
Call for Editorial Board Members

As you are well aware that we are a medical and health sciences publishers; publishing peer-reviewed journals and books since 2004.

We are always looking for dedicated editorial board members for our journals. If you completed your master's degree and must have at least five years experience in teaching and having good publication records in journals and books.

If you are interested to be an editorial board member of the journal; please provide your complete resume and affiliation through e-mail (i.e. info@rfppl.co.in) or visit our website (i.e. www.rfppl.co.in) to register yourself online.

Call for Publication of Conference Papers/Abstracts

We publish pre-conference or post-conference papers and abstracts in our journals, and deliver hard copy and giving online access in a timely fashion to the authors.

For more information, please contact:

For more information, please contact:

A Lal

Publication-in-charge

Red Flower Publication Pvt. Ltd.

48/41-42, DSIDC, Pocket-II

Mayur Vihar Phase-I

Delhi – 110 091 (India).

Phone: 91-11-22754205, 79695648

E-mail: info@rfppl.co.in

Free Announcements of your Conferences/Workshops/CMEs

This privilege to all Indian and other countries conferences organizing committee members to publish free announcements of your conferences/ workshops. If you are interested, please send your matter in word formats and images or pictures in JPG/JPEG/Tiff formats through e-mail attachments to sales@rfppl.co.in.

Terms & Conditions to publish free announcements:

1. Only conference organizers are eligible up to one full black and white page, but not applicable for the front, inside front, inside back and back cover, however, these pages are paid.
2. Only five pages in every issue are available for free announcements for different conferences.
3. This announcement will come in the next coming issue and no priority will be given.
4. All legal disputes subject to Delhi jurisdiction only.
5. The executive committee of the Red Flower Publication reserve the right to cancel, revise or modify terms and conditions any time without prior notice.

For more information, please contact:

A Lal
Publication-in-charge
Red Flower Publication Pvt. Ltd.
48/41-42, DSIDC, Pocket-II
Mayur Vihar Phase-I
Delhi - 110 091 (India).
Phone: 91-11-22754205, 79695648
E-mail: info@rfppl.co.in

Win Free Institutional Subscription!

Simply fill out this form and return scanned copy through e-mail or by post to us.

Name of the Institution_____

Name of the Principal/Chairman_____

Management (Trust/Society/Govt./Company)_____

Address 1_____

Address 2_____

Address 3_____

City_____

Country_____

PIN Code_____

Mobile_____

Email_____

We are regular subscriber of Red Flower Publication journals.

Year of first subscription_____

List of ordered journals (if you subscribed more than 5 titles, please attach separate sheet)

Ordered through

Name of the Vendor	Subscription Year	Direct/subs Yr

Name of the journal for which you wish to be free winner

Terms & Conditions to win free institutional subscription

1. Only institutions can participate in this scheme
2. In group institutions only one institution would be winner
3. Only five institutions will be winner for each journal
4. An institution will be winner only for one journal
5. The free subscription will be valid for one year only (i.e. 1 Jan - 31 Dec)
6. This free subscription is not renewable, however, can be renewed with payment
7. Any institution can again participate after five years
8. All legal disputes subject to Delhi jurisdiction only
9. This scheme will be available to participate throughout year, but draw will be held in last week of August every year
10. The executive committee of the Red Flower Publication reserve the right to cancel, revise or modify terms and conditions any time without prior notice.

I confirm and certify that the above information is true and correct to the best of my knowledge and belief.

Place:

Signature with Seal

Date:

<i>Revised Rates for 2021 (Institutional)</i>		Frequency	India(INR) Print Only	India(INR) Online Only	Outside India(USD) Print Only	Outside India(USD) Online Only
Title of the Journal						
Community and Public Health Nursing		3	6000	5500	469	430
Indian Journal of Agriculture Business		2	6000	5500	469	430
Indian Journal of Anatomy		4	9000	8500	703	664
Indian Journal of Ancient Medicine and Yoga		4	8500	8000	664	625
Indian Journal of Anesthesia and Analgesia		6	8000	7500	625	586
Indian Journal of Biology		2	6000	5500	469	430
Indian Journal of Cancer Education and Research		2	9500	9000	742	703
Indian Journal of Communicable Diseases		2	9000	8500	703	664
Indian Journal of Dental Education		4	6000	5500	469	430
Indian Journal of Diabetes and Endocrinology		2	8500	8000	664	625
Indian Journal of Emergency Medicine		4	13000	12500	1016	977
Indian Journal of Forensic Medicine and Pathology		4	16500	16000	1289	1250
Indian Journal of Forensic Odontology		2	6000	5500	469	430
Indian Journal of Genetics and Molecular Research		2	7500	7000	586	547
Indian Journal of Law and Human Behavior		3	6500	6000	508	469
Indian Journal of Legal Medicine		2	9000	8500	703	664
Indian Journal of Library and Information Science		3	10000	9500	781	742
Indian Journal of Maternal-Fetal & Neonatal Medicine		2	10000	9500	781	742
Indian Journal of Medical and Health Sciences		2	7500	7000	586	547
Indian Journal of Obstetrics and Gynecology		4	10000	9500	781	742
Indian Journal of Pathology: Research and Practice		6	12500	12000	977	938
Indian Journal of Plant and Soil		2	7000	6500	547	508
Indian Journal of Preventive Medicine		2	7500	7000	586	547
Indian Journal of Research in Anthropology		2	13000	12500	1016	977
Indian Journal of Surgical Nursing		3	6000	5500	469	430
Indian Journal of Trauma and Emergency Pediatrics		4	10000	9500	781	742
Indian Journal of Waste Management		2	10000	9500	781	742
International Journal of Food, Nutrition & Dietetics		3	6000	5500	469	430
International Journal of Forensic Science		2	10500	10000	820	781
International Journal of Neurology and Neurosurgery		4	11000	10500	859	820
International Journal of Pediatric Nursing		3	6000	5500	469	430
International Journal of Political Science		2	6500	6000	508	469
International Journal of Practical Nursing		3	6000	5500	469	430
International Physiology		3	8000	7500	625	586
Journal of Animal Feed Science and Technology		2	8300	7800	648	609
Journal of Cardiovascular Medicine and Surgery		4	10500	10000	820	781
Journal of Emergency and Trauma Nursing		2	6000	5500	469	430
Journal of Forensic Chemistry and Toxicology		2	10000	9500	781	742
Journal of Global Medical Education and Research		2	6400	5900	500	461
Journal of Global Public Health		2	12500	12000	977	938
Journal of Microbiology and Related Research		2	9000	8500	703	664
Journal of Nurse Midwifery and Maternal Health		3	6000	5500	469	430
Journal of Orthopedic Education		3	6000	5500	469	430
Journal of Pharmaceutical and Medicinal Chemistry		2	17000	16500	1328	1289
Journal of Plastic Surgery and Transplantation		2	26900	26400	1954	575
Journal of Psychiatric Nursing		3	6000	5500	469	430
Journal of Social Welfare and Management		4	8000	7500	625	586
New Indian Journal of Surgery		6	8500	7500	664	625
Ophthalmology and Allied Sciences		3	6500	6000	508	469
Pediatric Education and Research		4	8000	7500	625	586
Physiotherapy and Occupational Therapy Journal		4	9500	9000	742	703
RFP Indian Journal of Medical Psychiatry		2	8500	8000	664	625
RFP Journal of Biochemistry and Biophysics		2	7500	7000	586	547
RFP Journal of Dermatology (Formerly Dermatology International)		2	6000	5500	469	430
RFP Journal of ENT and Allied Sciences (Formerly Otolaryngology International)		2	6000	5500	469	430
RFP Journal of Hospital Administration		2	7500	7000	586	547
Urology, Nephrology and Andrology International		2	8000	7500	625	586

Coming Soon

RFP Gastroenterology International	2	-	-	-	-
Journal of Food Additives and Contaminants	2	-	-	-	-
Journal of Food Technology and Engineering	2	-	-	-	-
Journal of Radiology	2	-	-	-	-
Medical Drugs and Devices	3	-	-	-	-
RFP Indian Journal of Hospital Infection	2	-	-	-	-
RFP Journal of Gerontology and Geriatric Nursing	2	-	-	-	-

Terms of Supply:

1. Agency discount 12.5%. Issues will be sent directly to the end user, otherwise foreign rates will be charged.
2. All back volumes of all journals are available at current rates.
3. All journals are available free online with print order within the subscription period.
4. All legal disputes subject to Delhi jurisdiction.
5. Cancellations are not accepted orders once processed.
6. Demand draft/cheque should be issued in favour of "Red Flower Publication Pvt. Ltd." payable at Delhi.
7. Full pre-payment is required. It can be done through online (<http://rfppl.co.in/subscribe.php?mid=7>).
8. No claims will be entertained if not reported within 6 months of the publishing date.
9. Orders and payments are to be sent to our office address as given below.
10. Postage & Handling is included in the subscription rates.
11. Subscription period is accepted on calendar year basis (i.e. Jan to Dec). However orders may be placed any time throughout the year.

Order from

Red Flower Publication Pvt. Ltd., 48/41-42, DSIDC, Pocket-II, Mayur Vihar Phase-I, Delhi - 110 091 (India).
Mobile: 8130750089, Phone: 91-11-79695648, 22754205, 22756995, E-mail: sales@rfppl.co.in, Website: www.rfppl.co.in

Pediatric Education and Research

Editor-in-Chief

Pravakar Mishra

Professor of Pediatrics,
SVP PG Institute of Pediatrics,
(SCB Medical College Hospital),
Cuttack-753002 Odisha, India.

Former Editor-in-Chief

Surender N Gupta, Kangra

Associate Editor

Jayendra R Gohil, Bhavnagar

National Editorial Board

Amber Kumar, Bhopal

Ritu Rakholia, Haldwani

Bhawna Sharma, New Delhi

Shital Bhattad Gondhali, Latur

Daisy Khera, Jodhpur

Sunil Mhaske, Ahmednagar

HP Deshmukh, Pune

Surendra Bahadur Mathur, New Delhi

KS Venketraman, Mumbai

Usha Pranam, Raichur

Narendra Kumar Chaudhary, Bhopal

Yogesh Kumar Sarin, New Delhi

RED FLOWER PUBLICATION PVT. LTD.

Managing Editor

A. Lal

Publication Editor

Dinesh Kr. Kashyap

Pediatric Education and Research (PER) (pISSN: 2321-1644, eISSN: 2455-4871) is a quarterly peer reviewed journal. The journal is publishing original research, clinical observations, and special feature articles in the field of pediatrics, as broadly defined. Contributions pertinent to pediatrics are also included from related fields such as nutrition, surgery, dentistry, public health, child health services, human genetics, basic sciences, psychology, psychiatry, education, sociology, and nursing.

Abstracting and Indexing information: Index Copernicus, Gaudeamus Academia, Science Library Index, The International Committee of Medical Journal Editors (ICMJE).

Readership: Readership for Pediatric Education and Research includes pediatricians, researchers, pediatric investigators, and all those who diagnose and treat infants, children, and adolescents.

Subscription rates worldwide: Individuals - contact on 91-11-22754205 or mail to redflowerpl@vsnl.net; Institutional (annual)- INR8000/USD625 Single issue INR2000/USD156. Payment methods: By Demand Draft/cheque should be in the name of **Red Flower Publication Pvt. Ltd.** payable at Delhi. By Bank Transfer/TT: **Bank name:** Bank of India, **IFSC Code:** BKID0006043, **Swift Code:** BKIDINBBDS. **Account Name:** Red Flower Publication Pvt. Ltd., Account Number: 604320110000467, Branch: Mayur Vihar Phase-I, Delhi - 110 091 (India).

© 2020 Red Flower Publication Pvt. Ltd. All rights reserved. The views and opinions expressed are of the authors and not of the **Pediatric Education and Research**. The **Pediatric Education and Research** does not guarantee directly or indirectly the quality or efficacy of any product or service featured in the advertisement in the journal, which are purely commercial.

Printed at Saujanya Printing Press, B-303, Okhla Industrial Area, Phase-1, New Delhi-110020.

Red Flower Publication (P) Ltd.

Presents its Book Publications for sale

1. Drugs in Anesthesia (2020) <i>By R Varaprasad</i>	INR 449/USD35
2. MCQs in Minimal Access and Bariatric Surgery (2nd Edition) (2020) <i>By Anshuman Kaushal, Dhruv Kundra</i>	INR 545/USD42
3. Beyond Medicine A to E for the medical professionals (2020) <i>By Kalidas Dattatraya Chavan, Sandeep Vishwas Mane, Sunil Namdeo Thitame</i>	INR 390/USD31
4. Statistics in Genetic Data Analysis (2020) <i>By Dr. S. Venkatasubramanian, J. Kezia Angeline</i>	INR 299/USD23
5. Chhotanagpur A Hinterland of Tribes (2020) <i>By Ambrish Gautam, Ph.D</i>	INR 250/USD20
6. Patient Care Management (2019) <i>By A.K. Mohiuddin</i>	INR 999/USD78
7. Drugs in Anesthesia and Critical Care (2019) <i>By Bhavna Gupta, Lalit Gupta</i>	INR 595/USD46
8. Critical Care Nursing in Emergency Toxicology (2019) <i>By Vivekanshu Verma, Sandhya Shankar Pandey, Atul Bansal</i>	INR 460/USD34
9. Practical Record Book of Forensic Medicine and Toxicology (2019) <i>By Akhilesh K. Pathak</i>	INR 299/USD23
10. Skeletal and Structural Organizations of Human Body (2019) <i>By D. R. Singh</i>	INR 659/USD51
11. Comprehensive Medical Pharmacology (2019) <i>By Ahmad Najmi</i>	INR 599/USD47
12. Practical Emergency Trauma Toxicology Cases Workbook in Simulation Training (2019) <i>By Vivekanshu Verma, Shiv Rattan Kochhar & Devendra Richhariya</i>	INR395/USD31
13. MCQs in Minimal Access & Bariatric Surgery (2019) <i>By Anshuman Kaushal & Dhruv Kundra</i>	INR450/USD35
14. Biostatistics Methods for Medical Research (2019) <i>By Sanjeev Sarmukaddam</i>	INR549/USD44
15. MCQs in Medical Physiology (2019) by Bharati Mehta & Bharti Bhandari Rathore	INR300/USD29
16. Synopsis of Anesthesia (2019) by Lalit Gupta & Bhavna Gupta	INR1195/USD95
17. Shipping Economics (2018) by D. Amutha, Ph.D.	INR345/USD27

Order from

Red Flower Publication Pvt. Ltd.

48/41-42, DSIDC, Pocket-II

Mayur Vihar Phase-I

Delhi - 110 091 (India).

Mobile: 8130750089, Phone: 91-11-79695648, 22754205, 22756995

E-mail: sales@rfppl.co.in

Pediatric Education and Research

July - September 2020
Volume 8 Number 3

Contents

Original Research Articles

To Study the Awareness and Significance of Blood Pressure Measurement of Children Among Parents	97
Pranita Tambe, Sunil Natha Mhaske, Veenita Pande	
Study of Body Growth in Boys with Steroid Sensitive Nephrotic Syndrome	103
Nagaraju A S, A K Bhalla, Deepti Suri, Surjit Singh	
To Study Incidence of Neurosonographic Abnormalities in Newborns with Birth Asphyxia	109
Abhijit Shinde, Sunil Natha Mhaske, Shreya Bhate	

Review Articles

Surfactant Replacement Therapy for Respiratory Distress Syndrome in the Newborn	113
Rucha Nitin Tipare, Sunil Natha Mhaske	
Guidelines for Authors	117

REDKART.NET

(A product of Red Flower Publication (P) Limited)

(Publications available for purchase: Journals, Books, Articles and Single issues)

(Date range: 1967 to till date)

The Red Kart is an e-commerce and is a product of Red Flower Publication (P) Limited. It covers a broad range of journals, Books, Articles, Single issues (print & Online-PDF) in English and Hindi languages. All these publications are in stock for immediate shipping and online access in case of online.

Benefits of shopping online are better than conventional way of buying.

1. Convenience.
2. Better prices.
3. More variety.
4. Fewer expenses.
5. No crowds.
6. Less compulsive shopping.
7. Buying old or unused items at lower prices.
8. Discreet purchases are easier.

URL: www.redkart.net

To Study the Awareness and Significance of Blood Pressure Measurement of Children Among Parents

Pranita Tambe¹, Sunil Natha Mhaske², Veenita Pande³

¹Postgraduate Student, ²Dean, Department of Pediatrics, Dr Vithalrao Vikhe Patil Foundation's Medical College and Hospital, Ahmednagar, Maharashtra 414111, India, ³Professor, Department of Pediatrics, Dr D Y Patil Medical College, Pune, Maharashtra 411018, India.

How to cite this article:

Pranita Tambe, Sunil Natha Mhaske, Veenita Pande. To Study the Awareness and Significance of Blood Pressure Measurement of Children Among Parents. *Pediatr Edu Res*. 2020;8(3):97–101

Abstract

Hypertension is a common disease associated with high mortality and morbidity. With globalization bringing more lifestyle modifications, adolescents are exposed to multiple risk factors like obesity, diet, academic stress, inactive lifestyle combined with hereditary risk factors. Early diagnosis of hypertension is an important strategy in its control, effective treatment and prevention of complications.

Keywords: Hypertension; Prehypertension; Parents; Blood Pressure.

Introduction

Hypertension and Prehypertension are one of the commonest diseases with worldwide prevalence of 1 billion. 3rd National Health and Nutritional Assessment Survey revealed that in United States America, one-third of people were unknown of hypertension.¹ Epidemiological transition with increasing burden of cardiovascular risk factors is evident in adults and children both.² The data on the prevalence of prehypertension and hypertension in children show large regional differences in India.

Early diagnosis of hypertension and Prehypertension is an important strategy in its control. Previous studies have documented that hypertension may begin in adolescence, perhaps even in childhood. Elevated blood pressure, systolic or diastolic at any age, in either sex is a contributor for all forms of cardiovascular disease.⁴ Identifying

and modifying risk factors reduces the incidence and complications in young and adult. Prevalence of hypertension varies across countries and states. Hypertension - multifactorial disease, is influenced by genetics, race, geography, cultural and dietary patterns.

Paediatrics hypertension is seen in 2% to 5% of all Paediatrics patients. It is one of the top five chronic diseases in children and adolescents. Pediatric hypertension affects approximately 65 children per million.⁵

Hypertension is a common disease associated with high mortality and morbidity. With globalization bringing more lifestyle modifications, adolescents are exposed to multiple risk factors⁶ like obesity, diet, academic stress, inactive lifestyle combined with hereditary risk factors. Early diagnosis of hypertension is an important strategy

Corresponding Author: Sunil Natha Mhaske, Department of Pediatrics, Dr Vithalrao Vikhe Patil Foundation's Medical College and Hospital, Ahmednagar, Maharashtra 414111, India.

E-mail: sunilmhaske1970@gmail.com

Table 1: Criteria for diagnosis of Childhood hypertension⁷.

Age	Normal	Prehypertension	Stage I Hypertension	Stage II Hypertension
3-11 years	<90th percentile	90th-<95th Percentile	95th-99th percentile + 5mm Hg	>99th percentile + 5 mm Hg
12-17 years	<90th percentile	90th-<95th percentile or > 120/80 mm Hg	95th-99th percentile + 5 mm Hg.	>99th percentile + 5 mm Hg.

in its control, effective treatment and prevention of complications.

For many children, hypertension is only diagnosed when it is severe, or once they reach adulthood. However, the importance of early and accurate diagnosis cannot be overstated, given the long-term health consequences of untreated hypertension and the fact that pediatric hypertension is a diagnostic indicator for some serious underlying medical conditions.

For the Children Aged 3-11 and 12-17 Yrs of Age (Table 1.1).

1. 90th percentile indicates a healthy child.
2. 90th - 95th percentile indicates a prehypertension stage.
3. 95th -99th percentile +5mm hg indicates stage 1 hypertension.
4. > 99th percentile + 5mm hg indicates stage 2 hypertension.

The prevalence of childhood obesity, the risk of developing left ventricular hypertrophy, and evidence of the early development of atherosclerosis in children would make the detection of childhood prehypertension and hypertension important to reduce long-term health risks.⁸ Guidelines for the screening for and diagnosis, evaluation, and management of hypertension in children have been available for 40 years.⁹ Unfortunately, clinicians consistently fail to recognize the problem, and the majority of hypertensive children remain undiagnosed. Several reasons for this have been documented including lack of knowledge of the problem and the complexity of blood pressure standards among children, Parents and Pediatricians.

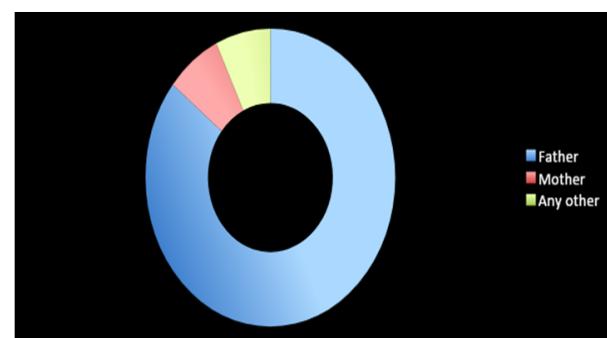
Aim and Objectives

- To study the awareness of blood pressure measurements of children amongst parents.

- To create importance of Hypertension in children and Parents.
- To make aware of Prehypertension is an emerging disease in adolescents and Parents.

Material and Methods

A Google doc questionnaire was created and was circulated to all Parents on WhatsApp. The questionnaire included simple questions like education of parents, awareness of Hypertension and Prehypertension, importance of measurements of their Childs blood pressure etc.


The results were interpreted according to their responses.

Observations

Total 280 parents responded in these questionnaires. The following observations were made from their responses.

Table 2: In These Questionnaires Out of 240 Participants 85.7% Were Father of Children.

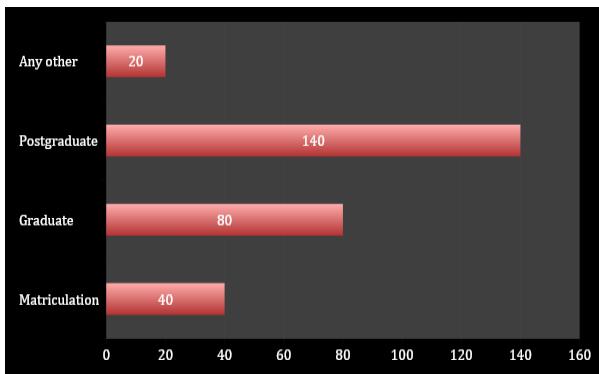

Respondents	Number	Percentage
Father	240	85.7
Mother	20	7.15
Any other	20	7.15
Total	280	

Fig. 1: Out of the 280 Members that Answered, Fathers of Children Were 240 in Number and 20 Were Mothers of Children, 20 Were Others.

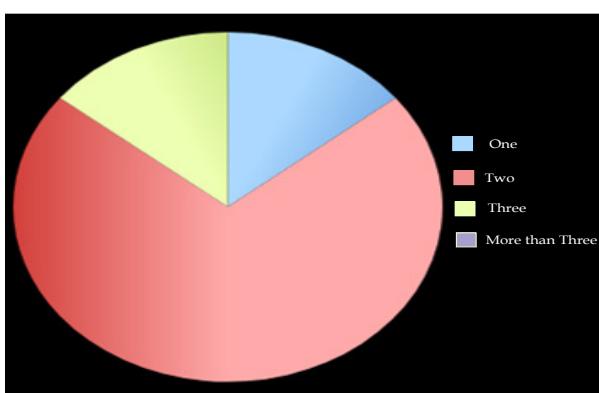
Table 3: Qualification of Respondents.

Qualification	Number	Percentage
Matriculations	40	14.3
Graduates	80	28.6
Postgraduates	140	50
Any other	20	7.15
Total	280	

Fig. 2: Educational Qualification of the 280 members was as follows.

Educational Qualification of the 280 members was as follows (Table3, Fig. 2).

Post graduates -50%


Graduates -28.6%

Matriculation -14.3 %

And remaining participants that did not complete matriculations were 7.5%

Table 4: Number of Children.

Number	Number	Percentage
One	40	14.3
Two	200	71.4
Three	40	14.3
More than three	00	00
Total-	280	

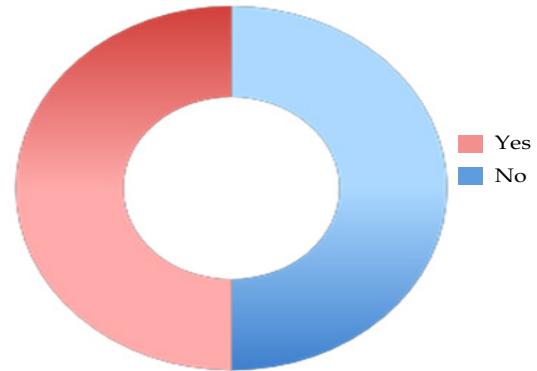

Fig. 3: Above graph shows 14.3% Parent had a Single Child , 14.3% had 3 Children and 71.4% had 2 Children.

Table 5: Age of Children.

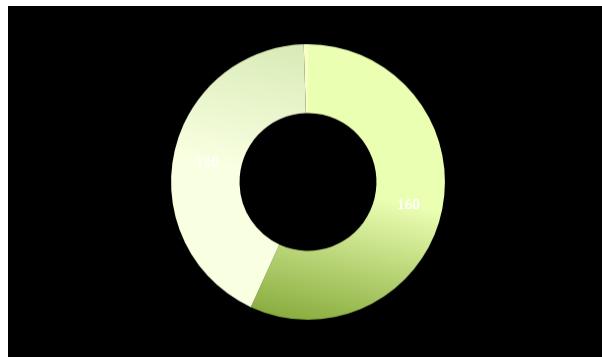
	First child	Second child	Percentage
Below 10	14.3 % (40)	21.6% (60)	14.3
11-19	71.4 % (200)	71.4% (200)	71.4
More than 20	14.3% (40)	7.3%.(20)	14.3
Total-		280	

Table 6: Are You Aware of Hypertension (Raised Blood Pressure) in Children?

Response	Percentage
Yes	140
No	140
Total	280

Fig. 4: Of the 280 People that Answered 50% of Them Knew About the Prevalence of Hypertension in Children.

Table 7: Are You Aware of Prehypertension (Phase Of Higher Blood Pressure Than Normal) in Children?


Response	Percentage
Yes	120
No	160
Total	280

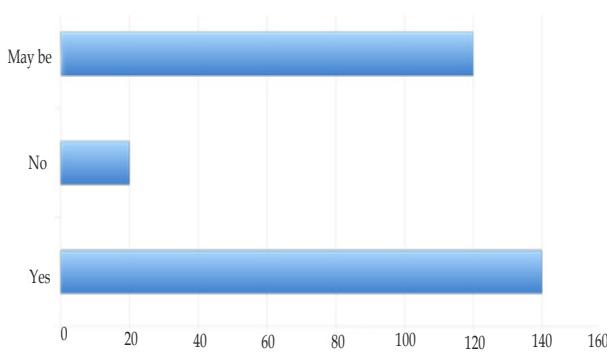

Fig. 5: Out of the 280 People that Answered, 42.9% Knew About Prevalence of Pre Hypertension in Children and 57.1% Had No Knowledge of it.

Table 8: Have you Checked your Child's Blood Pressure any Time?

	Response	Percentage
Yes	160	61.5
No	120	38.5
Total	280	

Fig. 6: Out of total 280 parents reviewed, 160 actually have checked BP of their child & 120 did not check it.**Table 9:** Are you aware of effect of Junk food, overweight, school stress on blood pressure of child?

	Response	Percentage
Yes	140	50
No	20	7.1
May be	120	42.9
Total-	280	

Fig. 7: Depicts the Awareness Among Parents About the Epidemiology of Pre Hypertension and Hypertension, Findings Revealed that 50% of Them Were Aware of the Effect of Junk Food, Overweight, School Stress on Blood Pressure of Child.

7.1% were not aware and 42.9 % gave the answer as maybe.

Discussion

- Collect an accurate family history to identify primary and secondary forms of hypertension.

- Use standardized methods and suitable instruments for a correct measurement of blood pressure in the child and interpret the values according to the most extensive and updated tables.
- Monitor blood pressure during annual control visits from the age of three.
- Repeat the blood pressure measurement on at least three different occasions when values are observed that could indicate hypertension or high normal blood pressure.
- Learn to make a first differential diagnosis between primary and secondary forms of hypertension on the basis of clinical history, physical examination, targeted examinations.
- Send patients with suspect secondary hypertension to referral centers.
- Apply the principles of the dietary and behavioral interventions in the treatment of the primary forms.
- Send patients with suspect secondary hypertension and cases of primary hypertension who do not respond to dietary and behavioral therapy to specialist centers.
- Cooperate with the specialist centers in the follow-up of the hypertensive child.

Conclusion

Hypertension among the adolescent age group was alarmingly high; there was no difference in prevalence among government and private schools and among various types of curriculum. Awareness of hypertension was very low. There was no association with socio economic status. Periodic surveys should be done in schools to identify the "at risk" groups.

Conflicts of interests: No

Funding: No

References

- The Sixth Report of Joint National Committee on Prevention Detection, Evaluation and Treatment of High Blood Pressure. Arch Intern Med 1997; 157: 2413-2446.

2. Prevalence of hypertension and prehypertension in schoolchildren from Central India, Ashish Patel¹, Anil Bharani¹, Meenakshi Sharma², Anuradha Bhagwat³, Neepa Ganguli³, Dharampal Singh Chouhan, Annals of Pediatric Cardiology, Year: 2019 | Volume: 12 | Issue: 2 | Page: 90-96)
3. Prevalence of hypertension in school going children of Surat city, Western India, Nirav Buch, Jagdish P. Goyal, Nagendra Kumar, Indira Parmar, Vijay B. Shah, and Jaykaran Charan, J Cardiovasc Dis Res. 2011 Oct-Dec; 2(4): 228-232., doi: 10.4103/0975-3583.89807
4. Hypertension in Pediatrics- <https://www.childrenscolorado.org/health-professionals/professional-resources/charting-pediatrics-podcast/pediatric-hypertension/>
5. Prevalence and determinants of hypertension among urban school children in the age group of 13- 17 years in, Chennai, Tamilnadu Jasmine S Sundar*, S. Joseph Maria Adaikalam, S. Parameswari, Valarmathi. S, S. Kalpana, D. Shantharam, IOSR Journal of Dental and Medical Sciences (IOSR-JDMS) e-ISSN: 2279-0853, p-ISSN: 2279-0861. Volume 8, Issue 3 (Jul.- Aug. 2013), PP 14-20
6. Risk Factors in Adolescent Hypertension-D. Rose Ewald, Lauren A. Haldeman, PhD, Global Pediatric Health, Global Pediatric Health Volume 3: 1-26 © The Author(s) 2016 Reprints and permission: sagepub.com/journalsPermissions.nav DOI:10.1177/2333794X15625159
7. Rao G. Diagnosis, Epidemiology, and Management of Hypertension in Children. American Academy of Pediatrics. 2016;138(2)
8. Hypertension in Children and Adolescents, GREGORY B. LUMA, M.D., and ROSEANN T. SPIOTTA, Am Fam Physician. 2006 May 1;73(9):1558-1568.)
9. (Pediatric Hypertension: Provider Perspectives, Jennifer K. Bello, MD, MS,^{1,2} Nivedita Mohanty, MD^{3,4} Victoria Bauer, BS,² Sarah S. Rittner, MA,³ and Goutham Rao, GlobPediatri Health. 2017; 4:doi: 10.1177/2333794X17712637

Instructions to Authors

Submission to the journal must comply with the Guidelines for Authors. Non-compliant submission will be returned to the author for correction.

To access the online submission system and for the most up-to-date version of the Guide for Authors please visit:

<http://www.rfppl.co.in>

Technical problems or general questions on publishing with **PER** are supported by Red Flower Publication Pvt. Ltd.'s Author Support team (http://rfppl.co.in/article_submission_system.php?mid=5#)

Alternatively, please contact the Journal's Editorial Office for further assistance.

Editorial Manager
Red Flower Publication Pvt. Ltd.
48/41-42, DSIDC, Pocket-II
Mayur Vihar Phase-I
Delhi - 110 091 (India).
Mobile: 9821671871, Phone: 91-11-22754205, 79695648, 22756995
E-mail: author@rfppl.co.in

Study of Body Growth in Boys with Steroid Sensitive Nephrotic Syndrome

Nagaraju A S¹, A K Bhalla², Deepti Suri³, Surjit Singh⁴

¹Assistant Professor, Department of Cardiology, Kempegowda Institute of Medical Sciences, Bangalore 560004, India,

²Professor, ³Additional Professor, ⁴Professor and Head, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.

How to cite this article:

Nagaraju A S, A K Bhalla, Deepti Suri et. al., Study of Body Growth in Boys with Steroid Sensitive Nephrotic Syndrome. *Pediatr Edu Res*. 2020;8(3):103-108.

Abstract

Background: Steroids are mainstay of the treatment of Nephrotic syndrome and their effect on growth of children studied by earlier workers for lack of consensus, presented conflicting views. Therefore, in this study, we attempted to study pattern of growth of Indian boys with steroid sensitive nephrotic syndrome in terms of some selected anthropometric parameters.

Methods: 121 boys between 9 to 16 years of age diagnosed as cases of steroid sensitive Nephrotic syndrome were measured for Weight, Height, Chest Circumference, Biaxial diameter, Bicristal diameter, Triceps skinfold thickness and Subscapular skinfold thickness at half yearly age intervals following a mixed longitudinal growth research design. Tanner's method was used to compute mean (\pm SD) distance and velocity growth values for different body parameters of boys.

Results: Growth of height, weight, chest circumference, biaxial diameter and bicristal diameter in boys with steroid sensitive Nephrotic syndrome in general, was found to be compromised as compared to their normal counterparts but was severely affected for height between 14 to 16 years of age and they became short statured individuals. Exceptions to this were triceps and subscapular skinfold thicknesses which in general, measured fatter than normal boys.

Barring triceps skinfold thickness, peak growth velocity for all other body parameters measured amongst boys with SSNS was attained at the same age of 14.5 years. Attainment of peak height velocity (PHV) and peak weight velocity (PWV) as compared to their normal Indian and western counterparts was found to be substantially delayed and also measured lesser in magnitude.

Conclusions: The relatively impaired auxological status recorded amongst boys with SSNS appears to be due to influence of chronic nature of the disease itself as well as effect of steroid therapy which is known to impair growth of children. On the contrary, growth of subcutaneous fat measured in terms of triceps and subscapular skinfold thicknesses exhibited relatively fatter attainments amongst boys with SSNS than their normal counterparts.

Keywords: Nephrotic Syndrome; Growth; Steroids.

Introduction

Nephrotic syndrome is a manifestation of glomerular disease, typically characterized by heavy proteinuria ($>40\text{mg/m}^2/\text{hr}$), hypoalbuminemia

($<2.5\text{ g/dl}$), edema and hyperlipidemia (serum cholesterol $>200\text{ mg/dl}$).^{1,2} The worldwide prevalence is approximately 12-16 cases per 100,000 children with an annual incidence of 2-7 per 100,000 children.⁵ It occurs, most commonly in

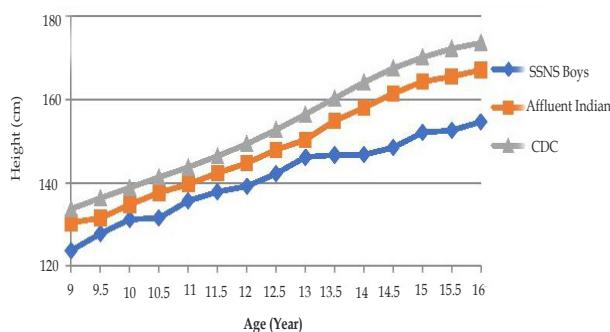
Corresponding Author: A K Bhalla, Professor, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.

E-mail: drakbhalla@rediffmail.com

age of 2-8 years which corresponds to a period of relatively steady growth. Daily exposure to supraphysiologic concentration of glucocorticoids over prolonged period is known to affect growth of these children.³ The loss of insulin-like growth factor-I (IGF-1) and IGF binding protein-3 (IGFBP-3) found in Nephrotic children may prompt growth retardation. In addition, glucocorticoid therapy is believed to be associated with elevation of serum IGF-I levels suggesting potential development of IGF resistance.⁴ considered as one of main factors responsible for growth retardation.

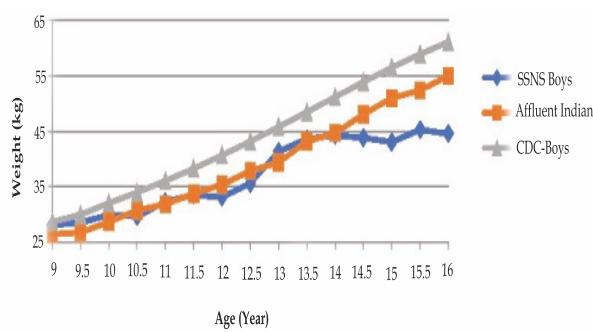
Available information relating to effect of steroid therapy on growth of patients with steroid sensitive Nephrotic syndrome remains inconclusive as it lacks clear consensus. Studies conducted by earlier researchers^{3,6-12,22-25} show that growth of steroid-sensitive nephrotic syndrome patients gets affected, while those carried out by others^{17,18,19,20} reveal no effect on growth of these patients. However, studies by some workers¹³⁻¹⁶ revealed effect of steroid therapy on growth of children with nephrotic syndrome during initial years of disease, as these patients ultimately became adults with normal height. It has also been further noticed that most of auxological information on these patients has emanated from developed western world, and their growth in majority of instances, was studied in terms of height, and hardly any attention was paid to study growth of other body parameters. As compared to western world, longitudinal studies conducted on the growth of Indian children with SSNS are scarce. Therefore, we attempted to explore and understand growth dynamics of some selected body parameters of adolescent boys with steroid-sensitive Nephrotic syndrome using mixed longitudinal growth research design.

Patients and Methods


121 boys between 9 to 16 years of age diagnosed as cases of steroid sensitive Nephrotic syndrome (as per criteria given by Indian Academy of Pediatrics)¹ who had successfully completed their treatment comprised sample for this study. These children were born to parents representing mixed socio-economic strata, and inhabited north western parts of India. These subjects were enrolled from the Nephrotic Clinic of Advanced Pediatrics Center, PGIMER, Chandigarh. Children with other chronic

diseases, severe malnutrition and secondary Nephrotic syndrome were excluded from the study. Children who had received cyclophosphamide/ cyclosporine/levamisole and those who developed steroid resistance during course of the study were also not included.

Every child was measured for Weight, Height, Chest Circumference, Biacromial diameter, Bicristal diameter, Triceps skinfold thickness and Subscapular skinfold thickness at 6 monthly intervals with time tolerance of ± 1 month in Growth Laboratory/Clinic of the department following mixed-longitudinal growth research design. Body weight was measured with the help of Electronic Weighing Scale up to the accuracy of ± 50 g. Height was measured using Stadiometer (Make:Holtain Ltd) upto accuracy of ± 1 mm. Fiber glass tape was used to measure chest circumference up to ± 1 mm of accuracy. Harpenden Skinfold Caliper with a least count of 0.2 mm was used to measure skinfold thicknesses. A Spreading caliper was used to measure the two body diameters (i.e.biacromial and bicristal) up to accuracy of ± 1 mm. Prior to actual data collection a thorough training with respect to all anthropometric measurements was provided to the investigator until magnitude of intra/inter-observer error became ± 50 g for body weight, ± 2 mm for height, ± 0.2 mm for skinfold thicknesses and up to ± 1 mm for chest circumference as well as two body diameters. Tanner's 1951 method²⁶ was employed to compute mean \pm SD of distance (gross size) as well as velocity (rate of growth) related statistics from mixed- longitudinally obtained data for different growth parameters.


Results

Mean and standard deviation (SD) computed for different body parameters measured among boys with steroid-sensitive Nephrotic syndrome (SSNS) are shown Table 1. Height and Weight of children with SSNS showed a regular increase between 9 to 16 years of age (Fig. 1 and 2). This increase however, remained relatively sharper upto 13.5years, thereafter it became comparatively slower. As compared to their normal American (CDC 2000)²⁸ and Indian affluent counterparts (Agarwal et. al. 1992)²⁷, height of boys with steroid sensitive Nephrotic syndrome measured shorter throughout. (Fig. 1)

Fig. 1: Comparison of Mean Height (cm) of Normal Boys and Steroid-Sensitive Nephrotic Syndrom Boys.

Children with SSNS in general, weighed lighter than their normal CDC (2000)²⁸ counterparts, but when compared with affluent Indian boys (Agarwal et. al.)²⁷ they depicted an inconsistent trend. (Fig. 2)

Fig. 2: Comparison of Mean Weight (kg) of Normal Boys and Steroid-Sensitive Nephrotic Syndrom Boys.

Mean chest circumference (cm) amongst boys with SSNS grew regularly with advancement of age, yet magnitude of its increase was inconsistent. Growth of shoulder and hip measured in terms of biacromial diameter and bicristal diameter respectively, amongst boys with SSNS showed an uninterrupted increase in mean values between 9 to 16 years of age. As compared to other body parameters the pattern of growth of triceps and subscapular skinfold thicknesses exhibited highly fluctuating trend. In general, boys with steroid sensitive Nephrotic syndrome remained fatter than their normal affluent Indian counterparts depicting a tendency to become obese with advancement of age. (Table 1)

Yearly growth velocities computed for each of the body parameters measured in boys with steroid sensitive Nephrotic syndrome are shown in Table 2. Height growth velocity in boys with steroid sensitive Nephrotic syndrome in general increased regularly, to attain peak height velocity (PHV) measuring 2.25 cm/year between 14 to 15 years of age in magnitude. Weight velocity (kg/year) amongst boys with steroid sensitive Nephrotic syndrome experienced a regular increase to attain peak weight velocity (PWV) measuring 2.35 Kg/year at 14.5 years. Thereafter, it showed sudden deceleration. The magnitude of yearly height and weight growth velocities measured lesser in boys with steroid sensitive Nephrotic syndrome when

Table 1: Mean and Standard Deviation of Height, Weight, Chest Circumference, Biacromial Diameter, Bicristal Diameter, Triceps Skinfold Thickness, Subscapular Skinfold Thickness in Steroid-Sensitive Nephrotic Syndrome Boys.

Age Interval (±year)	Height (cm)	Weight (kg)	Chest circumference (cm)	Biacromial diameter (cm)	Bicristal diameter (cm)	Triceps skinfold thickness (mm)	Subscapular skinfold thickness (mm)
	Mean ± SD	Mean ± SD	Mean ± SD	Mean ± SD	Mean ± SD	Mean ± SD	Mean ± SD
9.0	123.7 ±8.13	28.1 ±9.22	62.3 ±6.90	25.8 ±2.75	18.6 ±2.19	13.1 ±6.23	11.8 ±8.58
9.5	127.7 ±6.61	28.6 ±6.34	62.5 ±5.94	26.4 ±2.20	18.7 ±2.28	11.2 ±5.22	8.9 ±6.19
10.0	131.1 ±5.13	29.9 ±3.90	62.9 ±3.83	27.2 ±1.72	19.3 ±1.35	11.1 ±4.07	8.8 ±4.55
10.5	131.5 ±5.85	29.6 ±4.54	62.9 ±4.39	27.2 ±2.01	19.3 ±1.68	10.7 ±4.21	8.7 ±4.08
11.0	135.6 ±6.93	32.3 ±6.31	63.1 ±4.46	28.0 ±2.09	19.7 ±1.40	11.1 ±3.89	8.2 ±2.80
11.5	137.8 ±7.94	33.5 ±7.17	64.3 ±5.12	28.3 ±2.35	19.9 ±1.77	12.5 ±5.04	9.1 ±3.34
12.0	139.1 ±7.34	33.1 ±7.07	63.9 ±5.81	28.6 ±2.38	19.7 ±1.52	11.7 ±7.04	8.7 ±4.63
12.5	142.1 ±6.66	35.6 ±7.04	65.6 ±6.40	29.2 ±2.00	20.3 ±1.94	12.8 ±5.79	8.9 ±3.89
13.0	146.1 ±9.66	41.3 ±10.93	69.7 ±7.41	29.9 ±2.19	21.1 ±1.77	16.1 ±6.14	12.4 ±6.65
13.5	146.6 ±8.87	43.6 ±10.44	71.2 ±8.52	30.2 ±2.20	21.6 ±2.54	17.2 ±7.63	15.6 ±9.09
14.0	146.7 ±5.43	44.2 ±10.31	72.0 ±10.30	30.3 ±1.79	21.6 ±3.33	19.9 ±9.57	17.3 ±11.07
14.5	148.4 ±7.14	43.8 ±7.97	71.7 ±7.73	30.5 ±2.21	21.7 ±2.89	17.0 ±8.32	14.2 ±11.14
15.0	152.0 ±8.32	43.0 ±9.33	70.1 ±5.57	31.7 ±2.98	22.1 ±1.34	12.1 ±5.65	9.2 ±3.98
15.5	152.5 ±9.60	45.3 ±8.92	72.5 ±6.59	32.3 ±2.55	22.7 ±2.35	14.6 ±6.05	11.5 ±5.91
16.0	154.6 ±5.11	44.5 ±7.73	72.7 ±8.28	32.9 ±1.28	22.6 ±1.59	13.9 ±7.05	11.1 ±6.02

Table 2: Mean and standard deviation of Yearly Height velocity (cm/year), weight velocity (kg/year), chest circumference velocity (cm/year), biacromial diameter velocity (cm/year), bicristal diameter velocity (cm/year), triceps skinfold thickness velocity (mm/year), subscapular skinfold thickness velocity (mm/year), in adolescent boys with Steroid-Sensitive Nephrotic Syndrome.

Age interval (\pm year)	Height velocity (cm/year) Mean \pm SD	Weight velocity (kg/year) Mean \pm SD	Chest circumference velocity (cm/year) Mean \pm SD	Biacromial diameter velocity(cm/year) Mean \pm SD	Bicristal diameter velocity (cm/year) Mean \pm SD	Triceps SFT velocity (mm/year) Mean \pm SD	Subscapular SFT velocity (mm/year) Mean \pm SD
9.0-10.0	1.5 \pm 0.82	1.2 \pm 1.26	1.2 \pm 1.13	0.7 \pm 0.93	1.1 \pm 1.55	0.08 \pm 1.57	0.3 \pm 1.63
10.0-11.0	1.7 \pm 1.15	1.2 \pm 1.24	1.2 \pm 1.05	0.5 \pm 0.61	1.1 \pm 0.90	0.4 \pm 1.27	0.2 \pm 0.79
11.0-12.0	1.7 \pm 1.09	1.3 \pm 1.15	1.3 \pm 1.33	0.7 \pm 0.80	0.7 \pm 0.97	0.09 \pm 2.31	0.2 \pm 2.07
12.0-13.0	1.7 \pm 1.07	1.4 \pm 1.49	1.5 \pm 1.33	0.8 \pm 0.68	1.0 \pm 0.93	0.3 \pm 2.74	0.1 \pm 1.67
13.0-14.0	2.0 \pm 2.01	1.3 \pm 1.75	1.6 \pm 1.64	0.4 \pm 0.88	0.7 \pm 0.66	0.3 \pm 3.40	0.03 \pm 2.60
14.0-15.0	2.2 \pm 2.61	2.3 \pm 3.47	2.1 \pm 2.42	1.2 \pm 1.18	1.5 \pm 1.47	0.5 \pm 3.10	0.7 \pm 2.77
15.0-16.0	1.5 \pm 1.34	1.5 \pm 0.22	0.7 \pm 0.31	0.3 \pm 0.59	0.5 \pm 0.35	0.8 \pm 2.32	0.2 \pm 1.49

compared with their normal well-off Chandigarh³⁰ and Leeds counterparts.³¹ Further, attainment of peak height (PHV) and weight (PWV) velocities in boys with steroid sensitive nephrotic syndrome was delayed as compared to normal Chandigarh and Leeds children.

Mean chest circumference growth velocity measuring 1.23 ± 1.13 cm/year between 9 to 10 years of age showed regular increase to attain a peak value measuring 2.11cm/year at 14.5 years of age. Thereafter, like height and weight it experienced a rapid deceleratory trend to measure 0.78cm/year between 15 to 16 years of age. In general, growth velocities of biacromial diameter, bicristal diameter, triceps skin fold thickness and subscapular skinfold thickness depicted inconsistent trend with a high degree of variability around the mean values (Table. 2)

Discussion

The distance growth curves plotted for height and body weight (Fig 1 and 2) of children with steroid sensitive nephrotic syndrome (SSNS) demonstrated a regular increase in mean values of these two auxological parameters, throughout the period of this study. However, rapidity of this increase was relatively sharper upto around 13.5 years, whereafter it became slower. Boys with SSNS measured shorter than their normal American (CDC)²⁸ and affluent Indian²⁷ counterparts as their height growth curve ran below those plotted for children of American and Indian origin. The relative magnitude of this statural growth retardation was found to be greater when contrasted with their normal American²⁸ than Indian²⁷ counterparts and it increased in magnitude beyond 13.5 years with advancement of

age. This may be due to effect of chronic nature of the disease itself and influence of steroid therapy with which boys with SSNS were treated. Shorter height attainments noticed amongst our study subjects i.e. boys with steroid sensitive Nephrotic syndrome resemble with the findings of Donatti et. al.⁶, Emma et. al.⁷, Kitamura⁸, Tsau et. al.⁹, Hung et. al.¹⁰, Osamu et. al.¹¹, Salim et. al.¹² Mohan et. al.³, Rees et. al.²¹, Motoyama et. al.²², Ayoub et. al.²³, Alan M²⁴ and Allen DB²⁵ who also observed shorter height in SSNS children. Significantly, more severe height growth retardation yielding short stature amongst boys with SSNS during peripubertal age recorded by Kitamura et. al.⁸, Emma et. al.⁷ and Salim et. al.¹² are similar to our findings. However, these observations are at variance with those of Saha et. al.¹⁷, Adhikari et. al.¹⁸, Ruth et. al.¹⁹ and Abbas et. al.²⁰ who did not notice any difference in mean height attainments of children with steroid-sensitive nephrotic syndrome as compared to their normal peers. Height growth curve plotted for children with SSNS not only ran below those of the American and Indian children but exhibited parallelism until 13.5 years, afterwards it suddenly diverged to impair height more severely, to make them short individuals.

It has further been observed that like height and weight, growth of chest circumference, biacromial diameter and bicristal diameter in boys with steroid sensitive Nephrotic syndrome was also compromised as compared to their normal counterparts.^{27,28,29} Exception to this were triceps and subscapular skinfold thicknesses which in general had more of fat than normal boys and became fatter between 12 to 14 years due to excessive deposition of appendicular fat at triceps, as well as truncal fat in the subscapular region.

Boys with steroid sensitive nephrotic syndrome not only experienced delay in attainment of peak height and weight velocities, but the magnitude of peak height velocity (PHV) and peak weight (PWV) velocity was found to be substantially lesser than their normal Chandigarh³⁰ and Leeds counterparts³¹, which may be the reason for relatively shorter height (Fig 1) and lighter weight (Fig. 2) attainments noticed amongst boys with SSNS as compared to their normal peers. However, inter-population auxological comparison for other body parameters could not be attempted because of the non-availability of suitable sets of comparative data on normal subjects belonging to different population stocks.

Conclusions

The relatively impaired auxological status recorded amongst boys with SSNS appears to be due to influence of chronic nature of the disease itself as well as effect of steroid therapy which is known to impair growth in children. On the contrary, growth of subcutaneous fat measured in terms of triceps and subscapular skinfold thicknesses exhibited relatively fatter attainments amongst boys with SSNS than their normal counterparts.

References

1. Indian Pediatric Nephrology Group, Indian Academy of Pediatrics. Management of Steroid Sensitive Nephrotic Syndrome: Revised guidelines. Indian Pediatr 2008; 45:203-14.
2. Vogt BA, Avner ED. Nephrotic Syndrome. In: Nelson Textbook of Pediatrics, 18th edition. Eds. Kliegman RM, Jenson HB, Behrman RE, Stanton BF. Philadelphia: Elsevier Saunders 2007; 2: 2190-5.
3. Mohan KR, Kanitkar M. Growth in Children with Steroid Sensitive Nephrotic Syndrome. Medical J Armed Forces India 2009; 65: 4-6
4. Feng D, Jun R. Insulin-like growth factors (IGFs) and IGFbinding proteins in Nephrotic syndrome children on glucocorticoids. Pharmacol Res 2003; 48: 319-23.
5. Eddy AA, Symons JM. Nephrotic syndrome in childhood. Lancet 2003; 362: 629-39.
6. Donatti TL, Koch VH, Fujimura MD, Okay Y. Growth in steroid-responsive Nephrotic syndrome: a study of 85 pediatric patients. PediatrNephrol 2003; 18: 789-95.
7. Emma F, Sesto A, Rizzoni G. Long term linear growth of children with severe steroid responsive Nephrotic syndrome. PediatrNephrol 2003; 18: 783-8.
8. Kitamura M. Growth retardation in children with frequent relapsing Nephrotic syndrome on steroids - improvement of height velocity after administration of immunosuppressive agent. Nihon JinzoGakkai Shi 1992; 34: 117-24.
9. Tsau YK, Chen CH, Lee PI. Growth in children with Nephrotic syndrome. Taiwan Yi XueHuvZaZhi 1989; 88: 900-6.
10. Hung YT, Yang LY. Follow up of linear growth of body height in children with Nephrotic syndrome. J MicrobiolImmunol Infect 2006; 39: 422-5.
11. Osamu M, Kikuo I. Final height in children with steroid sensitive Nephrotic syndrome. PediatrInt 2007; 49:623-5.
12. Salim ZA, Faris MF, Asad AA et. al. Growth delay in Steroid Sensitive Nephrotic patients. The Iraqi postgraduate med J 2007; 6:129-35.
13. Foote KD, Brocklebank JT, Meadow SR. Height attainment in children with steroid responsive Nephrotic syndrome. Lancet 1985; 2:917-9.
14. Polito C, Manna A, Papale MR, Villani G. Delayed pubertal growth spurt and normal adult height attainment in boys receiving long term alternate day prednisolone therapy. Clinpediatr (phila) 1999; 38:279-85.
15. Valérie L, Véronique B, Corinne A, Patrick N, et. al. Growth in boys with idiopathic Nephrotic syndrome on long-term cyclosporine and steroid treatment. PediatrNephrol 2009; 24: 2393-400.
16. Koch VH, Donatti TL. Final height of adults with childhood-onset steroid-responsive idiopathic Nephrotic syndrome. PediatrNephrol 2009; 24:2401-8.
17. Saha MT, Laiala P, Lenko HL. Normal growth of prepubertalNephrotic children during long term treatment with repeated courses of prednisolone. Actapediatr 1998; 87:545-8.
18. Adhikari M, Manikkam NE, Coovadia HM. Effects of repeated courses of daily steroids and of persistant proteinuria on linear growth in children with Nephrotic syndrome. PediatrNephrol 1992; 6:4-9.
19. Ruth EM, Kemper MJ, Leumann EP, Laube GF, Neuhaus TJ. Children with steroid-sensitive Nephrotic syndrome come of age: long-term outcome. J Pediatr 2005; 147:202-7.
20. Abbas M, Niloofer H, Rambod T et. al. The effect of long term steroid therapy on linear growth of Nephrotic children. Iran J Pediatr 2011; 21:21-27.
21. Rees L, Greene SA, Adlard P, Jones J, Haycock GB, et. al. Growth and endocrine function in

steroid sensitive Nephrotic syndrome. Arch dis child 1988; 63:484 -90.

22. Motoyama O, Iitaka K. Final height and sexual maturation in children with steroid sensitive Nephrotic syndrome. Pediatrint 2007; 49:623-5.

23. Ayoub NI, Khalaf HM, Sabeeha M, Al-Mefraji. Study of the growth and puberty in Iraqi children with Nephrotic syndrome. Mustansiriya Med J 2012; 11:85-89.

24. Alan M. Schindler: corticosteroid effect on growth. Article available at: [Http://www.medscape.com/veiwarticle/49609](http://www.medscape.com/veiwarticle/49609).

25. Allen DB. Growth suppression by glucocorticoid Therapy. EndocrinolMetabClin North Am 1996; 25:699- 717.

26. Tanner JM. Some notes on the reporting of growth data. Hum Biol. 1951;23 (2):93-159.

27. Agarwal DK, Agarwal KN, Upadhyay SK, Mittal R. Physical and sexual growth pattern of affluent Indian children (5-18 years). Indian Pediatr 1992; 29:1203-82.

28. Kuczmarski RJ, Ogden CL, Guo SS, Curtin LR, Johnson CL et. al. 2000 CDC growth charts for the united states: Vital Health Stat 2002; 246:1-190.

29. Eiben OG, Panto E. The Hungarian national growth standards. AnthropologaiKozlemenek 1986; 30:1-40.

30. Bhalla AK, Kumar L. A mixed-longitudinal study of physical growth and sexual maturation of well-off Chandigarh children during adolescence. (project report) Advanced Pediatric Centre, PGIMER 2001; 1-60.

31. Buckler J. A longitudinal study of adolescent growth. Springer-verlag, London 1990; 1-433.

To Study Incidence of Neurosonographic Abnormalities in Newborns with Birth Asphyxia

Abhijit Shinde¹, Sunil Natha Mhaske², Shreya Bhate³

¹Assistant Professor, ²Dean, ³Junior Resident, Department of Pediatrics, Dr Vithalrao Vikhe Patil Foundation's Medical College and Hospital, Ahmednagar, Maharashtra 414111, India.

How to cite this article:

Abhijit Shinde, Sunil Natha Mhaske, Shreya Bhate. To Study Incidence of Neurosonographic Abnormalities in Newborns with Birth Asphyxia. *Pediatr Edu Res*. 2020;8(3):109-112.

Abstract

Neonatal sonography of the brain is now an essential part of newborn care, particularly in high risk and unstable premature infants. Cranial ultrasound is the most available and easily repeatable imaging technique for the neonatal brain showing brain development and the most frequently occurring forms of cerebral injury in the preterm and terms. This study aims to assess the importance of cranial ultrasound as an investigatory modality for high-risk neonates and to find out the morphology of various cerebral lesions and correlate clinically.

Materials and Methods: This was a Descriptive Longitudinal Prospective study conducted in Neonatal Intensive Care Unit at Paediatric Department of *Dvvpf Medical College and Hospital*, which is a tertiary care hospital for surrounding districts, during the period of two years. In our period 155 neonates having perinatal asphyxia was studied to evaluate the usefulness of Neurosonogram in diagnosis of various lesions in symptomatic neonates with history of birth asphyxia.

Results: In our study 70 (45.1%) neonates had abnormal NSG findings of total of 155 neonates. In our study abnormal NSG among preterm neonates was maximum with weight in 1-1.5kg (88.5%). In our study abnormal NSG among term neonates was maximum in neonates with weight in 2-3kg (72%) range [2- 2.5kg (25%) and 2.5-3kg (47%) range]. Among 70 abnormal NSG, 25 had mydriasis, 38 had normal anterior fontanelle, 58 had negative transillumination test. Abnormal NSG finding were found when done after 72 hours.

Conclusion: This study shows that Neurosonography is a sensitive, easy, simple, non-invasive, value-effective, initial choice of investigation for detection of abnormal changes in brain among neonates. High efficacy of NSG in detecting presence of brain damage and evolution of brain lesions on regular follow up guides clinical decisions and prognosis of the neonate.

Keywords: Neurosonography; Asphyxia; Seizures; Anterior fontanelle; Newborn; Cranial sonography.

Introduction

The advent of cranial ultrasound or neurosonography (NSG) as a routine tool in neonatology has greatly improved our knowledge of the presence and incidence of brain lesions in the newborn

infant. Cranial ultrasound has been used routinely for infants at risk of neurological impairment, such as those born prematurely¹⁻⁵ or who have suffered from birth asphyxia.^{6,7} World Health Organization (WHO) states that about 9 million neonates develop birth asphyxia every year. Of them 1.2 million die

Corresponding Author: Abhijit Shinde, Assistant Professor, Department of Pediatrics, Dr Vithalrao Vikhe Patil Foundation's Medical College and Hospital, Ahmednagar, Maharashtra 414111, India.

E-mail: jeetshinde007@gmail.com

and same number develop severe consequences such as cerebral palsy, epilepsy and developmental delay. Cranial ultrasound is the most available and easily repeatable imaging technique for the neonatal brain showing brain development and the most frequently occurring forms of cerebral injury in the preterm and terms.⁸

Ultra sonogram through the anterior fontanelle forms the best acoustic window and is as use full as CT with added advantages as it is easy, value effective, can be repeatable at bedside, free of radiation, minimum discomfort to the baby. And thereby enables visualization of ongoing brain maturation and the evolution of brain lesions. In addition, it can be used to assess the timing of brain damage.⁹

Hence this study is undertaken to evaluate the utility of Neurosonography (NSG) for diagnosis of various assorted brain lesions in symptomatic neonates having history of birth asphyxia.

Methodology

This was a Descriptive Longitudinal Prospective study conducted in Neonatal Intensive Care Unit at Paediatric Department of DVVPF MEDICAL COLLEGE and HOSPITAL, which is a tertiary care hospital for surrounding districts, during the period of two years. In our period 155 neonates having perinatal asphyxia was studied to evaluate the usefulness of Neurosonogram in diagnosis of various lesions in symptomatic neonates with history of birth asphyxia.

Inborn Term and Preterm neonates with perinatal asphyxia admitted to Neonatal Intensive Care Unit during the study period. The probe used for neurosonogram (Sonosite machine) was Linear high frequency probe and was done in NICU. Findings on neurosonogram were periventricular leukomalacia grading 1, 2 and 3, Haemorrhage, Infarct, Ventricular and white matter haemorrhage. No follow up is available.(Fig. 1&2)

All cases of Birth asphyxia fulfilling inclusion criteria were included in the study. No baby amongst these were on anticonvulsants having abnormal or absent pupillary reflexes.

Inclusion Criteria

A. All In-born term and preterm neonates with features indicative of perinatal asphyxia.

B. Criteria for asphyxia includes

1. Apgar score of 3 at 1min.
2. Requirement of Positive pressure ventilation for more than 1 min at resuscitation.
3. Fetal heart rate abnormalities (Fetal bradycardia 160 beats/minute) and/or presence of meconium stained amniotic fluid.
4. Abnormal neurological findings including altered muscle tone, altered sensorium and seizures.
5. Need for chest compression during neonatal resuscitation.

Exclusion Criteria

1. Outborn neonates.
2. Neonates with major congenital malformations e.g.- anencephaly, open neural tube defects, diaphragmatic hernia etc.
3. Neonates with extremely low birth weight (< 1 kg)
4. Neonates of extreme prematurity (less than 28 weeks of gestation)
5. Neonates who did not respond to resuscitation

Informed consent was obtained from the parents/guardian regarding inclusion of the neonate in the study. All babies received standard care during and after resuscitation. The relevant maternal and neonatal data was recorded in the standard proforma.

Gestational age in completed weeks was obtained on basis of mother's last menstrual cycle and confirmed where necessary by routine early antenatal USG examination. In some cases where LMP was not available and antenatal USG was not done, then gestational age was assessed by Modified New Ballard's scoring system

The images were obtained through the anterior fontanelle. Image quality was maximized by fine adjusting the preset already available for transcranial scans.

All the data was arranged in a tabulated form and was analysed using Epi info software version 7.1.2. Chi square test and student t test was used for comparison. Probability value of less than 0.05 was considered significant.

Results

Table 1A: Distribution of Various Clinical Findings V/S Neurosonography (According To Pupil Reflex)

Presentation	Pupil Reflex (N= 155)			
	Normal	Mydriasis	Miosis	Absent
Total (n=155)	80	30	15	30
NSG - Normal (n= 85)	75	07	03	00
NSG - Abnormal (n= 70)	05	25	15	25

$\chi^2 = 103.85$, $p < 0.001$, Significant

Significant association was seen between the NSG normal-abnormal and pupillary reflexes ($p < 0.001$). Out of 85 normal NSGs, 75 cases had normal pupillary reflex, while out of 70 abnormal NSGs, only 5 were normal.(Table 1A)

Table 1B: According to Anterior Fontanelle.

Presentation	Anterior Fontanelle (N= 155)		
	Bulged	Depressed	Normal
Total (N= 155)	30	14	111
NSG- Normal (n= 85)	00	10	75
NSG-Abnormal(n=70)	30	02	38

$\chi^2 = 46.43$, $p < 0.001$, Significant

Significant association was seen between the NSG normal-abnormal and anterior fontanelle ($p < 0.001$). Out of 85 normal NSGs, 75 cases had normal anterior fontanelle, while out of 70 abnormal NSGs, only 38 were normal.(Table 1B)

Table 1C: According to Translumination.

Presentation	Translumination (n= 155)	
	Positive	Negative
Total (n= 155)	10	145
NSG- Normal (n= 85)	00	85
NSG-Abnormal(n=70)	12	58

$\chi^2 = 15.79$, $p < 0.001$, Significant

Significant association was seen between the NSG normal-abnormal and anterior fontanelle translumination ($p < 0.001$). Out of 85 normal NSGs, 85 cases had negative translumination, while out of 70 abnormal NSGs, only 12 were positive. (Table 1C)

Table 2: Relation of Central Cyanosis and Neurosonography Findings.

NSG	Central Cyanosis	
	Present	Absent
Total (n= 155)	15	150
NSG- Normal (n= 85)	00	85
NSG-Abnormal(n=70)	17	53

$\chi^2 = 23.19$, $p < 0.001$, Significant

Significant association was seen between the NSG normal-abnormal and central cyanosis ($p < 0.001$). Out of 85 normal NSGs, 0 cases had cyanosis, while out of 70 abnormal NSGs, only 17 had cyanosis. (Table 2)

Table 3: Distribution of Birth Asphyxia Neonates Based on Timing of Nsg

Timing of Nsg	Normal	Abnormal	Total
< 24 Hrs	98	57	155(100%)
24-72 Hrs	90	65	155(100 %)
>72 Hrs	85	70	155(100%)

$\chi^2 = 2.29$, $p = 0.32$, Not Significant

No significant association was seen between the NSG normal-abnormal and timing of NSG ($p < 0.001$).(Table 3)

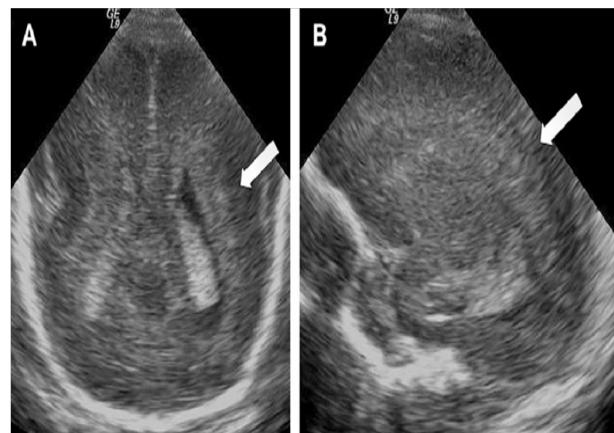


Fig. 1 A: Neurosonogram showing periventricular leukomalacia.
Fig. 1 B: Neurosonogram in which ventricles are visualized.

Discussion

In our study 70 (45.1%) neonates had abnormal NSG findings of total of 155 neonates.

In our study abnormal NSG among preterm neonates was maximum with weight in 1-1.5kg (88.5%) range which is consistent with Eastman NJ et. al. although we had higher percentage (88.5%) in that range as compared to Eastman NJ et. al. (41%).

In our study abnormal NSG among term neonates was maximum in neonates with weight in 2-3kg (72%) range [2- 2.5kg (25%) and 2.5-3kg (47%) range] this is also consistent with Eastman NJ et. al. which had 51% preterm with abnormal NSG in this range.^{10,11,12}

Primhak RA et. al. in their study found out that up to 50% Of neonates weighing less than 1500 g

exhibited some abnormality on the initial NSG.¹³

In our study we have found that out of 155 neonates, 80 had meconium of which 36 (45%) had abnormal scan. 70 mothers had anemia of all these deliveries 30 (42.8%) had abnormal NSG. PROM as risk factor was present in 36 pt. of these deliveries 22 (61.1%) had abnormal NSG. Out of 25 deliveries with PIH as risk factor, 8 (32%) neonates had abnormal scan. In only 5 deliveries cord around neck was present, 3 (60%) of these neonates had abnormal scan. Prolonged 2nd stage of labour was present in 22 deliveries, 15 (68%) of these asphyxiated neonates had abnormal neurosonography.

Reddy et. al. reported that PROM and preeclampsia influenced the presence of NSG abnormalities and risk of developing periventricular intraventricular hemorrhage(PVH).¹⁴

Conclusion

Neurosonography is a sensitive, easy, simple, non-invasive, value-effective, initial choice of investigation for detection of abnormal changes in brain among neonates. High efficacy of NSG in detecting presence of brain damage and evolution of brain lesions on regular follow up guides clinical decisions and prognosis of the neonate.

References:-

1. Pape KE, Blackwell RJ, Cusick G, et. al. Ultrasound detection of brain damage in preterm infants. Lancet 1979;i:1261-74.
2. Hope PJ, Gould SJ, Howard S, Hamilton PA, Costello AM de L, Reynolds EOR. Precision of ultrasound diagnosis of pathologically verified lesions in the brains of very preterm babies. Dev Med Child Neurol 1988;30:457-71.
3. Paneth N, Rudelli R, Kazam E, Monte W. Brain damage in the preterm infant. Clinics in developmental medicine . London: Mac Keith Press, 1994:131.
4. Rennie JM. Neonatal cerebral ultrasound. Cambridge: Cambridge University Press, 1997.
5. Govaert P, de Vries L. An atlas of neonatal brain sonography. Clinics in developmental medicine. London: Mac Keith Press, 1997:141-142.
6. Eken P, Jansen GH, Groenendaal F, Rademaker KJ, de Vries L. Intracranial lesions in the full term with hypoxicischemic lesions. Neuropediatrics 1994;24:301-7.
7. Levene MI. The asphyxiated newborn infant. In: Levene MI, Lilford RJ, Bennett MJ, Punt J, eds. Fetal and neonatal neurology and neurosurgery. Edinburgh: Harcourt Publish.
8. Apgar V. A proposal for a new method of evaluation of the newborn infant. Curr Res Anesth Analg 1953; 32: 260-267.
9. James FS, Weisbrot IM, Prince CE. The Acid Base Status of Human Infants in Relation to Birth Asphyxia and the Onset of Respiration. J Pediatr 1958; 52: 379
10. Eastman NJ. Foetal Blood Studies 1. The Oxygen Relationship of Umbilical Cord Blood and Birth. Bull. J. Hop. Hosp. 1930; 47, 4: 221.
11. Eastman NJ, McLane CM. Foetal Blood Studies II. The Lactic Acid Content of Umbilical Cord Blood under Various Conditions. Bull. J. Hop. Hosp. 1931; 48: 26.
12. Eastman NJ. Foetal Blood Studies III. The Chemical Nature of Asphyxia Neonatorum and Its Bearing on Certain Practical Problems. Bull. J. Hop. Hosp. 1932; 50 (1): 39.
13. Primhak RA, Jedeikin R, Ellis G, Makela SK, Gillan JE, Swyer PR, et. al. Myocardial ischaemia in asphyxia neonatorum. Electrocardiographic, enzymatic and histological correlations. Acta Pediatr Scand 1985; 74: 595-600.
14. Sanath Reddy, Sourabh Dutta and Anil Narang. Evaluation of Lactate Dehydrogenase, Creatine Kinase and Hepatic Enzymes for the Retrospective Diagnosis of Perinatal Asphyxia Among Sick Neonates. Indian Pediatrics February 17, 2008; 45: 144-147.

Surfactant Replacement Therapy for Respiratory Distress Syndrome in the Newborn

Rucha Nitin Tipare¹, Sunil Natha Mhaske²

¹Resident, ²Professor, Department of Paediatrics, Dr Vithalrao Vikhe Patil Foundation's Medical College and Hospital, Ahmednagar, Maharashtra 414111, India.

How to cite this article:

Rucha Nitin Tipare, Sunil Natha Mhaske. Surfactant Replacement Therapy for Respiratory Distress Syndrome in the Newborn. *Pediatr Edu Res.* 2020;8(3):113-116.

Abstract

Surfactant deficiency Causing respiratory failure is the major cause of morbidity and mortality in low birth weight premature infants. Surfactant therapy gradually reduces mortality and morbidity for this population. Exogenous surfactant therapy is well established in newborn babies with respiratory distress. Many aspects of its use have been well assessed in high-quality trials and systematic reviews. In late-preterm and term neonates with meconium aspiration syndrome, pneumonia/sepsis, and maybe pulmonary haemorrhage, secondary surfactant deficiency also leads to acute respiratory morbidity; surfactant substitution can be helpful for these babies. This paper reviews the evidence and provides guidelines for the use of respiratory distress syndrome (RDS) surfactant therapy in newborns.

Keywords: Surfactant therapy Distress Syndrome in newborn

Introduction

As an effective preventive and treatment therapy for prematurity-related surfactant deficiency, exogenous surfactant substitution has been developed. More advanced children with primary pulmonary hypertension or meconium aspiration syndrome may also be recommended for surfactant therapy. The use of surfactant replacement in preventive or treatment modes has been shown to be safe and efficient in single and multicenter randomised controlled trials using synthetic, modified animal, purified animal, and human surfactants. Reduced death rates and increased short-term respiratory status have been reported for preterm babies with respiratory failure due to surfactant-deficiency. New experiments continue to tackle refinements in the use of surfactants that can maximise their efficacy. Among the challenges

that can boost the effect of surfactants are new materials, spacing, dosage, ways of administration, and adjustment for various gestational age groups.^{1,2} Surfactants are organic compounds that lower the surface tension of a liquid lining the alveoli.² Surfactants decrease the surface tension of the fluid by adsorbing the liquid-gas interface.³ A surface-active lipoprotein complex (phospholipoprotein) produced by type II alveolar cells is a pulmonary surfactant. The key lipid surfactant portion, dipalmitoyl phosphatidylcholine (DPPC), decreases surface tension by adsorbing alveoli to the air-water interface with the hydrophilic head groups in the water and the hydrophobic tails facing the air.⁴

Surfactant Functions

- To improve pulmonary compliance.
- Atelectasis (collapse of the lung) can be

Corresponding Author: Sunil Natha Mhaske,²Professor, Department of Paediatrics, Dr Vithalrao Vikhe Patil Foundation's Medical College and Hospital, Ahmednagar, Maharashtra 414111, India.

E-mail: sunilmhaske1970@gmail.com

avoided at the end of expiration.

- In order to promote the recruiting of collapsed airways.

Benefits of Surfactant Replacement Therapy in RDS

The occurrence of acute respiratory failure with disrupted gas exchange in a preterm baby with a normal clinical course or x-ray (ground glass presentation, air bronchograms and reduced lung volume) is typically described by RDS.⁵ The lungs of preterm infants with RDS are both anatomically and biochemically immature; they do not synthesise or secrete RDS. Surfactant usually lines the alveolar surfaces of the lung, thus decreasing surface stress and avoiding atelectasis.⁵ Surfactant replacement therapy decreases death and morbidity of babies with RDS, either as a rescue procedure or as a prophylactic natural surfactant therapy.^{6,7} These morbidities include oxygenation defects, the occurrence of leakage of pulmonary air (pneumothorax and interstitial pulmonary emphysema) and the length of ventilatory assistance. Replacement of surfactants improves the chance of survival without bronchopulmonary dysplasia (BPD, also referred to as chronic lung disease) mainly by improving survival rather than the occurrence of BPD. Compared to randomised placebo children without surfactants, babies administered with surfactants had shorter hospital stays and reduced costs of intensive care treatment.⁸ The rise in longevity is done without a rise of adverse neurodevelopmental results.⁹

Risks of Exogenous Surfactant Therapy

Bradycardia and hypoxemia during instillation as well as endotracheal tube blockage are short-term risks of surfactant replacement therapy.¹⁰ There can also be a rise in pulmonary haemorrhage after surfactant therapy; however, mortality associated with pulmonary haemorrhage is not increased and total mortality is lower after surfactant therapy.¹¹ In surfactant-treated children that are deficient in surfactants, there is also a very fast increase in gas exchange.¹² Natural surfactants include proteins (surfactant protein-A, surfactant protein-B) from bovine or porcine origins and concerns about the immunological consequences have been raised.¹³ To date, there is no proof that there are immunological improvements of therapeutic concern.¹⁴ Babies with RDS have observable circulating immune complexes targeted at proteins of surfactants, but these do not seem to be more common in surfactant-treated babies.¹⁵ One study found a lower occurrence of protein-A and anti surfactant protein Banti surfactants in surfactant-treated babies compared to controls.^{16,17}

Which is Better: Natural or Synthetic Surfactants?

A total of 11 randomised trials were subject to systematic analysis comparing natural and synthetic surfactants for babies with RDS.¹⁰ The study found that overall mortality is decreased relative and synthetic surfactants due to the use of natural surfactants. In babies treated with natural surfactants, pulmonary air leak syndrome is less frequent. In babies given natural or synthetic surfactants, the occurrence of BPD is not different, but since mortality is minimised in babies given natural surfactants, the cumulative result of death or BPD is decreased. Natural surfactants thus enhance longevity without BPD and with a lower rate of air leakage and should be favoured to synthetic surfactants.¹⁸

Surfactants Prescribed as Prophylaxis or Rescue Therapy for Preterm Babies with RDS

Multiple trials have examined whether surfactants should be prescribed to all babies at serious risk of developing RDS or only after RDS development. Seven RCTs in prophylactic versus rescue treatment were analysed by Soll and Morley.¹⁹ These were both experiments that used natural surfactants. Six of the RCTs enrolled children less than 30 weeks gestational and one enrolled children 29 to 32 weeks gestational. Prophylactic surfactant therapy reduced mortality both before 28 days and before hospital discharge. The occurrence of RDS, pneumothorax and pulmonary interstitial emphysema all decreased in babies treated prophylactically. There was no difference in the occurrence of BPD.¹⁹ With the existing mortality rates at tertiary centres, prophylactically providing surfactant to all babies less than 26 weeks gestation and to all 26 to 27 weeks gestation who did not benefit from antenatal steroids would be a fair choice. Infants at serious risk of RDS should undergo prophylactic natural surfactant therapy as soon as they are stable within a few minutes after intubation.¹⁹

Surfactant Replacement Therapy Procedure

Surfactant was instilled through the endotracheal tube in liquid form for all surfactant replacement therapy trials.¹⁷ Some studies instilled all the surfactant at once, while others gave in small parts.¹⁸ Just one very small trial compared a slow infusion with bolus surfactant administration. It concluded that slow infusion was at least as effective as bolus therapy.²⁰ There is no evidence to support the practise of putting the baby in several different positions during surfactant administration.²⁰

Dosage of Surfactant

In the various clinical trials, dosages ranged from 25 mg to 200 mg phospholipids/kg body weight as single doses. At a dosage of 120 mg/kg, Surfactant-TA (a natural bovine surfactant) was more effective than 60 mg/kg.²⁰ At 200 mg/kg, Curosurf (a natural porcine surfactant) was more acutely effective than 100 mg/kg.²¹ Lower doses may well be ideal for prophylaxis, although higher doses may be needed for the treatment of known RDS when antisurfactant proteins are present in the airspace. Therefore, improvements in results tend to be seen up to a dose of approximately 120 mg phospholipids/kg body wt for first dose, first larger doses do not cause improvement in outcome.

Requirements for Retreatment and Timing

Retreatment should be considered when there is a requirement of 30 percent or more for chronic or repeated oxygen and can be administered as early as 2 h after the initial dose or, more generally, 4 h to 6 h after the initial dose.²²

Ventilatory Management After Surfactant Therapy

Due to the rapid changes in lung mechanics and the ventilation/perfusion matching that occurs after rescue surfactant therapy and the avoidance of serious lung disease by the prophylactic use of natural surfactants, many infants can be very easily weaned and extubated to nasal continuous positive airway pressure (CPAP) within 1 hour of intubation and surfactant therapy.¹⁷ To do this, only a brief period of respiratory distress should be triggered by the premedication used for intubation and personnel must be educated and certified in rapid ventilator weaning. Such weaning is sometimes carried out with little to no blood gases, depending instead on the clinical state of the baby and spontaneous respiratory effort and taking into account the criteria for oxygen as determined from pulse oximetry and also using measurements of transcutaneous carbon dioxide. There is currently no evidence that, compared with the more conventional weaning approach, a fast weaning and extubation approach enhances long-term performance. Such an approach resulted in a decrease in the need for more than 1 h of mechanical ventilation in two small randomised trials.²¹

Surfactant therapy V/S antenatal steroids- A single course of steroids should be offered to expectant mothers with threatened preterm labour, according to current guidelines. Wide cohort studies suggest that surfactant and steroid combinations are more effective than surfactant alone, which is exogenous. A secondary analysis of evidence from

surfactant research also suggests a decline in the incidence of disease in infants receiving antenatal steroids. Two additional RCTs have shown that prenatal steroids appear to minimise the risk of bad outcomes even in centres where surfactants are available; one has shown a decrease in RDS and an increase in survival without ventilatory assistance, and both have shown a substantial decrease in extreme intraventricular haemorrhage.²³

Conclusion

The therapy of exogenous surfactants is safe and has important benefits in the treatment of many neonatal respiratory diseases. Excellent quality RCTs have been well studied and have clearly reported that their administration should be normal in the treatment of RDS and as prophylaxis in identified preterm baby classes. In other infant respiratory disorders, data continues to be gathered for its use. The following guidelines are provided by the Canadian Paediatric Society:-

- Antenatal steroids should be prescribed to mothers at risk of delivering babies less than 34 weeks gestation, in compliance with established guidelines, regardless of the availability of postnatal surfactant therapy.
- Exogenous surfactant therapy should be offered to intubated infants with RDS.
- As soon as they are healthy within a few minutes of intubation, infants who are at high risk for RDS should receive prophylactic natural surfactant care.
- Repeated doses of surfactants should be given to infants with RDS who have chronic or recurrent oxygen and ventilatory requirements during the first 72 h of life. It has not been shown that administering more than three doses has a benefit.
- Retreatment may be considered when an oxygen demand of 30 percent or more is persistent or chronic, and can be administered as early as 2 h after the initial dose or, more generally, 4 h to 6 h after the initial dose.
- Ventilatory management options to be considered following prophylactic surfactant therapy include very rapid weaning and extubation within 1 h of CPAP.
- If at all necessary, mothers with a threatened delivery before 32 weeks of gestation should be moved to a tertiary centre.
- Infants that have been gestated for less than 29 weeks outside the tertiary centre should

be recommended for immediate intubation followed by the administration of surfactants until stabilisation, provided that qualified personnel are available.

References

1. Richard AP, Waldemar AC. Surfactant Replacement Therapy for Preterm and Term Neonates With Respiratory Distress. *Pediatrics*. 2014;133:156-63.
2. Emmanuel L, Géraldine G, Cyril F, Mona M, Pierre T, Olivier B. Exogenous surfactant therapy : what is next? who, when and how should we treat newborn infants in the future? *BMC Pediatrics*. 2013;13:165.
3. Walsh BK, Daigle B, Diblasi RM, Restrepo RD. AARC clinical practice guideline. Surfactant replacement therapy: 2013. *Respir Care*. 2013;58:367-75.
4. Schmölzer GM, Agarwal M, Kamlin CO, Davis PG. Supraglottic airway devices during neonatal resuscitation: an historical perspective, systematic review and meta-analysis of available clinical trials. *Resuscitation*. 2013;84:722-30.
5. Bahadue FL, Soll R. Early versus delayed selective surfactant treatment for neonatal respiratory distress syndrome. *Cochrane Database Syst Rev*. 2012;11(11):CD001456 pmid: 23152207.
6. Mehler K, Grimme J, Abele J. Outcome of extremely low gestational age newborns after introduction of a revised protocol to assist preterm infants in their transition to extrauterine life. *Acta Paediatr*. 2012;101:1232-39.
7. Vento GM, Tana M, Tirone C. Effectiveness of treatment with surfactant in premature infants with respiratory failure and pulmonary infection. *Acta Biomed*. 2012;83:33-36.
8. Rojas-Reyes MX, Morley CJ, Soll R. Prophylactic versus selective use of surfactant in preventing morbidity and mortality in preterm infants. *Cochrane Database Syst Rev*. 2012;3(3): CD000510 pmid: 22419276.
9. Tarawneh A, Kaczmarek J, Bottino MN, Sant'anna GM. Severe airway obstruction during surfactant administration using a standardized protocol: a prospective, observational study. *J Perinatol*. 2012;32:270-75.
10. Moya F, Javier MC. Myth: all surfactants are alike. *Semin Fetal Neonatal Med*. 2011; 16: 269274.
11. CogoPE, FaccoM, SimonatoM. Pharmacokinetics and clinical predictors of surfactant redosing in respiratory distress syndrome. *Intensive Care Med*. 2011; 37: 510-17.
12. Pfister RH, Soll R, Wiswell TE. Proteincontaining synthetic surfactant versus proteinfree synthetic surfactant for the prevention and treatment of respiratory distress syndrome. *Cochrane Database Syst Rev*. 2009;(4): CD006180 pmid:19821357.
13. Soll R, Ozek E. Multiple versus single doses of exogenous surfactant for the prevention or treatment of neonatal respiratory distress syndrome. *Cochrane Database Syst Rev*. 2009;(1):CD000141 pmid:19160177.
14. Engle WA, American Academy of Pediatrics Committee on Fetus and Newborn. Surfactantreplacement therapy for respiratory distress in the preterm and term neonate. *Pediatrics*. 2008; 121:419-32.
15. Michael S Dunn, Ann L Jefferies. Recommendations for neonatal surfactant therapy. *Paediatr Child Health*. 2005;10:109116.
16. R Ramanathan. Surfactant therapy in preterm infants with respiratory distress syndrome and in near-term or term newborns with acute RDS. *Journal of Perinatology*. 2006;26:S51-S56.
17. Soll RF. The Cochrane Library. Issue 4. Chichester, UK: John Wiley & Sons, Ltd; 2004. Prophylactic natural surfactant extract for preventing morbidity and mortality in preterm infants (Cochrane Review)
18. Soll RF, Blanco F. The Cochrane Library. Issue 4. Chichester, UK: John Wiley & Sons, Ltd; 2004. Natural surfactant extract versus synthetic surfactant for neonatal respiratory distress syndrome (Cochrane Review)
19. Soll RF, Morley CJ. The Cochrane Library. 4. Chichester, UK: John Wiley & Sons, Ltd; 2004. Prophylactic versus selective use of surfactant in preventing morbidity and mortality in preterm infants (Cochrane Review)
20. Soll RF. The Cochrane Library. 4. Chichester, UK: John Wiley & Sons, Ltd; 2004. Multiple versus single dose natural surfactant extract for severe neonatal respiratory distress syndrome (Cochrane Review)
21. Hentschel R, Brune T, Franke N, Harms E, Jorch G. Sequential changes in compliance and resistance after bolus administration or slow infusion of surfactant in preterm infants. *Intensive Care Med*. 2002;28:622-28.
22. Figueras-Aloy J, Quero J, Carbonell-Estrany X, et. al. Early administration of the second dose of surfactant (beractant) in the treatment of severe hyaline membrane disease. *Acta Paediatr*. 2001;90:296-301.
23. Tooley J, Dyke M. Randomized study of nasal continuous positive airway pressure in the preterm infant with respiratory distress syndrome. *Acta Paediatr*. 2003;92:1170-74.

Guidelines for Authors

Manuscripts must be prepared in accordance with "Uniform requirements for Manuscripts submitted to Biomedical Journal" developed by international committee of medical Journal Editors

Types of Manuscripts and Limits

Original articles: Up to 3000 words excluding references and abstract and up to 10 references.

Review articles: Up to 2500 words excluding references and abstract and up to 10 references.

Case reports: Up to 1000 words excluding references and abstract and up to 10 references.

Online Submission of the Manuscripts

Articles can also be submitted online from http://rfppl.co.in/customer_index.php.

1) First Page File: Prepare the title page, covering letter, acknowledgement, etc. using a word processor program. All information which can reveal your identity should be here. use text/rtf/doc/PDF files. Do not zip the files.

2) Article file: The main text of the article, beginning from Abstract till References (including tables) should be in this file. Do not include any information (such as acknowledgement, your name in page headers, etc.) in this file. Use text/rtf/doc/PDF files. Do not zip the files. Limit the file size to 400 Kb. Do not incorporate images in the file. If file size is large, graphs can be submitted as images separately without incorporating them in the article file to reduce the size of the file.

3) Images: Submit good quality color images. Each image should be less than 100 Kb in size. Size of the image can be reduced by decreasing the actual height and width of the images (keep up to 400 pixels or 3 inches). All image formats (jpeg, tiff, gif, bmp, png, eps etc.) are acceptable; jpeg is most suitable.

Legends: Legends for the figures/images should be included at the end of the article file.

If the manuscript is submitted online, the contributors' form and copyright transfer form has to be submitted in original with the signatures of all the contributors within two weeks from submission. Hard copies of the images (3 sets), for articles submitted online, should be sent to the journal office at the time of submission of a revised manuscript. Editorial office: Red Flower Publication Pvt. Ltd., 48/41-42, DSIDC, Pocket-II, Mayur Vihar Phase-I, Delhi – 110 091, India, Phone: 91-11-22754205, 79695648, 22756995. E-mail: author@rfppl.co.in. Submission page: http://rfppl.co.in/article_submission_system.php?mid=5.

Preparation of the Manuscript

The text of observational and experimental articles should be divided into sections with the headings: Introduction, Methods, Results, Discussion, References, Tables, Figures, Figure legends, and Acknowledgment. Do not make subheadings in these sections.

Title Page

The title page should carry

- 1) Type of manuscript (e.g. Original article, Review article, Case Report)
- 2) The title of the article should be concise and informative;
- 3) Running title or short title not more than 50 characters;
- 4) The name by which each contributor is known (Last name, First name and initials of middle name), with his or her highest academic degree(s) and institutional affiliation;
- 5) The name of the department(s) and institution(s) to which the work should be attributed;
- 6) The name, address, phone numbers, facsimile numbers and e-mail address of the contributor responsible for correspondence about the manuscript; should be mentioned.
- 7) The total number of pages, total number of photographs and word counts separately for abstract and for the text (excluding the references and abstract);
- 8) Source(s) of support in the form of grants, equipment, drugs, or all of these;
- 9) Acknowledgement, if any; and
- 10) If the manuscript was presented as part at a meeting, the organization, place, and exact date on which it was read.

Abstract Page

The second page should carry the full title of the manuscript and an abstract (of no more than 150 words for case reports, brief reports and 250 words for original articles). The abstract should be structured and state the Context (Background), Aims, Settings and Design, Methods and Materials, Statistical analysis used, Results and Conclusions. Below the abstract should provide 3 to 10 keywords.

Introduction

State the background of the study and purpose of the study and summarize the rationale for the study or observation.

Methods

The methods section should include only information that was available at the time the plan or protocol for the study was written such as study approach, design, type of sample, sample size, sampling technique, setting of the study, description of data collection tools and methods; all information obtained during the conduct of the study belongs in the Results section.

Reports of randomized clinical trials should be based on the CONSORT Statement (<http://www.consort-statement.org>). When reporting experiments on human subjects, indicate whether the procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional or regional) and with the Helsinki Declaration of 1975, as revised in 2000 (available at http://www.wma.net/e/policy/17-c_e.html).

Results

Present your results in logical sequence in the text, tables, and illustrations, giving the main or most important findings first. Do not repeat in the text all the data in the tables or illustrations; emphasize or summarize only important observations. Extra or supplementary materials and technical details can be placed in an appendix where it will be accessible but will not interrupt the flow of the text; alternatively, it can be published only in the electronic version of the journal.

Discussion

Include summary of key findings (primary outcome measures, secondary outcome measures, results as they relate to a prior hypothesis); Strengths and limitations of the study (study question, study design, data collection, analysis and interpretation); Interpretation and implications in the context of the totality of evidence (is there a systematic review to refer to, if not, could one be reasonably done here and now?; What this study adds to the available evidence, effects on patient care and health policy, possible mechanisms? Controversies raised by this study; and Future research directions (for this particular research

collaboration, underlying mechanisms, clinical research). Do not repeat in detail data or other material given in the Introduction or the Results section.

References

List references in alphabetical order. Each listed reference should be cited in text (not in alphabetic order), and each text citation should be listed in the References section. Identify references in text, tables, and legends by Arabic numerals in square bracket (e.g. [10]). Please refer to ICMJE Guidelines (http://www.nlm.nih.gov/bsd/uniform_requirements.html) for more examples.

Standard journal article

[1] Flink H, Tegelberg Å, Thörn M, Lagerlöf F. Effect of oral iron supplementation on unstimulated salivary flow rate: A randomized, double-blind, placebo-controlled trial. *J Oral Pathol Med* 2006; 35: 540-7.

[2] Twetman S, Axelsson S, Dahlgren H, Holm AK, Kälestål C, Lagerlöf F, et. al. Caries-preventive effect of fluoride toothpaste: A systematic review. *Acta Odontol Scand* 2003; 61: 347-55.

Article in supplement or special issue

[3] Fleischer W, Reimer K. Povidone-iodine antisepsis. State of the art. *Dermatology* 1997; 195 Suppl 2: 3-9.

Corporate (collective) author

[4] American Academy of Periodontology. Sonic and ultrasonic scalers in periodontics. *J Periodontol* 2000; 71: 1792-801.

Unpublished article

[5] Garoushi S, Lassila LV, Tezvergil A, Vallittu PK. Static and fatigue compression test for particulate filler composite resin with fiber-reinforced composite substructure. *Dent Mater* 2006.

Personal author(s)

[6] Hosmer D, Lemeshow S. *Applied logistic regression*, 2nd edn. New York: Wiley-Interscience; 2000.

Chapter in book

[7] Nauntofte B, Tenovuo J, Lagerlöf F. Secretion and composition of saliva. In: Fejerskov O,

Kidd EAM, editors. *Dental caries: The disease and its clinical management*. Oxford: Blackwell Munksgaard; 2003. pp 7-27.

No author given

[8] World Health Organization. *Oral health surveys - basic methods*, 4th edn. Geneva: World Health Organization; 1997.

Reference from electronic media

[9] National Statistics Online – Trends in suicide by method in England and Wales, 1979–2001. www.statistics.gov.uk/downloads/theme_health/HSQ20.pdf (accessed Jan 24, 2005): 7-18. Only verified references against the original documents should be cited. Authors are responsible for the accuracy and completeness of their references and for correct text citation. The number of reference should be kept limited to 20 in case of major communications and 10 for short communications.

More information about other reference types is available at www.nlm.nih.gov/bsd/uniform_requirements.html, but observes some minor deviations (no full stop after journal title, no issue or date after volume, etc.).

Tables

Tables should be self-explanatory and should not duplicate textual material.

Tables with more than 10 columns and 25 rows are not acceptable.

Table numbers should be in Arabic numerals, consecutively in the order of their first citation in the text and supply a brief title for each.

Explain in footnotes all non-standard abbreviations that are used in each table.

For footnotes use the following symbols, in this sequence: *, ¶, †, ‡.

Illustrations (Figures)

Graphics files are welcome if supplied as Tiff, EPS, or PowerPoint files of minimum 1200x1600 pixel size. The minimum line weight for line art is 0.5 point for optimal printing.

When possible, please place symbol legends below the figure instead of the side.

Original color figures can be printed in color at the editor's and publisher's discretion provided the

author agrees to pay.

Type or print out legends (maximum 40 words, excluding the credit line) for illustrations using double spacing, with Arabic numerals corresponding to the illustrations.

Sending a revised manuscript

While submitting a revised manuscript, contributors are requested to include, along with single copy of the final revised manuscript, a photocopy of the revised manuscript with the changes underlined in red and copy of the comments with the point-to-point clarification to each comment. The manuscript number should be written on each of these documents. If the manuscript is submitted online, the contributors' form and copyright transfer form has to be submitted in original with the signatures of all the contributors within two weeks of submission. Hard copies of images should be sent to the office of the journal. There is no need to send printed manuscript for articles submitted online.

Reprints

Journal provides no free printed, reprints, however a author copy is sent to the main author and additional copies are available on payment (ask to the journal office).

Copyrights

The whole of the literary matter in the journal is copyright and cannot be reproduced without the written permission.

Declaration

A declaration should be submitted stating that the manuscript represents valid work and that neither this manuscript nor one with substantially similar content under the present authorship has been published or is being considered for publication elsewhere and the authorship of this article will not be contested by any one whose name(s) is/are not listed here, and that the order of authorship as placed in the manuscript is final and accepted by the co-authors. Declarations should be signed by all the authors in the order in which they are mentioned in the original manuscript. Matters appearing in the Journal are covered by copyright but no objection will be made to their reproduction provided permission is obtained from the Editor prior to publication and due acknowledgment of the source is made.

Approval of Ethics Committee

We need the Ethics committee approval letter from an Institutional ethical committee (IEC) or an institutional review board (IRB) to publish your Research article or author should submit a statement that the study does not require ethics approval along with evidence. The evidence could either be consent from patients is available and there are no ethics issues in the paper or a letter from an IRB stating that the study in question does not require ethics approval.

Abbreviations

Standard abbreviations should be used and be spelt out when first used in the text. Abbreviations should not be used in the title or abstract.

Checklist

- Manuscript Title
- Covering letter: Signed by all contributors
- Previous publication/ presentations mentioned, Source of funding mentioned
- Conflicts of interest disclosed

Authors

- Middle name initials provided.
- Author for correspondence, with e-mail address provided.
- Number of contributors restricted as per the instructions.
- Identity not revealed in paper except title page (e.g. name of the institute in Methods, citing previous study as 'our study')

Presentation and Format

- Double spacing
- Margins 2.5 cm from all four sides
- Title page contains all the desired information. Running title provided (not more than 50 characters)
- Abstract page contains the full title of the manuscript
- Abstract provided: Structured abstract provided for an original article.
- Keywords provided (three or more)
- Introduction of 75-100 words

- Headings in title case (not ALL CAPITALS). References cited in square brackets
- References according to the journal's instructions

Language and grammar

- Uniformly American English
- Abbreviations spelt out in full for the first time. Numerals from 1 to 10 spelt out
- Numerals at the beginning of the sentence spelt out

Tables and figures

- No repetition of data in tables and graphs and in text.
- Actual numbers from which graphs drawn, provided.
- Figures necessary and of good quality (color)
- Table and figure numbers in Arabic letters (not Roman).
- Labels pasted on back of the photographs (no names written)
- Figure legends provided (not more than 40 words)
- Patients' privacy maintained, (if not permission taken)
- Credit note for borrowed figures/tables provided
- Manuscript provided on a CDROM (with double spacing)

Submitting the Manuscript

- Is the journal editor's contact information current?
- Is the cover letter included with the manuscript? Does the letter:
 1. Include the author's postal address, e-mail address, telephone number, and fax number for future correspondence?
 2. State that the manuscript is original, not previously published, and not under concurrent consideration elsewhere?
 3. Inform the journal editor of the existence of any similar published manuscripts written by the author?
 4. Mention any supplemental material you are submitting for the online version of your article. Contributors' Form (to be modified as applicable and one signed copy attached with the manuscript)