitochondrial oxidation or is stored as glycogen in the cell. Hormones and/or cytokines produced by adipose tissue also plays an important role in glucose and fat metabolism and are likely to contribute in pathophysiology of DM. Free Fatty acids play an essential role in Type 2 DM by inducing insulin resistance and facilitating excessive glucose production by liver.

Author's Affiliations: Professor & H.O.D. (BJMC, Pune) Maharashtra State.

Corresponding Author: U. S. Zingade, 10a, Mohite Township, Sinhgad Road, Near Santosh Hall Hingne, Khurd, Pune-411051.

E-mail: uszingade@gmail.com

Normal Physiology of Glucose Homeostasis

Maintenance of glucose levels depends on feedback between blood cells and pancreatic hormones i.e., glucose and insulin levels. Glucose is produced by liver by glycogenolysis and neoglucogenesis. Approximately 70-80% of the glucose produced by liver is utilized by brain (Insulin independent tissue) and other insulin sensitive tissues i.e. intestinal mucosa and RBCs, Retina, Skeletal muscles and Fat require insulin for utilization of glucose. Thus at the hepatic level, Hepatic glucose output (HGO) is regulated by:

- (i) Insulin, glucagon, catecholamine, glucose level itself on short term basis (minutes-hours).
- (ii) GH, T3, T4, Glucocorticoids on long term basis (hours to days).

Insulin exerts an inhibitory effect on HGO. Thus decrease in insulin levels causes slow rise in HGO. If the feedback loop is intact, as serum glucose level rises, insulin secretion also rises and glucagon level decreases. If insulin resistance develops, a new steady-state higher glucose level is reached.

At the Cellular level

Insulin binds with cell receptor which activates receptor's tyrosine kinase activity. This activation triggers a molecular phosphorylation signaling a cascade reaction. Insulin receptor substrate 1 & 2 activation causes activation of:

- (i) PI 3 kinase (phosphatidyl inositol 3 kinase),
- (ii) CAP / cbl / Tc 10 pathway (CAP- cCbl associated protein),

(iii) ERK pathway (extracellular signal regulated kinase).

Ultimate result of the activation is translocation of the GLUT 4 protein from cytoplasm to cell membrane which facilitates influx of glucose into the cell for subsequent metabolism.

Natural History and Epidemiology of Insulin Resistance

Insulin resistance is present in approximately 90% of patients with type 2 diabetes. IR is often associated with metabolic abnormalities (known as metabolic syndrome, dysmetabolic syndrome, insulin resistance syndrome, Syndrome X, Reaven's syndrome). This syndrome is identified by hypertension, hyperglycemia, glucose intolerance, dyslipidemia, abdominal (central) obesity, endothelial dysfunction, impaired vascular reactivity, vascular inflammation and impaired fibrinolysis. Some or all of these components may be present in any given patient.

Even though associated with Metabolic Syndrome insulin resistance also occurs in a person who is not diabetic (up to 25% of non-diabetic patients have lower degree of insulin sensitivity).

Although more common in older people, there is an increasing number of children and teenagers having insulin resistance. Generally Insulin resistance progresses and worsens over a period of years. With worsening of insulin resistance, insulin is less able to dispose of glucose from blood. In order to maintain euglycemia, there is compensatory hyperinsulinemia. However β cells gradually decrease functionally resulting in prediabetes and then type 2 Diabetes.

For clinicians, it is challenge to identify persons who are at risk as early as possible where interventions are likely to be more effective.

Insulin Resistance

Insulin resistance is defined as a condition of low insulin sensitivity in which the ability of insulin to lower circulating glucose is impaired. Along with genetic determinants other factors like obesity, aging, elevated FFA and hyperglycemia contribute to insulin resistant state. Biochemical defects that provoke insulin resistance involve impaired insulin signaling and reduction of glucose transport in insulin sensitive tissue.

Hepatic Insulin Resistance

We have seen that basal rate of Hepatic glucose output (HGO) depend on insulin levels which suppresses HGO levels. So the levels of HGO are increased in type 2 DM. The degree of HGO is positively and strongly related to degree of fasting hyperglycemia. This suggests that HGO has a major role in maintaining morning glucose levels. However, if given enough insulin, HGO can be completely suppressed. This is consistent with a decrease in hepatic insulin receptor number.

After meals glucose and insulin enter the liver via the portal circulation and change liver function from glucose producing organ in fasting state to that of storage. Glucose is stored in the form of glycogen but because liver is insensitive to glucose and insulin, there is delayed suppression of HGO suppression in type 2 DM. This is a major contributor to post-prandial hyperglycemia observed in prediabetic and insulin resistance cases.

Peripheral Insulin Resistance

In type 2 DM peripheral insulin resistance is also exhibited in target tissues like skeletal muscles. It is observed that glucose disposal rate is reduced by at least 50% in DM. There is decreased number of insulin receptors, as well as a post binding defect of insulin action.

In normal subjects after cellular uptake, glucose undergoes both oxidative and non-oxidative metabolism. At low insulin levels the pathway of glucose utilization is glucose oxidation (using glucose as a metabolic fuel). At higher insulin conc. glucose is disposed by glycogen synthesis (i.e. glucose is stored). Glycogen synthesis is a major pathway of non-oxidative glucose metabolism. In type 2 DM the efficiency of glucose disposal is reduced by both these processes but primarily by non-oxidative pathway.

Non-Insulin mediated Glucose Uptake

Apart from oxidative and non-oxidative pathways of glucose utilization by insulin independent glucose uptake non-insulin mediated glucose uptake (NIMGU) plays an important role in the rate of glucose disappearance. About 80% of tissue glucose uptake in fasting state occurs via insulin independent mechanisms primarily in CNS and to a much lesser degree in muscles and adipose tissues.

The efficiency of glucose disposal by NIMGU in both normal controls and type 2 DM has been observed to be equal; however the absolute basal rate of NIMGU is higher in type 2 DM which plays an essential role in pathogenesis of DM.

Adipose Tissue

Proteins secreted by adipocytes that act as signaling molecules. Previously adipose tissue was simply regarded as a simple site of fat deposition but now it is regarded as an endocrine gland concerned with release of adipokines or adipocytokines. These are potential insulin sensitizers.

- (i) Adiponectin (one of the adipokines) acts on skeletal muscles, blood vessels, liver. It causes decreased IC fat and triglycerides. Its levels are decreased in type 2 DM. It positively and strongly correlates with HDL levels.
- (ii) Leptin similarly improves glycemic control and is necessary to maintain normal metabolic state.

Obesity, Adipose tissue and Metabolic syndrome

Obesity is increasing in incidence due to imbalance of food intake and energy balance. As body weight increases insulin resistance increases. Dyslipidemia associated with Metabolic Syndrome is strongly related to the higher incidence of insulin resistance. These observations suggest that fat produces a chemical signal that acts on the muscle and liver to increase insulin resistance. Evidence for this includes blocking adipose tissue glucose transporters selectively (GLUT 2). It results in decreased glucose transport in muscles too. One possible signal in fat is FFA which is increased in many insulin resistant states. Fat deposits act as endocrine tissues, secreting adipokines some of which decrease and some increase insulin resistance. Leptin and adipokines for example decrease insulin resistance whereas resistin increases insulin resistance.

Adipose tissue now is recognized as a 4th musketeer along with muscles, liver and pancreas.

Causes of Insulin Resistance

- (i) Abnormal insulin molecule.
- (ii) An excessive amount of circulating antagonist.

(iii) Target tissue defect commonest in type 2 DM- Defects in insulin receptors.

- (a) *Mutations of receptor gene produce different syndromes associated with defective receptors like:*
 - (i) *Rabson Mendenhall Syndrome-* including tooth, nail, and pineal growth abnormalities.
 - (ii) *Type A insulin resistance-* In young females with polycystic ovarian syndrome.
 - (iii) *Presence of antibodies against insulin-* Associated with acanthosis nigricans and other autoimmune phenomenon.
- (b) *Receptors are rarely abnormal but it is post receptor pathway that is more commonly defective:*
 - (i) There is decreased capacity of GLUT 4 to translocate glucose.
 - (ii) Defective glycogen synthesis is likely to be present.
 - (iii) Defective signals- tyrosine kinase.

Intra-abdominal fat is more resistant to insulin than peripheral fat resulting in increased lipolysis and FFA levels, worsening the insulin resistance.

Measurement of Insulin Resistance

HOMA-IR (homeostasis Model Assessment of Insulin Resistance)

$$\text{HOMA-IR} = \frac{\text{Fasting serum insulin} \times \text{Fasting serum glucose}}{405}$$

1. QUICKI (Quantitative Insulin Sensitivity Check Index)

$$1$$

$$\text{QUICKI} = \log(\text{fasting serum insulin}) + \log(\text{fasting glucose})$$

2. TG/HDL Ratio- greater than 3 is incidence of insulin resistance.

To summarize, there is an increasing incidence of insulin resistance with increasing weight, obesity acting as a main culprit due to imbalance of food intake and energy output. Metabolic Syndrome is associated with dyslipidemia which plays an essential role in increasing insulin resistance especially in muscles and liver.

Subscription Form

I want to renew/subscribe international class journal “**International Physiology**” of Red Flower Publication Pvt. Ltd.

Subscription Rates:

- India: Institutional: Rs.6500, Individual: Rs.5850, Life membership (10 years only for individuals) Rs.58500.
- All other countries: \$240

Name and complete address (in capitals):

Payment detail:

Demand Draft No.
Date of DD
Amount paid Rs./USD

1. Advance payment required by Demand Draft payable to Red Flower Publication Pvt. Ltd. payable at Delhi.
2. Cancellation not allowed except for duplicate payment.
3. Agents allowed 10% discount.
4. Claim must be made within six months from issue date.

Mail all orders to

Red Flower Publication Pvt. Ltd.

48/41-42, DSIDC, Pocket-II, Mayur Vihar Phase-I, Delhi - 110 091 (India)
Tel: 91-11-22754205, 45796900, Fax: 91-11-22754205
E-mail: redflowerppl@vsnl.net, redflowerppl@gmail.com
Website: www.rfppl.co.in

New Teaching Methodologies

Harkirat Kaur

The system of medical education is changing over the years. The article discusses and compares the traditional method of teaching and newer trends to produce better doctors.

The lectures delivered to medical students have usually been to large classes of students on certain rigid topics which have not seen much change over the years. This is very passive form of teaching where the content of lecture is dependent on the extent of knowledge of Lecturer.

The main stay of medical teaching has been the lectures. This is very passive form of teaching. Students are actively participating by series of tutorial discussions and problem solving sessions.

Comprehensive knowledge of physiology is essential for grasping the principles of pathology and pharmacology adequately to avoid incorrect and inadequate practice of teaching. Medical schools are starting to put small groups and help them solve real problems they will face in treating patients. Trend of problem based learning in medical schools will have ripple effects throughout education. Teachers must relinquish lecturers and they must be proficient in answering questions, and helping students frame good questions, formulate problems, and make effective decisions [Aspy et al 1993].

The essence of problem centered learning, Schmidt [1983] summarized PBL in terms of three essential principles:

1. Activation of prior learning via the problem.
2. Encoding specificity such that the resemblance of problem intended application domains facilitates.
3. Elaboration of knowledge via discussion and reflection to consolidate learning experience.

Author's Affiliations: Professor, Hod Physiology, Sri Guru Ram Das Institute of Medical Sciences & Research Mehta Road, Po Vallah, Amritsar - 143501. Punjab, India.

Corresponding Author: **Harkirat Kaur**, Professor, Hod Physiology, Sri Guru Ram Das Institute of Medical Sciences & Research Mehta Road, Po Vallah, Amritsar - 143501. Punjab, India.
E-mail: Kaur6767@gmail.com

Problem based learning students seemed to have experienced a more flexible, meaningful and enjoyable education compared with their counterparts from the traditional program.

In this method, students would be divided into smaller groups and supervised by a tutor. Each group would be given a particular problem to solve, this would usually be in the form of a clinical problem, the form in which a patient would actually present to the clinician. The student would then be asked to study about problem and discuss among themselves. The role of the tutor would be that of a facilitator rather than imparting information.

More attention should be paid to comprehennd the subject than on his capacity to remember factual details.

Case based learning is a brief self contained exercise that is designated to introduce medical students and faculty to one of the methods which promote active self directed learning of pre clinical medical disciplines (Schwartz et al 1987).

Incorporating small groups into lectures can therefore be beneficial for promoting the discussion of ideas and concepts for examining issues and presenting alternatives for encouraging the application of new concepts and for fostering problem solving and communication skills. Group discussion can also give the teacher an additional way of assessing student attitude and beliefs.

Questioning the audience is probably one of the most frequently used interactive techniques.

Questions can stimulate interest arouse attention serve as an ice breaker and provide valuable feed back to the student and teacher alike (Knox 1986).

Format of medical education has changed over the years, whereas every opportunity should be taken to

teach the student. More attention should be paid to his comprehension of the subject than on his capacity to remember factual details. The teacher's job would rather be to guide students to look for their own answers and solutions.

The role of the medical teacher has changed enormously from an active one sage in centre stage to a fountain of knowledge to a facilitator a mentor and guide.

As per new paradigm medical students manage their own learning that continues as lifelong self education process.

References

1. Aspy D N. et al, What doctors can teach teachers about problem based learning, educational leadership, 1993; 50: 22-24.
2. Eagle C J et al, Effects of tutors with case expertise on problem based learning issues. Academic medicine, 1992; 67: 465-469.
3. Schmidt H G. Problem based learning; rationale and description. Medical education, 1983; 17: 11 -16.
4. Schwartz P L et al, The case based learning day; Introducing problem based learning into a traditional medical curriculum. 1987; 9: 275-280.
5. Clever L H. Some things have not changed. An Intern Medicine, 2000; 132; 85- 89.
6. Abrahamson S, Baron J, Elstein A S. Continuing medical education for life, Eight principles. Acad Medicine, 1999; 74(12): 1288- 94.
7. Chaudhuri medical educations: time for change. Journal of Indian medical association. 2010; 108: 168-169.

Molecular Basis of Diabetic Peripheral Neuropathy: Role of Oxidative Stress

Nisha Rani Jamwal¹, Senthil P Kumar.²

Abstract

It is well known that hyperglycemia is the predominant manifestation in diabetes mellitus, and the most common complication of DM is diabetic peripheral neuropathy (DPN). The aim of this short communication was to provide an insightful overview of the molecular basis of DPN by assimilating evidence on the role of oxidative stress. Existing evidence indicated that oxidative stress might be a final common pathway in the development of diabetic neuropathy, and that antioxidants could prevent or reverse hyperglycemia-induced nerve dysfunction. The effects of antioxidants were hypothesized to be mediated by correction of nutritive blood flow, and endoneurial oxidative state; and antioxidant drugs such as alpha-lipoic acid and vitamin E were therapeutically indicated.

Keywords: Molecular Endocrinology; Molecular Neurology; Diabetic Neuropathy; Oxidative Stress.

It is well known that hyperglycemia is the predominant manifestation in diabetes mellitus, and the most common complication of DM is diabetic peripheral neuropathy (DPN). The aim of this short communication was to provide an insightful overview of the molecular basis of DPN by assimilating evidence on the role of oxidative stress.

Figueroa-Romero et al [1] explained that "excess glucose overloads the electron transport chain, leading to the production of super-oxides and subsequent mitochondrial and cytosolic oxidative stress. These changes include the production of advanced glycation end products, alterations in the sorbitol, hexosamine and protein kinase C pathways and activation of poly-ADP ribose polymerase".

Pop-Busui et al [2] reviewed the impact of hyperglycemia-induced oxidative stress in the development of diabetes-related neural dysfunction and explained, "Oxidative stress occurs when the balance between the production of reactive oxygen species (ROS) and the ability of cells or tissues to detoxify the free radicals produced during metabolic activity is tilted in the favor of the former. Although hyperglycemia plays a key role in inducing oxidative stress in the diabetic nerve, the contribution of other

factors, such as endoneurial hypoxia, transition metal imbalances, and hyperlipidemia have been also suggested. The possible sources for the overproduction of ROS in diabetes are widespread and include enzymatic pathways, auto-oxidation of glucose, and mitochondrial superoxide production".

Greene et al [3] established that "glucose-derived oxidative stress played a central role, linking together with the aldose reductase and glycation pathways, vascular dysfunction, and impaired neurotrophic support. Vincent et al (2004) in their review explored the concept that diabetes overloaded glucose metabolic pathways, resulting in excess free radical production and oxidative stress. Proteins that were damaged by oxidative stress in turn bear decreased biological activity leading to loss of energy metabolism, cell signaling, transport, and, ultimately, to programmed cell death or apoptosis.

Negi et al [4] postulated that excessive production of reactive oxygen species was a key component in the development and progression of diabetic neuropathy. Therapeutic strategies utilizing a more targeted approach like focusing on Nrf2 (a transcription factor modulating oxidative stress)

Author's Affiliations: ¹ Senior Physiotherapist, Department of Physiotherapy, Fortis Super Speciality hospital, Phase-VIII, Mohali, Punjab ²Professor & Principal, Maharishi Markandeshwar Institute of Physiotherapy and Rehabilitation (Maharishi Markandeshwar University), Mullana - Ambala-133207, Haryana.

Corresponding Author: Senthil P. Kumar, Professor & Principal, Maharishi Markandeshwar Institute of Physiotherapy and Rehabilitation (Maharishi Markandeshwar University), Mullana- Ambala-133207, Haryana, India

E-mail: senthilparamasivamkumar@gmail.com

might provide an enthralling avenue to optimize neuroprotection in diabetes and diabetic neuropathy.

Nazýroðlu et al [5] reviewed the role of Ca (2+) signaling through cation channels and oxidative stress on diabetic neuropathic pain in sensory neurons, and found "the polyol pathway, advanced glycation end products, oxidative stress, protein kinase C activation, neurotrophism, and hypoxia and deficits in insulin trigger alterations of sensory neurone phenotype".

Van Dam [6] emphasized that oxidative stress might be a final common pathway in the development of diabetic neuropathy, and that antioxidants could prevent or reverse hyperglycaemia-induced nerve dysfunction. The effects of antioxidants were hypothesized to be mediated by correction of nutritive blood flow, and endoneurial oxidative state; and antioxidant drugs such as alpha-lipoic acid and vitamin E were therapeutically indicated.

References

1. Figueroa-Romero C, Sadidi M, Feldman EL. Mechanisms of disease: the oxidative stress theory of diabetic neuropathy. *Rev Endocr Metab Disord*. 2008; 9(4): 301-14.
2. Pop-Busui R, Sima A, Stevens M. Diabetic neuropathy and oxidative stress. *Diabetes Metab Res Rev*. 2006; 22(4): 257-73.
3. Greene DA, Stevens MJ, Obrosova I, Feldman EL. Glucose-induced oxidative stress and programmed cell death in diabetic neuropathy. *Eur J Pharmacol*. 1999; 375(1-3): 217-23.
4. Negi G, Kumar A, Joshi RP, Sharma SS. Oxidative stress and Nrf2 in the pathophysiology of diabetic neuropathy: old perspective with a new angle. *Biochem Biophys Res Commun*. 2011; 408(1): 1-5.
5. Nazýroðlu M, Dikici DM, Dursun S. Role of oxidative stress and Ca²⁺ signaling on molecular pathways of neuropathic pain in diabetes: focus on TRP channels. *Neurochem Res*. 2012; 37(10): 2065-75.
6. Van Dam PS. Oxidative stress and diabetic neuropathy: pathophysiological mechanisms and treatment perspectives. *Diabetes Metab Res Rev*. 2002; 18(3): 176-84.
7. Vincent AM, Russell JW, Low P, Feldman EL. Oxidative stress in the pathogenesis of diabetic neuropathy. *Endocr Rev*. 2004; 25(4): 612-28.

Manuscripts must be prepared in accordance with "Uniform requirements for Manuscripts submitted to Biomedical Journal" developed by international committee of medical Journal Editors.

Types of Manuscripts and Limits

Original articles: Up to 3000 words excluding references and abstract and up to 10 references.

Review articles: Up to 2500 words excluding references and abstract and up to 10 references.

Case reports: Up to 1000 words excluding references and abstract and up to 10 references.

Online Submission of the Manuscripts

Articles can also be submitted online from <http://www.rfppl.com> (currently send your articles through e-mail attachments).

1) First Page File: Prepare the title page, covering letter, acknowledgement, etc. using a word processor program. All information which can reveal your identity should be here. use text/rtf/doc/PDF files. Do not zip the files.

2) Article file: The main text of the article, beginning from Abstract till References (including tables) should be in this file. Do not include any information (such as acknowledgement, your name in page headers, etc.) in this file. Use text/rtf/doc/PDF files. Do not zip the files. Limit the file size to 400 Kb. Do not incorporate images in the file. If file size is large, graphs can be submitted as images separately without incorporating them in the article file to reduce the size of the file.

3) Images: Submit good quality color images. Each image should be less than 100 Kb in size. Size of the image can be reduced by decreasing the actual height and width of the images (keep up to 400 pixels or 3 inches). All image formats (jpeg, tiff, gif, bmp, png, eps etc.) are acceptable; jpeg is most suitable.

Legends: Legends for the figures/images should be included at the end of the article file.

If the manuscript is submitted online, the contributors' form and copyright transfer form has to be submitted in original with the signatures of all the contributors within two weeks from submission. Hard copies of the images (3 sets), for articles submitted online, should be sent to the journal office at the time of submission of a revised manuscript. Editorial office: **Red Flower Publication Pvt. Ltd., 48/41-42, DSIDC, Pocket-II, Mayur Vihar Phase-I, Delhi - 110 091, India, Phone: 91-11-22754205,**

45796900, Fax: 91-11-22754205, E-mail: redflowerppl@vsnl.net. Website: www.rfppl.co.in

Preparation of the Manuscript

The text of observational and experimental articles should be divided into sections with the headings: Introduction, Methods, Results, Discussion, References, Tables, Figures, Figure legends, and Acknowledgment. Do not make subheadings in these sections.

Title Page

The title page should carry

- 1) Type of manuscript (e.g. Original article, Review article, Case Report)
- 2) The title of the article, should be concise and informative;
- 3) Running title or short title not more than 50 characters;
- 4) The name by which each contributor is known (Last name, First name and initials of middle name), with his or her highest academic degree(s) and institutional affiliation;
- 5) The name of the department(s) and institution(s) to which the work should be attributed;
- 6) The name, address, phone numbers, facsimile numbers and e-mail address of the contributor responsible for correspondence about the manuscript; should be mentioned.
- 7) The total number of pages, total number of photographs and word counts separately for abstract and for the text (excluding the references and abstract);
- 8) Source(s) of support in the form of grants, equipment, drugs, or all of these;
- 9) Acknowledgement, if any; and
- 10) If the manuscript was presented as part at a meeting, the organization, place, and exact date on which it was read.

Abstract Page

The second page should carry the full title of the manuscript and an abstract (of no more than 150 words for case reports, brief reports and 250 words for original articles). The abstract should be structured and state the Context (Background), Aims, Settings and Design, Methods and Materials, Statistical analysis used, Results and Conclusions. Below the abstract should provide 3 to 10 keywords.

Introduction

State the background of the study and purpose of the study and summarize the rationale for the study or observation.

Methods

The methods section should include only information that was available at the time the plan or protocol for the study was written such as study approach, design, type of sample, sample size, sampling technique, setting of the study, description of data collection tools and methods; all information obtained during the conduct of the study belongs in the Results section.

Reports of randomized clinical trials should be based on the CONSORT Statement (<http://www.consort-statement.org>). When reporting experiments on human subjects, indicate whether the procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional or regional) and with the Helsinki Declaration of 1975, as revised in 2000 (available at http://www.wma.net/e/policy/1_7_e.html).

Results

Present your results in logical sequence in the text, tables, and illustrations, giving the main or most important findings first. Do not repeat in the text all the data in the tables or illustrations; emphasize or summarize only important observations. Extra or supplementary materials and technical details can be placed in an appendix where it will be accessible but will not interrupt the flow of the text; alternatively, it can be published only in the electronic version of the journal.

Discussion

Include summary of key findings (primary outcome measures, secondary outcome measures, results as they relate to a prior hypothesis); Strengths and limitations of the study (study question, study design, data collection, analysis and interpretation); Interpretation and implications in the context of the totality of evidence (is there a systematic review to refer to, if not, could one be reasonably done here and now?, What this study adds to the available evidence, effects on patient care and health policy, possible mechanisms)? Controversies raised by this study; and Future research directions (for this particular research collaboration, underlying

mechanisms, clinical research). Do not repeat in detail data or other material given in the Introduction or the Results section.

References

List references in alphabetical order. Each listed reference should be cited in text (not in alphabetic order), and each text citation should be listed in the References section. Identify references in text, tables, and legends by Arabic numerals in square bracket (e.g. [10]). Please refer to ICMJE Guidelines (<http://www.nlm.nih.gov/bsd/uniform-requirements.html>) for more examples.

Standard journal article

[1] Flink H, Tegelberg Å, Thörn M, Lagerlöf F. Effect of oral iron supplementation on unstimulated salivary flow rate: A randomized, double-blind, placebo-controlled trial. *J Oral Pathol Med* 2006; 35: 540-7.

[2] Twetman S, Axelsson S, Dahlgren H, Holm AK, Källestål C, Lagerlöf F, et al. Caries-preventive effect of fluoride toothpaste: A systematic review. *Acta Odontol Scand* 2003; 61: 347-55.

Article in supplement or special issue

[3] Fleischer W, Reimer K. Povidone iodine antisepsis. State of the art. *Dermatology* 1997; 195 Suppl 2: 3-9.

Corporate (collective) author

[4] American Academy of Periodontology. Sonic and ultrasonic scalers in periodontics. *J Periodontol* 2000; 71: 1792-801.

Unpublished article

[5] Garoushi S, Lassila LV, Tezvergil A, Vallittu PK. Static and fatigue compression test for particulate filler composite resin with fiber-reinforced composite substructure. *Dent Mater* 2006.

Personal author(s)

[6] Hosmer D, Lemeshow S. *Applied logistic regression*, 2nd edn. New York: Wiley-Interscience; 2000.

Chapter in book

[7] Nauntofte B, Tenovuo J, Lagerlöf F. Secretion and composition of saliva. In: Fejerskov O, Kidd EAM,

editors. *Dental caries: The disease and its clinical management*. Oxford: Blackwell Munksgaard; 2003. p. 7-27.

No author given

[8] World Health Organization. *Oral health surveys - basic methods*, 4th edn. Geneva: World Health Organization; 1997.

Reference from electronic media

[9] National Statistics Online – Trends in suicide by method in England and Wales, 1979-2001. www.statistics.gov.uk/downloads/theme_health/HSQ_20.pdf (accessed Jan 24, 2005): 7-18. Only verified references against the original documents should be cited. Authors are responsible for the accuracy and completeness of their references and for correct text citation. The number of reference should be kept limited to 20 in case of major communications and 10 for short communications.

More information about other reference types is available at www.nlm.nih.gov/bsd/uniform_requirements.html, but observes some minor deviations (no full stop after journal title, no issue or date after volume, etc).

Tables

Tables should be self-explanatory and should not duplicate textual material.

Tables with more than 10 columns and 25 rows are not acceptable.

Table numbers should be in Arabic numerals, consecutively in the order of their first citation in the text and supply a brief title for each.

Explain in footnotes all non-standard abbreviations that are used in each table.

For footnotes use the following symbols, in this sequence: *, ¶, †, ‡,

Illustrations (Figures)

Graphics files are welcome if supplied as Tiff, EPS, or PowerPoint files of minimum 1200x1600 pixel size. The minimum line weight for line art is 0.5 point for optimal printing.

When possible, please place symbol legends below the figure instead of to the side.

Original color figures can be printed in color at the editor's and publisher's discretion provided the author agrees to pay.

Type or print out legends (maximum 40 words, excluding the credit line) for illustrations using double spacing, with Arabic numerals corresponding to the illustrations.

Sending a revised manuscript

While submitting a revised manuscript, contributors are requested to include, along with single copy of the final revised manuscript, a photocopy of the revised manuscript with the changes underlined in red and copy of the comments with the point to point clarification to each comment. The manuscript number should be written on each of these documents. If the manuscript is submitted online, the contributors' form and copyright transfer form has to be submitted in original with the signatures of all the contributors within two weeks of submission. Hard copies of images should be sent to the office of the journal. There is no need to send printed manuscript for articles submitted online.

Reprints

Journal provides no free printed reprints, however a author copy is sent to the main author and additional copies are available on payment (ask to the journal office).

Copyrights

The whole of the literary matter in the journal is copyright and cannot be reproduced without the written permission.

Declaration

A declaration should be submitted stating that the manuscript represents valid work and that neither this manuscript nor one with substantially similar content under the present authorship has been published or is being considered for publication elsewhere and the authorship of this article will not be contested by any one whose name (s) is/are not listed here, and that the order of authorship as placed in the manuscript is final and accepted by the co-authors. Declarations should be signed by all the authors in the order in which they are mentioned in the original manuscript. Matters appearing in the Journal are covered by copyright but no objection will be made to their reproduction provided permission is obtained from the Editor prior to publication and due acknowledgment of the source is made.

Abbreviations

Standard abbreviations should be used and be spelt out when first used in the text. Abbreviations should not be used in the title or abstract.

Checklist

- Manuscript Title
- Covering letter: Signed by all contributors
- Previous publication/ presentations mentioned, Source of funding mentioned
- Conflicts of interest disclosed

Authors

- Middle name initials provided.
- Author for correspondence, with e-mail address provided.
- Number of contributors restricted as per the instructions.
- Identity not revealed in paper except title page (e.g. name of the institute in Methods, citing previous study as 'our study')

Presentation and Format

- Double spacing
- Margins 2.5 cm from all four sides
- Title page contains all the desired information. Running title provided (not more than 50 characters)
- Abstract page contains the full title of the manuscript
- Abstract provided: Structured abstract provided for an original article.
- Key words provided (three or more)
- Introduction of 75-100 words
- Headings in title case (not ALL CAPITALS). References cited in square brackets
- References according to the journal's instructions

Language and grammar

- Uniformly American English

- Abbreviations spelt out in full for the first time. Numerals from 1 to 10 spelt out
- Numerals at the beginning of the sentence spelt out

Tables and figures

- No repetition of data in tables and graphs and in text.
- Actual numbers from which graphs drawn, provided.
- Figures necessary and of good quality (color)
- Table and figure numbers in Arabic letters (not Roman).
- Labels pasted on back of the photographs (no names written)
- Figure legends provided (not more than 40 words)
- Patients' privacy maintained, (if not permission taken)
- Credit note for borrowed figures/tables provided
- Manuscript provided on a CDROM (with double spacing)

Submitting the Manuscript

- Is the journal editor's contact information current?
- Is the cover letter included with the manuscript? Does the letter:
 1. Include the author's postal address, e-mail address, telephone number, and fax number for future correspondence?
 2. State that the manuscript is original, not previously published, and not under concurrent consideration elsewhere?
 3. Inform the journal editor of the existence of any similar published manuscripts written by the author?
 4. Mention any supplemental material you are submitting for the online version of your article.

Contributors' Form (to be modified as applicable and one signed copy attached with the manuscript)

Instructions to Authors

Submission to the journal must comply with the Guidelines for Authors.
Non-compliant submission will be returned to the author for correction.

To access the online submission system and for the most up-to-date version of the Guide for Authors please visit:

<http://www.rfppl.co.in>

Technical problems or general questions on publishing with IP are supported by Red Flower Publication Pvt. Ltd's Author Support team (<http://www.rfppl.co.in>)

Alternatively, please contact the Journal's Editorial Office for further assistance.

Publication-in-Charge
International Physiology
Red Flower Publication Pvt. Ltd.
48/41-42, DSIDC, Pocket-II
Mayur Vihar Phase-I
Delhi - 110 091
India

Phone: 91-11-22754205, 45796900, Fax: 91-11-22754205

E-mail: redflowerppl@gmail.com, redflowerppl@vsnl.net

Website: www.rfppl.co.in

Subject Index

Title	Page No
A Study to Evaluate the Effect of Occupational Noise on Hearing Threshold in Human Resources Occupationally Engaged in Organized Sector	35
Advances in Physiological Research: Implications for Public Policy and Health - Dedicated to Dr Sambhunath De	6
Advances in Physiological Research: Implications for Public Policy and Health	7
Asphyxia and Nicotine Induced Alterations in Blood Pressure and Urine Flow: Role of Spinal Center	61
Association of Age at Menarche with BMI: A Population Based Comparative on Bengali Women	17
Circadian Oscillations of Oxidative Stress Affects Nociception Sensitivity and Opioid Induced Antinociception: A Hypothetical Preview	109
Effect of Pranava Yoga on Cardiac Output and Systemic Peripheral Resistance	99
Impact of Indian Traditional Recreational Activity on Novel Anthropometric Markers of Diabetes in Bengali Females	11
Impact of Posture on Health Status of Welders in Different MSME in West Bengal	55
Impact of Receiving Training in Football on Obesity and Physical Fitness Status: A Study in Bengali Male Adolescents	41
Indian Classical Dancing: An Approach for Obesity Management	29
Insulin Resistance in Type 2 Diabetes Mellitus & Scope of Triglyceride/High Density Lipoprotein-C Ratio as a Marker of Insulin Resistance in Patients with Metabolic Syndrome	117
Memory and Physiological Basis of Gender Variations	115
Molecular Basis of Diabetic Peripheral Neuropathy: Role of Oxidative Stress	123
Musculoskeletal Discomfort in Computer Operators of Organized Sector : Tracing The Link With Obesity Status	23
New Teaching Methodologies	121
Pedestrian Death and Injury in Road Accidents in Kolkata in Last Decade: A Major Public Health Challenge	69
Predictability of a Set of Physiological Variables form a Set of Anthropometric Variables for a Data Set from Fishermen	49
Relationship between Basal Metabolic Rate and Body Fat Percentage in Obese and Non-obese Females: A Comparative Study	85
Relationship between Big Five Personality Traits and Total Peripheral Lymphocyte Count (TPLC)	103
The Involvement of ANS in Neck Shoulder Pain and Low Back Pain	91
The Unforgettable Contribution of Forgotten Scientist Dr SN De	8

Author Index

Name	Page No	Name	Page No
Aaditya Katyal	91	Ghosh Kuntal	69
Abhay Elhence	91	Harkirat Kaur	121
Adhikari Prabha	123	Jeganathan	123
Amit Kant Singh	109	Jhuma Sarkar	17
Amit Kant Singh	115	Kailash Chandra Malhotra	5
Anamika Singh	115	Kirti Jaiswal	115
ANG Hyder	115	Kumar Senthil P.	123
Arun Goel	109	Madhumita Debnath	17
Babulal Seal	49	Manoj K. Chakrabarti	6
Baidyanath Pal	49	Mondal Prosun	69
Baijayanti Baur	17	Mukherjee Shankarashis	11
Banerjee Debamalya	29	Mukherjee Shankarashis	23
Banerjee Debamalya	55	Mukherjee Shankarashis	29
Banerjee Neepa	11	Mukherjee Shankarashis	35
Banerjee Neepa	23	Mukherjee Shankarashis	41
Banerjee Neepa	29	Mukherjee Shankarashis	55
Banerjee Neepa	35	Mukherjee Shankarashis	69
Banerjee Neepa	41	Nagashree V.	85
Banerjee Neepa	69	Nand Kishor Gupta	115
Bhattacharjee Satabdi	41	Narsingh Verma	109
Brig. T. Prabhakar	109	Nausheen Rumana	85
Chakraborti Biswanath	29	Neeru Garg	115
Chaterjee Surjani	41	Nidhi Jain	115
Chatterjee Ayan	23	Preeti Gupta	115
Chatterjee Ayan	29	Rajesh K. Sharma	91
Chatterjee Ayan	35	Ramji Singh	109
Chatterjee Ayan	41	Revathi Devi M. L.	85
Chatterjee Sandipan	11	Sadavarte Sahebrao	103
Chatterjee Sandipan	23	Sanchayita Sadhu	49
Chatterjee Sandipan	29	Sandip Kumar Sinha	61
Chatterjee Sandipan	35	Santosh Kumar Sant	109
Chatterjee Sandipan	69	Santosh Kumar Sant	115
Chatterjee Surjani	11	Santra Tanaya	23
Chatterjee Surjani	23	Santra Tanaya	35
Chatterjee Surjani	29	Satendri Devi	115
Chatterjee Surjani	35	Shankarashis Mukherjee	7
Chatterjee Surjani	69	Shankarashis Mukherjee	8
Das Suman	55	Sharad Jain	99
De Santanu	11	Sunita Mittal	115
De Santanu	41	Sunita Nighute	103
Ghosh Kuntal	11	Zingade	117

Revised Rates for 2016 (Institutional)

Title	Frequency	Rate (Rs): India	Rate (\$):ROW
Dermatology International	2	5000	500
Gastroenterology International	2	5500	550
Indian Journal of Agriculture Business	2	5000	500
Indian Journal of Anatomy	3	8000	800
Indian Journal of Ancient Medicine and Yoga	4	7500	750
Indian Journal of Anesthesia and Analgesia	2	7000	700
Indian Journal of Anthropology	2	12000	1200
Indian Journal of Biology	2	4000	400
Indian Journal of Cancer Education and Research	2	8500	850
Indian Journal of Communicable Diseases	2	8000	800
Indian Journal of Dental Education	4	4500	450
Indian Journal of Forensic Medicine and Pathology	4	15500	1550
Indian Journal of Forensic Odontology	2	4500	450
Indian Journal of Genetics and Molecular Research	2	6500	650
Indian Journal of Law and Human Behavior	2	5500	550
Indian Journal of Library and Information Science	3	9000	900
Indian Journal of Maternal-Fetal & Neonatal Medicine	2	9000	900
Indian Journal of Medical & Health Sciences	2	6500	650
Indian Journal of Obstetrics and Gynecology	2	7000	700
Indian Journal of Pathology: Research and Practice	2	11500	1150
Indian Journal of Plant and Soil	2	5500	550
Indian Journal of Preventive Medicine	2	6500	650
International Journal of Food, Nutrition & Dietetics	2	5000	500
International Journal of History	2	6500	650
International Journal of Neurology and Neurosurgery	2	10000	1000
International Journal of Political Science	2	5500	550
International Journal of Practical Nursing	3	5000	500
International Physiology	2	7000	700
Journal of Animal Feed Science and Technology	2	4100	410
Journal of Cardiovascular Medicine and Surgery	2	9100	910
Journal of Forensic Chemistry and Toxicology	2	9000	900
Journal of Microbiology and Related Research	2	8000	800
Journal of Orthopaedic Education	2	5000	500
Journal of Pharmaceutical and Medicinal Chemistry	2	16000	1600
Journal of Practical Biochemistry and Biophysics	2	5500	550
Journal of Social Welfare and Management	4	7500	750
New Indian Journal of Surgery	2	7100	710
Ophthalmology and Allied Sciences	2	5500	550
Otolaryngology International	2	5000	500
Pediatric Education and Research	4	7000	700
Physiotherapy and Occupational Therapy Journal	4	8500	850
Urology, Nephrology and Andrology International	2	7000	700

SUPER SPECIALITY JOURNALS

Indian Journal of Emergency Medicine	2	12000	1200
Indian Journal of Surgical Nursing	3	5000	500
Indian Journal of Trauma & Emergency Pediatrics	2	9000	900
International Journal of Pediatric Nursing	2	5000	500
Journal of Community and Public Health Nursing	2	5000	500
Journal of Geriatric Nursing	2	5000	500
Journal of Medical Images and Case Reports	2	5000	500
Journal of Nurse Midwifery and Maternal Health	2	5000	500
Journal of Organ Transplantation	2	25900	2590
Journal of Psychiatric Nursing	3	5000	500
Psychiatry and Mental Health	2	7500	750

OPEN ACCESS JOURNALS

Global Research in Engineering	5000	500
Global Research in Food and Nutrition	5000	500
Global Research in Library and Information Science	5000	500
Global Research in Medical Sciences	5000	500
Global Research in Space Science	5000	500

Terms of Supply:

1. Advance payment required by Demand Draft payable to Red Flower Publication Pvt. Ltd. payable at Delhi.
2. Cancellation not allowed except for duplicate payment.
3. Agents allowed 10% discount.
4. Claim must be made within six months from issue date.

Order from

Red Flower Publication Pvt. Ltd., 48/41-42, DSIDC, Pocket-II, Mayur Vihar Phase-I, Delhi - 110 091 (India), Tel: 91-11-22754205, 45796900, Fax: 91-11-22754205. E-mail: redflowerppl@vsnl.net, redflowerppl@gmail.com, Website: www.rfppl.co.in