

Physiotherapy and Occupational Therapy Journal

POTJ

The Physiotherapy and Occupational Therapy Journal's (ISSN 0974 - 5777, Registered with Registrar of Newspapers for India: DELENG/2007/22242) on topics pertaining to physical therapy and rehabilitation. Coverage includes geriatric therapy, pain management techniques, cardiac, orthopaedic and pulmonary rehabilitation, working with stroke patients, occupational therapy techniques and much more. The editorial contents comprise research papers, treatment notes and clinical observations, case histories, professional opinion and memoirs and comments on professional issues. The Editorial Board's mission is to publish significant research which has important implications for physiotherapy and occupational therapy. Our vision is for the journal to be the pre-eminent international publication of the science and practice of physiotherapy and occupational therapy.

Editor-in-Chief
Narasimman S.

Managing Editor
A. Lal

Executive Editors
H.L. Sharma, S. Sharma

International Editorial Advisory Board
Goh Ah Cheng, Shinshu University, Japan
Lisa Harvey, Australia
Md. Abu Shaphe, Jazan University, Saudi Arabia

National Editorial Advisory Board

Chaya Garg
Banarasidas Chandiwala Instt of
Physiotherapy, Delhi

Desai Krunal Vishwas
Regional Mental Hospital, Thane

Harish Kumar Sharma
Vardhaman Mahaveer Medical College New
Delhi

Jamal Ali Moiz
Jamia Millia Islamia
New Delhi

Jaskirat Kaur
Indian Spinal Injuries Center
New Delhi

Jaspal Singh Sandhu
Guru Nanak Dev University
Amritsar

Jince Thomas
Ayushman Physiotherapy College Bhopal

Manaswain Tripathi
RMLH, New Delhi

Md. Abu Shaphe
Hamdard University
New Delhi

Meenakshi Singh
Amity Physiotherapy College
Delhi

Prabhat K. Balodia
Paramedical College & Hospital
Dehradun

R.K. Meena
Subharti Physiotherapy College
Meerut

Rajeswari Hariharan
Vel's College of Physiotherapy
Chennai

S.K. Garg
College of Applied Education & Health
Sciences
Meerut

Shyamal Koley
Guru Nanak Dev University
Amritsar

Sujata Yardi
Dr. D.Y. Patil Institute of Physiotherapy
Navi Mumbai

Indexed in Index Copernicus, Poland
Covered by NLM Catalogue & Locator
Plus, USA
EBSCO Publishing's Electronic Databases,
USA

© 2012 Red Flower Publication Pvt. Ltd. All rights reserved.

The views and opinions expressed are of the authors and not of the **Physiotherapy and Occupational Therapy Journal**. Physiotherapy and Occupational Therapy Journal does not guarantee directly or indirectly the quality or efficacy of any product or service featured in the the advertisement in the

Corresponding address
Red Flower Publication Pvt. Ltd.

41/48, DSIDC, Pocket-II, Mayur Vihar, Phase-I
Delhi - 110 091 (India)
Tel: 91-11-22754205, Fax: 91-11-22754205
E-mail: redflowerppl@vsnl.net, Website:
www.rfppl.com

Instructions to Authors

Submission to the journal must comply with the Guide for Author.
Non-compliant submission will be returned to the author for correction.

To access the online submission system and for the most up-to-date version of the Guide for Authors please visit:

<http://www.rfppl.com>

Technical problems or general questions on publishing with POTJ are supported by Red Flower Publication Pvt. Ltd's Author Support team (<http://www.rfppl.com>)

Alternatively, please contact the Journal's Editorial Office for further assistance.

A Lal
Publication -in-Charge
Physiotherapy and Occupational Therapy Journal
Red Flower Publication Pvt. Ltd.
41/48, DSIDC, Pocket-II
Mayur Vihar Phase-I
Delhi - 110 091 (India)
Phone: 91-11-22754205, 65270068, Fax: 91-11-22754205
E-mail: redflowerppl@vsnl.net
Website: www.rfppl.com

Red Flower Publication Pvt. Ltd,

CAPTURE YOUR MARKET

For advertising in this journal

Please contact:

International print and online display advertising sales

E-mail: redflowerppl@vsnl.net / tel: +91 11 22754205 / 65270068

Recruitment and Classified Advertising

E-mail: redflowerppl@vsnl.net / tel: +91 11 22754205

Contents

Original articles

Reference Values of Isometric Trunk Muscle Strength in School Age Children using a Hand Held Dynamometer: A Cross- Sectional Study	107
Jaya Shanker Tedla	
A Comparative Study between Elders with and without Knee Osteoarthritis on Quadriceps Strength, Prporioceptive Acuity and Balance	117
Monika Sultan, Majumi Mohamad Noohu	
Comparative Study of Neural Tissue Mobilization and Manual Traction in Patients with Cervical Spondylosis	125
Shipra Bhatia, Neha Samvedi, Aparna Sarkar	
Effectiveness of Sensory Motor and Behavior Therapy on Drooling in Children with Cerebral Palsy	133
Banumathe KR, Sugi S.	
Test Retest Reliability of 6 Minute Walk Test and 1 Minute Walk Test in Spastic Cerebral Palsy	139
Ruchi Goel, Pooja Sharma	
Guidelines for Authors	151

Revised Rates for 2013 (Institutional)

Title	Frequency	Rate (Rs): India	Rate (\$):ROW
Indian Journal of Agricultural and Forest Meteorology	3	21000	800
Indian Journal of Agriculture Business	3	11500	600
Indian Journal of Agriculture, Ecosystems and Environment	3	18000	800
Indian Journal of Anatomy	2	3000	260
Indian Journal of Ancient Medicine and Yoga	4	6600	330
Indian Journal of Anesthesia and Analgesia	2	4000	600
Indian Journal of Animal Feed Science and Technology	3	22000	850
Indian Journal of Animal Reproduction Science	3	19000	700
Indian Journal of Cancer Education and Research	2	4500	500
Indian Journal of Dental Education	4	3000	288
Indian Journal of Emergency Pediatrics	4	6000	302
Indian Journal of Food Additives and Contaminants	3	28000	900
Indian Journal of Food and Chemical Toxicology	3	22000	800
Indian Journal of Food Chemistry	3	37000	1100
Indian Journal of Food Engineering	3	25000	800
Indian Journal of Forensic Medicine and Pathology	4	12000	576
Indian Journal of Forensic Odontology	4	3000	288
Indian Journal of Genetics and Molecular Research	2	4800	262
Indian Journal of Library and Information Science	3	7200	600
Indian Journal of Nutrition & Food Sciences	3	38000	900
Indian Journal of Obstetrics and Gynecology	2	1500	200
Indian Journal of Pathology: Research and Practice	3	22000	915
Indian Journal of Pediatric Education	4	3000	150
Indian Journal of Plant and Soil	3	51000	1700
Indian Journal of Preventive Medicine	2	3000	270
Indian Journal of Soil Science	3	34000	1000
Indian Journal of Surgical Nursing	3	1450	70
International Journal of Neurology and Neurosurgery	2	7200	276
Journal of Human Nutrition and Dietetics	2	3000	270
Journal of Psychiatric Nursing	3	1450	70
Journal of Social Welfare and Management	4	6600	276
Meat Science International	3	20000	800
New Indian Journal of Surgery	4	6300	360
Physiotherapy and Occupational Therapy Journal	4	6600	360

1. Advance payment required by Demand Draft payable to Red Flower Publication Pvt. Ltd. payable at Delhi.
2. Cancellation not allowed except for duplicate payment.
3. Agents allowed 10% discount.
4. Claim must be made within six months from issue date.

Order from

Red Flower Publication Pvt. Ltd., 41/48, DSIDC, Pocket-II, Mayur Vihar Phase-I, P.O. Box No. 9108, Delhi - 110 091 (India), Tel: 91-11-22754205, 65270068, Fax: 91-11-22754205. E-mail: redflowerppl@vsnl.net, redflowerppl@gmail.com, Website: www.rfppl.com

Reference Values of Isometric Trunk Muscle Strength in School Age Children using a Hand Held Dynamometer: A cross- sectional study

Rahul S.Bisen, M.P.T*, Jaya Shanker Tedla, M.P.T., Ph.D**, K. Vijaya Kumar, M.P.T.***

Abstract

Aims: To establish isometric muscle strength reference values for trunk flexors, trunk extensors, trunk lateral flexors and trunk rotators by using a hand held dynamometer in 6 to 12 years of age children.

Methodology: In this cross-sectional study a total number of 280 children in the age group of 6 to 12 years, with 140 from each gender, were recruited for measuring the trunk muscle strength values using a baseline hand-held dynamometer.

Major findings: The reference values of the trunk flexors, trunk extensors, trunk lateral flexors and trunk rotators were established. It was observed that the height and weight of the children proportionately increased from 6 to 12 years with a few exceptions between 10-12 years in both boys and girls.

Conclusion: The normal mean value of isometric trunk muscle strength using a hand-held dynamometer ranged from 23.53N to 137.58N, in children 6 to 12 years of age. In girls it ranged from 23.53N to 121.03N whereas in boys from 41.40N to 137.58N.

Keywords: Normative data; Typically developing; Muscle power; Pediatric population; Dynamometer.

Muscle strength is defined as the force exerted by a muscle or a group of muscles to overcome a resistance in one maximal effort.¹ Muscle strength is associated with functional performance, work productivity and the efficiency of the movement. The trunk forms an intermediate segment connecting the upper and the lower parts of the body and it is the place where the kinetic chains come together. The trunk is the foundation for posture,

balance, and coordinated movement all of which are important for maintaining spinal stability. This ability to support the body is dependent upon appropriate trunk muscle strength.²

The trunk muscles are comprised of the flexors, extensors, lateral flexors and rotators. These muscles are chiefly responsible for moving or controlling the trunk because of their mechanical arrangement and multiple segmental innervations. They have a peculiar property of contracting in part and not just as a whole, thus making possible the enormous variety of trunk movements and postures. The function of the trunk muscles is an essential factor for the balance, gait, transfers, and the wide range of activities performed in daily living.²

Skeletal muscle strength is a key feature of childhood and adolescence and is a fundamental parameter of the motor system which is very often tested during neurological examination in children.³ Muscle strength assessments provide important clinical

Author Affiliation: *Rahul S. Bisen M.P.T., Physiotherapist, Kasturba Medical College, Mangalore (Manipal University), **Jaya Shanker Tedla M.P.T., Ph.D, Assistant Professor, Program of Physical Therapy, Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia. ***K. Vijaya Kumar M.P.T., Associate Professor, Department of Physiotherapy, Kasturba Medical College, Mangalore (A constituent institute of Manipal University).

Reprint's request: Dr. Jaya Shanker Tedla, MPT, Ph.D, Assistant Professor, Program of Physical Therapy, Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, Room number C/3/112, King Khalid University, P. O. Box number - 3665, Guraiger, Abha - 61481, Kingdom of Saudi Arabia.

E-mail: shankar_tedla@yahoo.co.in.

(Received on 26.07.2012, accepted on 05.11.2012)

information about any weakness that may relate to functional limitations. Clinical decisions on the management of patients who have sustained musculoskeletal or neurological injuries or patients recovering from surgery are taken after assessing muscle strength.⁴ It is therefore important to have a reliable method for the assessment of muscle strength. There are different methods by which trunk muscle strength can be measured. These include manual muscle testing and testing using Isokinetic dynamometer or a hand-held dynamometer.^{4,5}

Manual muscle testing remains a conventional method of measuring muscle strength because it has some drawbacks. The shortcomings encountered by MMT can be overcome by using a hand-held dynamometer. The hand held dynamometer is a battery-operated device consisting of strain gauges that records the force in newton's/ pounds/ kilograms.⁵ It has gained popularity as a tool to measure muscle force production in clinical settings and these measurements have been found to co-relate with the isokinetic strength scores.⁶ The isokinetic dynamometer measures muscle strength as well as torque throughout the range of motion. However, the length of time needed to perform the testing procedure, complicated use; high cost and decreased portability of the unit usually preclude its use in pediatric settings.^{5,6}

Hand-held dynamometry seems to be a good alternative. Most clinically important muscle groups can be measured easily with a dynamometer. The Baseline™ digital hand-held dynamometer offers an objective, portable and relatively inexpensive method to quantify the muscle strength. Usually it weighs less than 2 pounds, requires no setup and can be used in many kind of environment.⁶ It is a reliable and valid method of obtaining muscle force measurements in adults and children.⁷

Objective measurements of muscle strength can provide the therapist with information about muscle performance and are used when making a diagnosis, developing goals and treatment plans, assessing the effects of

therapeutic and surgical interventions or assessing change in longitudinal studies and clinical trials. By measuring the strength accurately one can examine the effect of muscle weakness on function. This information may assist the therapist in early identification of loss of strength before functional failure is observed.⁸

To determine whether pathological muscle weakness is present or develops during the course of a disease reference values for maximum isometric muscle force are needed. Though there have been studies on the limb musculature strength in the adult as well as in the pediatric population using the hand-held dynamometer, there was no retrievable data for trunk muscle strength in the pediatric population.

To establish isometric muscle strength reference values for trunk flexors, trunk extensors, trunk lateral flexors and trunk rotators by using the hand-held dynamometer in children between six and twelve years of age.

Methodology

In this cross-sectional study a total number of 280 children in the age group 6-12 years, 140 from each gender were recruited from two schools of Mangalore city. The children were grouped age wise: 6, 7, 8, 9, 10, 11 and 12 years. 40 children constituted a sub group with equal representation from both genders. There were seven such subgroups.

Only children, 6-12 years of age possessing unrestricted ranges of motion at the thoracic as well as the lumbar spine, were included in the study. Children with following abnormalities were excluded from the study: a history of any neurological, musculoskeletal, cardiovascular and systemic problems; a history of injury to the spine and the pelvis. Any history of surgery confined to the thoracic, lumbar or abdominal region and children on medication like antiepileptics and muscle relaxants.

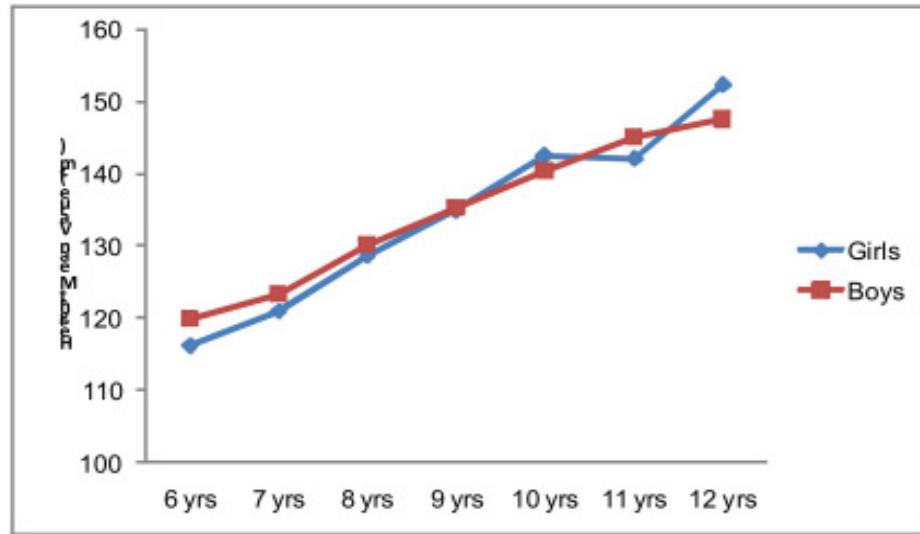
The tester is a qualified physical therapist and instruments used area baseline push-pull digital dynamometer.(Fig 1), measuring tape, a weighing machine, a couch, straps for stabilization and a sponge pad.

The children's age (in years) from the date of birth mentioned in the admission certificate/ school register; their weight in Kilograms (kg) using a weighing machine; and height, measured in centimeters (cm) using a height

Figure 1: Measurement of trunk flexors muscle strength

The protocol of the study was approved by the scientific committee and time-bound research ethics committee. Permission from the Block Education Officer (BEO) was taken and a list of schools was obtained.

From the list of schools available, two schools were selected by random sampling using a random number table. Permission was taken from the school authorities to carry out the study. The classes where the target population is located were identified and children were selected by random sampling using the lottery method and initial screening for inclusion and exclusion criteria was carried out. A health questionnaire, along with a consent and assent form, was given to the children for the approval of their parents. The selected children were explained in brief regarding the study. After the children had given assent and their parents' consent the whole test procedure and the purpose of the study was explained in detail to the children.


scale were carefully documented. Strength measurements were taken by a Baseline™ digital push-pull hand held dynamometer (Digital-LCD, Hydraulic, New York, 500 lb. = 2224.11N.) for trunk flexors, trunk extensors, trunk lateral flexors and trunk rotators. A detailed explanation of the muscle to be tested, the starting position, the placement of the dynamometer and the test procedure are given in table no .1

The muscle groups were tested in random and no specific sequence was followed. During the testing, verbal commands like "push as hard as you can" were given to the children in order to obtain a maximal effort.

The children were asked to do three trials for each group of trunk muscle and the mean of the three was taken into consideration. Five-second muscle contraction durations were used to allow the children to gradually achieve maximum force. A rest period of 1 minute was used in between the trials.

Table 1: Trunk muscle strength measurement

Muscle to be tested	Starting position	Placement of the dynamometer	Test procedure
Trunk flexors	Child was in supine lying position on the couch with his hands placed behind neck, with the hip and the knee joints extended.	Just below the sternomanubrial symphysis.	The child performed trunk flexion and was asked to push the base of the dynamometer with maximum force and hold it for 5 seconds.
Trunk extensors	The child was in prone lying position with hands on the side of the couch.	Posteriorly at the T4 spinous process level.	The child performed trunk extension and was asked to push the base of the dynamometer with maximum force and hold it for 5 seconds. ¹⁰
Trunk lateral flexors	Child was in side lying position on the couch.	Under the arm on the rib cage	The Child performed side flexion and was asked to push the base of the dynamometer with maximum force and hold it for 5 seconds.
Trunk rotators	Child was in supine lying position on the couch.	On the bulk of the Pectoralis major muscle	The child was asked to perform rotation and push the base of the dynamometer with maximum force and hold it for 5 seconds.

Figure 2: Gender wise comparision of mean values of height with age

Data Analysis

The Statistical Package for Social Science (SPSS) Version 16.0 was used for analysis. Descriptive statistics were obtained for normal values of trunk muscle strength for trunk flexors, trunk extensors, trunk lateral

flexors and trunk rotators for all age groups with a 95% confidence interval established based on mean and standard deviation (SD).

Results

The aim of the current study was to establish isometric muscle strength normative data for trunk flexors, trunk extensors, trunk lateral flexors and trunk rotators by using a hand-held dynamometer. A total of 280 children, 140 boys and 140 girls from the age of 6 to 12 years were tested and the normative scores

Table 2: Demographic data with Mean and Standard Deviation of Height and Weight of both the Genders

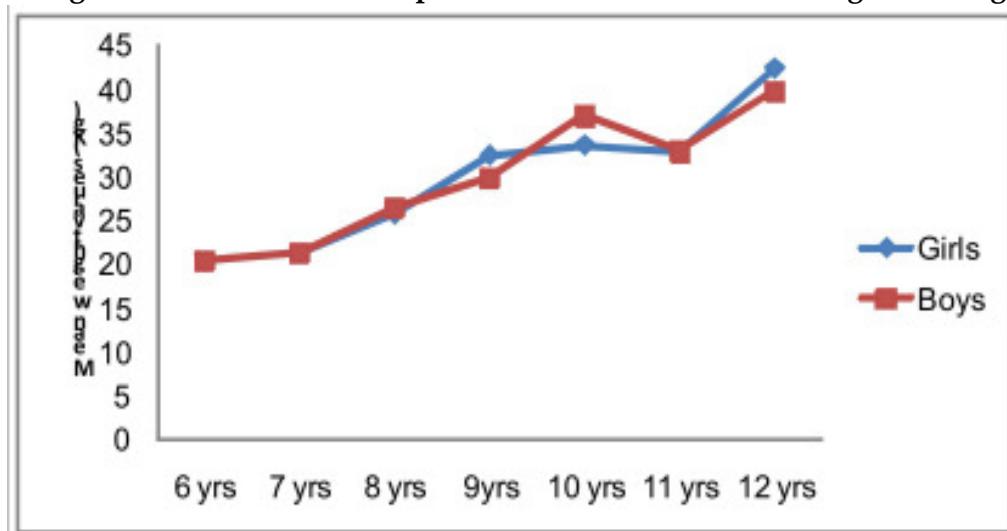
AGE	GENDER	HEIGHT(cm)	WEIGHT(kg)
		(MEAN+SD)	(MEAN+SD)
6	Girls-20	116.20 \pm 4.37	20.47 \pm 3.36
	Boys-20	119.00 \pm 7.18	20.50 \pm 4.86
	Total-40	118.00 \pm 6.61	20.48 \pm 4.12
	Girls -20	120.90 \pm 5.66	21.35 \pm 3.97
7	Boys -20	123.35 \pm 5.20	21.30 \pm 2.43
	Total-40	122.13 \pm 5.51	21.32 \pm 3.25
	Girls-20	128.65 \pm 4.66	25.90 \pm 6.40
8	Boys-20	130.20 \pm 5.72	26.55 \pm 5.47
	Total-40	129.43 \pm 5.21	26.22 \pm 5.89
	Girls-20	135.00 \pm 6.80	32.50 \pm 9.28
9	Boys-20	135.35 \pm 6.63	29.95 \pm 7.68
	Total-40	135.18 \pm 6.63	31.22 \pm 8.51
	Girls-20	142.60 \pm 7.05	33.65 \pm 6.74
10	Boys-20	140.40 \pm 4.33	37.00 \pm 7.30
	Total-40	141.50 \pm 5.88	35.32 \pm 7.14
	Girls-20	142.10 \pm 6.60	32.80 \pm 6.09
11	Boys-20	145.15 \pm 5.65	33.00 \pm 7.18
	Total-40	143.63 \pm 6.26	32.90 \pm 6.57
	Girls-20	152.45 \pm 6.68	42.35 \pm 7.30
12	Boys-20	147.60 \pm 6.59	39.80 \pm 9.43
	Total-40	150.03 \pm 7.00	41.07 \pm 8.42

for both were obtained. The demographic data such as age, gender, height and weight were obtained. The mean and standard deviation of each gender and the total children are shown in Table 2.

Height and weight increases with age. In girls height seems to level off at the age of 10 and 11 years whereas in boys there is a linear increase in the height as the age advances until 12 years (Graph 1). There is a linear increase in the weight of both the genders except at the age of 11 years where there is decrease in the weight of both the genders(Graph 2) (Table 2).

The reference values of the trunk flexors, trunk extensors, trunk lateral flexors and trunk rotators were established. The mean, standard

deviation and the range of these values are given in Table no. 3-5. The trunk muscle strength values ranged from 23.53N to 121.03N in girls, and 41.40N to 137.58N in boys.


Discussion

The purpose of the present study was to provide the isometric trunk muscle strength reference values for children 6-12 years of age using a hand-held dynamometer. These values can be used to quantify possible muscle weakness in children or to monitor the effects of therapy.⁹

According to our previous exposure of various dynamometers we found this base line digital hand held dynamometer was easier to handle, reliable and valid tool to measure the muscle strength. In our present study we found that children are more enthusiastic and competitive with the other children to know their muscle strength values. This was a positive factor to complete the study more easily.

Most of the previous studies have reported isometric strength values for upper limb and lower limb muscles using the hand-held dynamometer.⁹⁻¹³ However, there are no studies retrieved on trunk muscles normative values using the hand-held dynamometer. The present study gives reference values for the trunk muscle strength in 6-12 years age group for both the genders. This ranged from 23.53N to 121.03N in girls and 41.40N to 137.58N in boys with a 95 % confidence interval. The upper extremity muscle strength values ranged from 67.96N to 171.96N in girls and 72.99N to 141.98N in boys whereas lower limb muscle strength values ranged from 84.96N to 264.98N in girls and 75.97N to 267.96N in boys.⁹⁻¹³

The previous studies done on upper limb and lower limb muscle strengths involved smaller sample size with range between 41-131 children. Also the number of children in each gender (9-11) was reported to be less.⁹⁻¹³ By contrast the present study involves a

Figure 3: Gender wise comparision of mean values of weight with age.**Table 3: Reference values of trunk flexors and extensors muscle strength in newton with Mean, SD and Range for both the Genders.**

TM	Gender	AGE						
		6	7	8	9	10	11	12
TF	G	M \pm SD	M \pm SD	M \pm SD	M \pm SD	M \pm SD	M \pm SD	M \pm SD
		26.24 \pm 7.56	40.92 \pm 6.67	52.49 \pm 9.34	68.50 \pm 10.68	91.19 \pm 13.79	95.64 \pm 18.68	81.85 \pm 29.36
	B	M \pm SD	R	M \pm SD	R	M \pm SD	M \pm SD	M \pm SD
		22.69-29.80	37.81-44.04	48.04-56.94	63.61-73.40	84.96-97.42	87.19-104.53	68.06-95.64
TE	G	M \pm SD	M \pm SD	M \pm SD	M \pm SD	M \pm SD	M \pm SD	M \pm SD
		41.81 \pm 5.78	46.71 \pm 8.01	50.26 \pm 15.57	67.61 \pm 10.23	84.96 \pm 24.91	97.42 \pm 16.90	126.33 \pm 23.13
	B	M \pm SD	R	M \pm SD	R	M \pm SD	M \pm SD	M \pm SD
		39.14-44.04	43.15-50.71	43.15-57.38	63.16-72.51	73.40-96.53	89.85-105.87	115.65-137.01
T	G	M \pm SD	M \pm SD	M \pm SD	M \pm SD	M \pm SD	M \pm SD	M \pm SD
		33.81 \pm 10.23	44.04 \pm 7.56	51.60 \pm 12.90	68.06 \pm 10.23	88.52 \pm 20.02	96.97 \pm 17.35	104.09 \pm 34.70
	B	M \pm SD	R	M \pm SD	R	M \pm SD	M \pm SD	M \pm SD
		30.25-37.37	41.37-46.26	47.15-55.60	64.94-71.17	81.40-94.30	91.19-102.31	92.97-115.21

TM	G	M \pm SD	M \pm SD	M \pm SD				
		55.16 \pm 13.79	71.62 \pm 11.12	87.63 \pm 8.45	92.08 \pm 14.23	108.09 \pm 17.35	120.99 \pm 15.57	119.66 \pm 24.91
	B	M \pm SD	R	M \pm SD	R	M \pm SD	M \pm SD	M \pm SD
		48.49-61.39	65.83-76.51	83.18-91.19	84.96-98.75	99.64-116.10	113.43-128.11	108.09-131.22
TE	G	M \pm SD	M \pm SD	M \pm SD				
		66.28 \pm 8.45	73.40 \pm 10.68	82.74 \pm 16.01	99.64 \pm 12.90	104.98 \pm 26.69	120.55 \pm 20.91	137.45 \pm 131.22
	B	M \pm SD	R	M \pm SD	R	M \pm SD	M \pm SD	M \pm SD
		60.50-68.50	68.06-78.29	75.17-89.85	94.30-104.09	92.08-117.43	110.32-129.89	123.22-151.68
T	G	M \pm SD	M \pm SD	M \pm SD				
		60.05 \pm 12.01	74.29 \pm 10.68	84.96 \pm 12.90	95.64 \pm 12.90	106.31 \pm 22.69	120.55 \pm 18.24	128.55 \pm 28.91
	B	M \pm SD	R	M \pm SD	R	M \pm SD	M \pm SD	M \pm SD
		56.05-63.61	68.50-75.62	80.51-88.96	91.63-99.64	99.20-113.43	114.76-126.33	119.21-134.34

Where, TM=Trunk Muscles, TF = Trunk Flexors, TE= Trunk Extensors, G=Girls, B=Boys, T = Total, M= Mean SD= Standard Deviation, R= Range.

sample size of 280 children and the number of children in each gender is 20 each. This large sample size gives strength to the present study.

As seen in the present study, boys were taller and heavier than the girls, except in some age groups. Girls are taller than the boys in the age group of 12 years whereas boys are heavier than the girls except at age 9 and 12 years. This earlier growth acceleration in girls is likely to be caused by the early onset of puberty. Timing of puberty has a wide variability. In girls from 8 to 12 years and in boys from 9 to 14 years. Girls attain puberty earlier as compared to boys. This leads to earlier increase in the growth parameters.¹⁴ Therefore it is hypothesized to cause fluctuations in the height and weight in the 9-12 years age group.

The results of the present study showed that trunk strength increase with age. It was observed that in the girls there was increase in the flexor and extensor muscle strength from 6-11 years age, but there was decrease in the strength in the 12 year age group. However for the trunk lateral flexors and trunk rotators there was an increase in the muscle strength in the 6- 12 year age group. This may be because of the greater amount of fat deposition in the abdominal region as well as in the breast tissue leading to an increase in trunk weight which might have altered the trunk flexor and extensor strength measurements.¹⁵

In boys, trunk flexors and trunk extensors muscle strength was found to increase progressively from 6-12 years. But in the case of trunk lateral flexors and trunk rotators the

Table 4: Reference values of trunk lateral flexors muscle strength in newtons with Mean, SD and Range for both the Genders.

TM	Gender	AGE							
			6	7	8	9	10	11	12
L F (Rt)	G	M \pm SD	24.47 \pm 7.12	44.48 \pm 3.56	50.26 \pm 8.45	52.04 \pm 10.68	54.71 \pm 20.91	76.51 \pm 16.90	67.17 \pm 20.46
		R	20.91-27.58	43.15-46.26	46.26-54.27	47.15-56.94	45.82-64.05	68.50-84.52	57.38-76.51
B	B	M \pm SD	42.26 \pm 4.00	46.26 \pm 7.56	47.15 \pm 14.68	59.61 \pm 7.56	55.16 \pm 19.57	72.51 \pm 26.24	92.52 \pm 24.91
		R	40.48-44.04	42.70-49.82	40.03-53.82	56.05-63.16	46.26-64.50	60.05-84.96	80.96-04.09
T	T	M \pm SD	33.36 \pm 10.68	45.37 \pm 5.78	48.49 \pm 12.01	56.05 \pm 9.79	55.16 \pm 19.13	74.73 \pm 21.80	79.62 \pm 25.80
		R	29.80-36.48	43.59-47.60	44.93-52.49	52.49-59.16	48.93-61.39	67.61-81.40	71.62-88.07
L F (Lt)	G	M \pm SD	23.58 \pm 6.67	41.81 \pm 5.78	48.49 \pm 8.45	47.60 \pm 12.90	51.60 \pm 19.13	75.62 \pm 16.46	63.61 \pm 20.91
		R	20.46-26.24	39.14-44.48	44.93-52.93	41.81-57.38	42.70-60.94	68.06-83.18	93.86-73.40
B	B	M \pm SD	37.37 \pm 3.11	41.81 \pm 8.90	44.48 \pm 12.90	55.16 \pm 8.90	50.71 \pm 20.02	66.72 \pm 21.80	87.63 \pm 25.35
		R	36.03-39.14	37.37-45.82	38.70-50.71	51.15-59.61	41.81-60.05	56.49-76.95	75.62-99.20
T	T	M \pm SD	30.69 \pm 8.45	41.81 \pm 7.56	46.71 \pm 11.12	51.60 \pm 11.57	51.15 \pm 19.13	71.17 \pm 19.57	75.17 \pm 25.80
		R	27.58-33.36	39.59-44.04	43.15-50.26	48.04-55.16	45.37-57.38	64.94-77.40	67.17-84.07

Where, TM=Trunk Muscles, LF = Lateral Flexors, Rt = Right, Lt = Left, G=Girls
B=Boys, T = Total, M= Mean, SD= Standard Deviation, R= Ran

Table 5: Reference values of trunk rotators muscle strength in newtons with Mean, SD and Range for both the Genders

TM	Gender	AGE							
		6	7	8	9	10	11	12	
ROT (RT)	G	M \pm SD	48.04 \pm 7.56	52.49 \pm 8.90	52.93 \pm 12.01	69.39 \pm 11.12	75.62 \pm 22.69	89.41 \pm 20.91	78.29 \pm 28.91
		R	44.48-51.60	48.49-56.94	47.60-58.72	64.05-74.73	65.39-86.30	79.18-99.20	65.39-92.08
	B	M \pm SD	48.49 \pm 9.79	52.93 \pm 11.57	57.38 \pm 15.12	70.28 \pm 11.57	81.85 \pm 20.46	93.86 \pm 25.80	110.76 \pm 28.47
		R	44.04-52.93	48.04-58.72	50.71-64.94	64.94-75.62	72.06-91.19	81.85-105.87	97.42-124.11
	T	M \pm SD	48.04 \pm 8.45	52.93 \pm 10.23	55.16 \pm 13.79	69.84 \pm 11.12	78.73 \pm 21.35	91.63 \pm 23.58	94.75 \pm 32.92
		R	45.37-51.15	49.82-56.49	51.15-59.61	66.28-73.40	72.06-85.85	84.07-98.75	84.07-105.42
ROT(LT)	G	M \pm SD	44.04 \pm 7.12	49.82 \pm 8.01	47.60 \pm 12.01	65.83 \pm 12.46	72.06 \pm 23.58	84.07 \pm 21.80	73.40 \pm 30.25
		R	40.92-47.60	46.26-53.82	41.81-52.93	60.05-71.17	61.39-83.18	74.29-94.30	59.61-87.63
	B	M \pm SD	45.82 \pm 8.45	51.60 \pm 12.90	53.38 \pm 16.01	66.28 \pm 12.01	72.95 \pm 23.58	89.41 \pm 24.91	105.87 \pm 31.58
		R	41.81-49.82	45.82-57.38	46.26-60.94	60.94-72.06	61.83-84.07	77.84-100.97	91.19-120.55
	T	M \pm SD	44.93 \pm 8.01	50.71 \pm 10.68	50.71 \pm 14.23	65.83 \pm 12.01	72.51 \pm 23.58	86.74 \pm 23.13	89.85 \pm 34.70
		R	42.70-47.60	47.60-54.27	45.82-55.16	61.83-69.84	64.94-79.62	79.62-94.30	78.73-100.53

Where, ROT = Rotators, Rt = Right, Lt = Left, G=Girls B=Boys, T = Total,
M= Mean SD= Standard Deviation, R= Range.

trunk strength increased from 6-11 years age but decreased in the 12 year age group. Normal developmental changes in ligament and musclefiber elasticity and increased resistance to the trunk motions may contribute to the increased stiffness of the soft tissues across these age groups. Skeletal maturationmilestones are achieved during the same time period. Primary ossification of the lumbar spine is completedbetween seven and nine years of age and mature lumbar facet orientation is achieved by approximately 11 years of age. Trunk lateral flexion and rotation are greater in younger children because of the frontal orientation of the facets, but as age advances the facets gradually achieve sagittal orientation constraining these movements of

the trunk. This decreased range of motion and changes in the facet orientation might have decreased the child's performance at 12 years of age as observed during this study.¹⁶Boys were found to be stronger than girls in all the age groups under study.

The clinical Implication of the study is that the normative data of the trunk muscle strength established can be used to quantify patterns of muscle weakness or to evaluate the possible effects of therapy in children suffering from any disease that affects the muscle strength.

The limitationsof the study include the following; children who participated in the study lived within similar geographic location; thetherapist was not blinded while reading the

measurements during the study due to manpower constraints; and the present study determined muscle strength in terms of force values rather than torque values of the muscle strength.

This data will form the basis for future studies on trunk muscle strength in different geographical locations and it can be used as standard reference values in future studies performed on trunk muscle strength in affected children. Studies can be performed to establish reference values of trunk muscles strength in children using isokinetic dynamometers, with an independent observer.

Conclusion

The normal mean value of isometric trunk muscle strength using a hand-held dynamometer ranged from 23.53N to 137.58N, in children 6 to 12 years of age. In girls it ranged from 23.53N to 121.03N whereas in boys from 41.40N to 137.58N.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

References

1. Sullivan S, Schmitz T. *Musculoskeletal assessment. In Physical rehabilitation assessment and treatment.* 4thed. New Delhi: Jaypee Brothers; 2001.117-20.
2. Davies P. *The normal trunk-evolutionary and anatomical considerations, aspects of trunk control.* In Right in the middle selective trunk activity in the treatment of adult hemiplegia, 6thed. Berlin: Springer-verlag; 2003. 7-30.
3. Rauch F, Neu C, Wassemer G, Beck B, Rietschel E, Manz F, et al. Muscle analysis by measurement of the maximal isometric grip force: A new reference data and clinical application in pediatrics. *Pediatr Res* 2002; 51: 505-10.
4. Scott D, Bond E, Sisto S, Nadler S. The intra- and inter-rater reliability of hip muscle strength assessments using a hand held versus a portable dynamometer anchoring station. *Arch Phys Med Rehabil* 2004; 85: 598-603.
5. Macfarlane T, Larson C, Stiller C. Lower extremity muscle strength in 6-to 8-year old children using hand held dynamometry. *Pediatr Phys Ther* 2008; 20: 128-36.
6. Dunn J, Iversen M. Interrater reliability of knee muscle forces obtained by Hand held dynamometer from elderly subjects with degenerative back pain. *J Geriatric Phys Ther* 2003; 26: 23-9.
7. Beld WA, Sanden GA, Sengers RC, Verbeek AL, Gabreels FJ. Validity and reproducibility of hand-held dynamometry in children aged 4-11 years. *J Rehabil Med* 2006; 38: 57-64.
8. Gajdosik C. Ability of very young children to produce Reliable isometric force measurements. *Pediatr Phys Ther* 2005; 17: 251-7.
9. Beenakker E, Hoeven J, Fock J, Maurits N. Reference values of maximum isometric muscle force obtained in 270 children aged 4-16 years by hand-held dynamometry. *Neuromuscul Disord* 2001; 11: 441-6.
10. Backman E, Odenrick P, Henriksson K, Ledin T. Isometric muscle force and anthropometric values in normal children aged between 3.5 and 15 years. *Scand J Rehabil Med* 1989; 21: 105-14.
11. Andrews A, Thomas M, Bohannon R. Normative values for isometric muscle force measurements obtained with hand held dynamometers. *Phys Ther* 1996; 76: 248-59.
12. Bohannon R. Reference values for extremity muscle strength obtained by hand held dynamometry from adults aged 20 to 79 years. *Arch Phys Med Rehabil* 1997; 78: 26-32.
13. Phillips B, Lo S, Mastaglia F. Muscle force measured using "Break" testing with a hand-held myometer in normal subjects aged 20 to 69 years. *Arch Phys Med Rehabil* 2000; 81: 653-61.
14. Parthasarathy A, Menon PSN, Gupta P, Nair MKC. *Growth and development.* In IAP textbook of pediatrics. 4thed. New Delhi: Jaypee brothers; 2009. 94.
15. Lassek W, Gaulin S. Menarche is related to fat distribution. *Am J Phys Anthropol* 2007; 133: 1147-51.
16. Kondratek M, Krauss J, Stiller C, Olsen R. Normative values for active lumbar range of motion in children. *Pediatr Phys Ther* 2007; 19: 236-44.

Subscription Form

I want to renew/subscribe to international class journal "**Physiotherapy and Occupational Therapy Journal**" of Red Flower Publication Pvt. Ltd.

Subscription Rates:

- India: Institutional: Rs.6000, Individual: Rs.1000, Life membership (10 years only for individuals) Rs.5000.
- All other countries: \$300

Name and complete address (in capitals):

Payment detail:

Demand Draft No.
Date of DD
Amount paid Rs./USD

1. Advance payment required by Demand Draft payable to Red Flower Publication Pvt. Ltd. payable at Delhi.
2. Cancellation not allowed except for duplicate payment.
3. Agents allowed 10% discount.
4. Claim must be made within six months from issue date.

Mail all orders to

Red Flower Publication Pvt. Ltd.

41/48, DSIDC, Pocket-II, Mayur Vihar Phase-I, Delhi - 110 091 (India)
Tel: 91-11-22754205, Fax: 91-11-22754205
E-mail: redflowerppl@vsnl.net, redflowerppl@gmail.com
Website: www.rfppl.com

A Comparative Study between Elders with and without Knee Osteoarthritis on Quadriceps Strength, Prprioceptive Acuity and Balance

Monika Sultan*, Majumi Mohamad Noohu**

Abstract

Objective: The study was done to assess the balance function in elderly with knee osteoarthritis along with quadriceps strength and prprioceptive acuity (joint position sense).

Methods: The study was observational type with 30 subjects in group 1 with osteoarthritis knee and 30 subjects in group 2 without any known history of osteoarthritis of knee joint. The subjects were measured for quadriceps strength, prprioceptive acuity, static balance using mCTSIB and functional balance using timed Up and Go test. The test scores were compared using student's t test.

Results: The study showed a statistically significant difference for all the variables studied such as quadriceps strength, prprioceptive acuity (joint position sense), modified CTSIB score and TUG scores between the groups.

Conclusion: The elderly adults with knee osteoarthritis have deterioration in quadriceps strength, proprioceptive acuity, static balance and functional mobility.

Key Words: Osteoarthritis; Postural control; Ageing and functional mobility.

Introduction

Balance is a complex biologic function dependent upon sensory inputs through visual, tactile-proprioceptive, and vestibular system. Sensory input is processed within the nervous system eliciting a restorative response coordinated among extremity and axial muscles.¹ An inevitable accompaniment of the aging process for many adults is the restriction in their ability to move independently within the context of constantly changing task demands and environmental context.² Greater postural sway and an increased incidence of falls observed in elderly suggest that older

individuals may be slower in detecting and correcting postural disturbances.³

Persons with knee osteoarthritis (OA) have been found more likely to report difficulty with physical functioning than persons without knee OA.⁴ As the prevalence of OA increases with age and aging is associated with decreasing physiological functions, the combination has a major health implication.⁵ It has been suggested that proprioception declines with age and is further impaired in elderly with knee OA. Poor proprioception may contribute to functional impairment in knee OA.⁶ Those with OA and older adults with lower limb arthritis are at an increased risk of falling due to deficits in neuromuscular system.⁷ This is particularly apparent at the knee joint, one of the most commonest sites to be affected.⁵

Pain had been documented to affect quadriceps function. Nociceptors and other receptors in and around the joint can have flexor excitatory and extensor inhibitory

Author Affiliation: *ISIC Institute of Rehabilitation Sciences, New Delhi, **Asst. Professor, Centre for Physiotherapy and Rehabilitation Sciences, Jamia Millia Islamia, New Delhi.

Reprint's request: Monika Sultan, ISIC Institute of Rehabilitation Sciences, New Delhi.

E-mail: mnoohu@jmi.ac.in, majuminoohu@gamil.com

(Received on 20.04.2012, accepted on 24.06.2012)

actions. At knee, these receptors are likely to excite hamstrings and inhibit quadriceps.⁸ O'Reilly et al, demonstrated low quadriceps strength in individuals with knee pain than those without pain; and also reported decreased muscle activation.⁵ Limited researches have evaluated the impact of knee osteoarthritis on balance in elderly. Few studies, all utilizing force platforms to measure postural sway have been undertaken in patient population, revealed deficits in postural control compared to asymptomatic subjects.⁹^{10, 11}

So it is necessary to study the changes in muscle strength, proprioceptive function and

balance performance in elderly with knee osteoarthritis as these changes may contribute to decline in function as well as other complications such as falls. In this study it was hypothesized that the elderly with knee osteoarthritis will display deterioration in quadriceps strength, proprioceptive acuity, static balance and functional mobility.

Methods

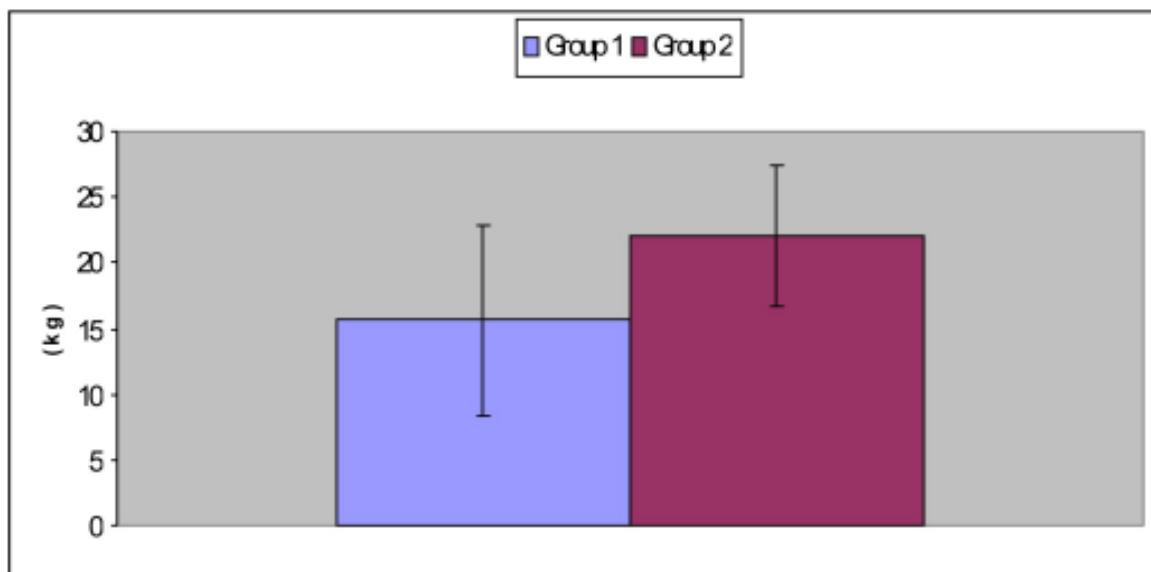
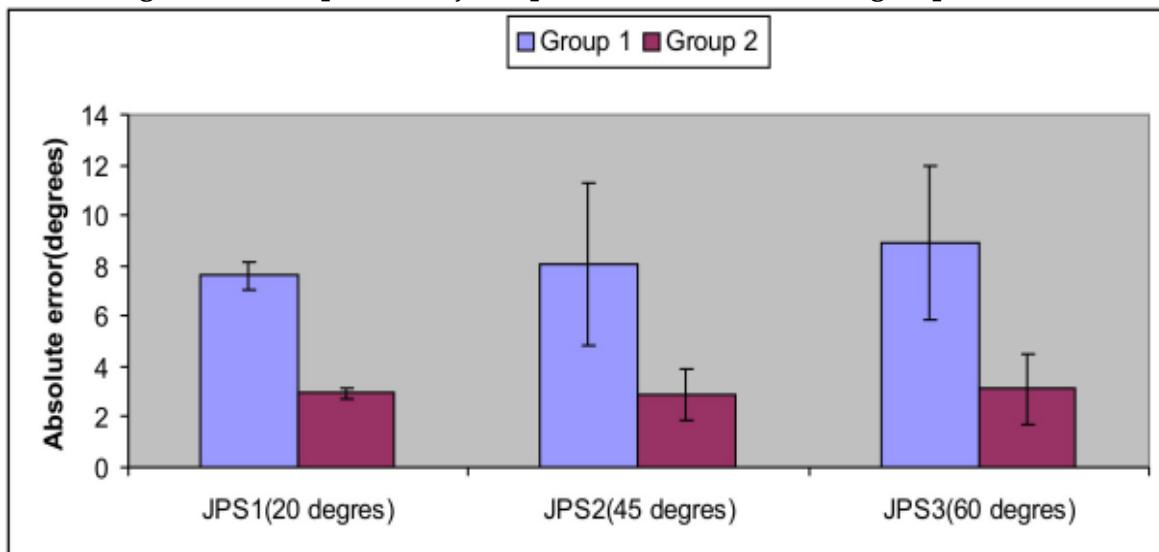

A sample of convenience of 60 community dwelling older adults, 60 to 70 years of age took part in the study. The study consisted of

Table 1: Comparison of quadriceps strength, joint position sense, mCTSIB and TUG between group 1 and 2.

Variables	Group 1 (n=30)	Group 2 (n=30)	t-value	p-value
	Mean± S.D	Mean± S.D		
Quadriceps Strength(kg)	15.64± 7.22	22.05± 5.31	3.91	0.05
JPS1(25°)(Absolute error)	7.61± 0.55	2.95± 0.22	7.71	0.01
JPS2(45°)(Absolute error)	8.05± 3.20	2.86± 1.02	8.45	0.01
JPS 3(60°) (Absolute error)	8.90± 3.05	3.10 ± 1.39	9.45	0.01
mCTSIB(seconds)	114.67±5.73	117.43 ±3.22	2.29	0.05
TUG(seconds)	11.25±1.29	9.90±0.74	4.93	0.01

mCTSIB-Modified test for sensory integration of balance.
TUG-Timed Up and Go Test

Figure 1: Comparison of quadriceps strength between group 1 and group 2



two groups, group 1 consisted of 30 elderly with OA of knee and group 2 consisted of 30 elderly without known history of OA of knee. The study design was observational type. The study was approved by research and ethical committee of ISIC Institute of Rehabilitation Sciences, New Delhi.

The subjects were recruited from OPD of Indian Spinal Injuries Centre, New Delhi and from the free geriatric health check-up camp organized at the ISIC Institute of Rehabilitation Sciences, New Delhi. Subjects were recruited on the following criteria, age 60 years and above, able to follow commands,

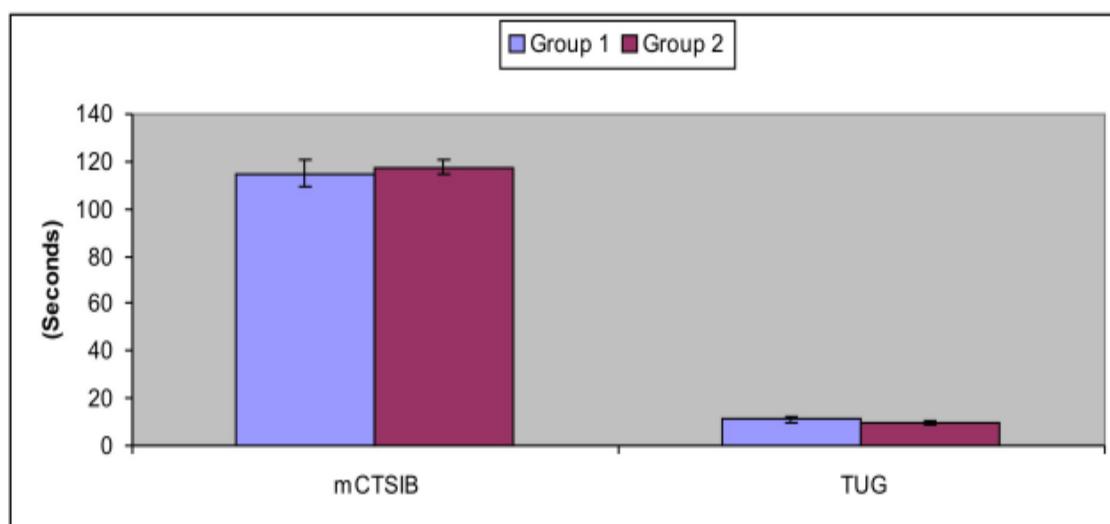
study after signing an informed consent. The study was explained in detail to the participants. Following this, the subjects were assessed on the first day of their visit, for the isometric strength of quadriceps, followed by proprioceptive acuity assessment of knee joint. The subjects were assessed for static balance and functional mobility on the second non-consecutive day to eliminate the confounding effects of fatigue. Data for the isometric quadriceps strength and proprioceptive acuity was obtained in the group 1 (OA group) from the arthritic limb and in the group 2 (control group) from the randomly chosen limb (by lottery method). Equipment used were,

Figure 2: Comparison of joint position sense between group 1 and 2

diagnosed with unilateral osteoarthritis of knee joint using clinical and radiological (ACR) criteria for diagnosis of knee osteoarthritis,¹² independent in ADL's and for group 2 subjects were without history of OA of knee. Subjects with intraarticular steroid injections, severe medical condition precluding safe testing, coexisting lower limb joint pathology, head trauma, neurological disease, visual impairment, limb or spinal fractures, persistent symptoms of vertigo, light headedness and unsteadiness, total knee arthroplasty, diabetes mellitus and history of falls were excluded.

Demographic data was collected from the subjects who met the inclusion criteria of the

quadriceps table, strain gauge, continuous passive motion (CPM) device, air splints for ankle and thigh, medium density polyfoam (52.5 cm x 52.5 cm x 10.6 cm) stopwatch and goniometer (360°).


The method used in present study to measure muscle strength was proven for its reliability and validity by Edwards et al.¹³ For isometric quadriceps strength measurement, the subject sat on the quadriceps chair, with hips and knees flexed to 90°. One end of the strain gauge was connected just above the ankle pad over the lever of quadriceps table and the other end of the strain gauge was attached to the back unit of the chair giving a horizontal link of pull. Each subject was asked

to push as hard as possible against the ankle pad by the chosen limb to try to straighten the leg. Restoring straps were used at thigh, hip and trunk. Subjects were allowed to practice maximum contraction and were given sufficient rest before the actual strength testing trial. Three strength testing trials were administered for each patient, with 1 minute rest between them. During the rest intervals, subjects were instructed to breathe out to prevent Valsalva maneuver effects. The maximum voluntary contraction (MVC) was taken as the highest value of three trials.¹⁴ In the present study, the measurement of proprioceptive acuity, has been determined by passive-passive method,¹⁵ which is considered to be a pre-requisite for measuring joint position sense clinically.¹⁶ Tsang et al have reported that passive knee repositioning test produces highly repeatable data, with ICC=0.90.¹⁷ Proprioceptive acuity measurements were done with subjects in shorts, they were made to lie supine with the chosen limb on the CPM device. To neutralize the cutaneous sensations air splints were used in thigh and foot, and subjects were blindfolded to prevent any visual input. After fixing straps, the CPM device was adjusted so that the axis of the device was in line with the subject's knee joint. The knee joint was passively moved from its starting position (0 degree of knee flexion) to one of the predetermined angles (JPS1-25°, JPS2-45°,

JPS3-60°) at a speed of 2 degree per second. The knee joint was rested at the target angle for 10 seconds (same duration for all the trials) by the investigator, and the subjects were instructed to remember the position of the knee joint. This was considered to be the first practice trial. The knee was then brought back to different randomly assigned angle between 10°-15° from the original starting position and rested for 10 seconds. This was followed by bringing the knee again to the target angle (as in practice trial 1) and rested for 10 seconds. The subject was again asked to remember the knee position. This was considered to be the second practice trial.¹⁸ Total 2 practice trials were given to the subjects prior to final assessment. After the completion of the practice trials, the knee was again flexed with subject instructed to stop the machine with hand held remote to identify the target angle. The absolute difference between the presented angle and the perceived angle was recorded as the absolute error for the predetermined angle. Three readings were taken, and absolute error was calculated for each trial, and then the average absolute error was computed for each predetermined angle for the subject's knee.¹⁹

On the second test session, the subjects were first assessed for static balance using modified CTSIB balance test. All subjects were tested for each of the four conditions in modified

Figure 3: Comparison of mCTSIB and TUG score between group 1 and 2

CTSIB balance test. All the tests were done barefoot. The trials were timed using a stopwatch. Time was stopped during a trial and recorded if: (a) subject deviated from the initial crossed arm position, (b) subject opened eyes during 'eye closed' trial condition, or (c) subject moved feet (took a step) or required manual assistance to prevent loss of balance. A trial was considered successful if the subject was able to maintain the starting position independently for a period of 30 seconds in each condition. A maximum of three trials were permitted for each condition, each lasting for 30 seconds. Trials were performed until the subjects either: (a) successfully maintained the starting position for an entire 30 seconds, or (b) completed three, 30 second trials to the best of their ability. The score was averaged for each condition for the number of trials performed; which gave the condition score, and the average of all the conditions was summated to obtain the total score for the test. Prior to testing in each condition, a demonstration was provided to the subjects. The test was administered with the conditions in same order each time. Subjects were told that each trial would last for 30 seconds.²⁰ After completion of the static balance assessment, the subjects were provided a period of 5 minutes of rest (if required). The subjects were assessed for functional mobility using 'timed up and go'(TUG) test which is a basic test for functional mobility test for elderly with an inter-rater reliability of ICC=0.99. The subjects were instructed to move from a seated position in a chair to a standing position, walk 3 meters (10ft) at a normal and safe pace, turn around, walk back to the chair, and sit down. The timed up and go test was measured with a stopwatch. The subjects were given a practice trial, followed by 2 timed trials. The test began with each subject sitting, back against the chair, arms resting on the lap, and feet just behind the distance marker on the floor. Subjects were instructed as follows "on the word 'go' stand up, walk comfortably and safely up to the cone on the floor, walk around the cone, come back and sit all the way back

into your chair". They were informed that the trial would be timed. Timing began on the word 'go' and ended when subject's back rested against the chair upon returning. A practice trial was performed, followed by 2 recorded trials. Data obtained during the 2 recorded trials were averaged for use in data analysis.¹⁴

All four tests took approximately 40 minutes time to administer. The quadriceps strength testing took 4 to 5 minutes, proprioceptive acuity testing took 20 minutes, static balance assessment took 5-6 minutes and timed up and go took 4 to 5 minutes for completion. Data analysis were performed using SPSS software. A student's t-test was used to compare isometric quadriceps strength, proprioceptive acuity, static balance and functional mobility between group 1 and group 2. The significance level was set at $p < 0.05$.

Results

The mean \pm s.d of age of group 1 was 64.20 \pm 2.71 years and for group 2 was 64.43 \pm 2.97 years. There was a statistically significant difference for all the variables studied such as quadriceps strength, proprioceptive acuity (joint position sense), modified CTSIB score and TUG scores between the groups(table 1). The mean \pm s.d of quadriceps strength of group 1 was 15.64 \pm 7.22 kg and for group 2 was 22.05 \pm 5.31kg(table 1 and figure 1). The mean \pm s.d of JPS1-25°, absolute error was 7.61 \pm 0.55°, JPS2-45°, absolute error was 8.05 \pm 3.20° JPS3-60°, absolute error was 8.90 \pm 3.05° in group 1 and in group 2 the mean \pm s.d of JPS1-25°, absolute error was 2.95 \pm 0.22°, JPS2-45°, absolute error was 2.86 \pm 1.02°, JPS3-60°, absolute error was 3.10 + 1.392°(table 1 and figure 2). The mean \pm s.d of mCTSIB in group 1 was 114.67 \pm 5.73 seconds and in group 2 it was 117.43 +3.22 seconds and the mean \pm s.d of TUG for group 1 was 11.25 \pm 1.29 seconds and for group 2 was 9.90 \pm 0.74 seconds.(table 1 and figure 3)

Discussion

In this study, the group of elderly with knee OA has displayed decreased quadriceps strength, compared to the age matched controls this finding is in accordance with reporting from Hurley et al.²² The possible factors contributing to the deficit could be inadequate activation of muscles, joint pain and effusion. It has been reported that the articular damage may stimulate articular mechanoreceptors, evoking abnormal sensory information, which decreases voluntary activation.²² Pain is also known to affect quadriceps function.⁵ According to the pain adaptation model, the activity of the agonist muscle has been found to be decreased by pain, even when it does not arise from the muscle itself; also there has been found to be a small increase in the level of activity of antagonist. As a consequence of these changes force production, the range and velocity of the movement of the affected part are often decreased.²³ Nociceptors and other receptors in and around the joint can have flexor facilitatory and extensor inhibitory actions. Thus at the knee, these receptors are likely to excite hamstrings and inhibit quadriceps muscle.²⁴ Quadriceps function is also believed to be affected by coexisting effusion. Knee effusion has been found to stretch the joint capsule²⁵, and increase the intrarticular volume.²⁶ Because of this increased volume, there is an increase in pressure, accompanied by distension of capsular structures. Type 1 mechanoreceptors are believed to be activated by such change in the joint and are considered to mediate inhibition by reflexively inhibiting lower motor-neurons supplying quadriceps muscle.²⁷

This study compared the proprioceptive acuity between arthritic and control groups, and found significant difference between the groups. The arthritic group has shown larger errors when compared to normal healthy controls. Proprioceptive acuity has been found to be affected at all predetermined angles, chosen for the study. Some previous studies have given similar results.^{22,28} The possible

explanation for such results can be loss of mechanoreceptors around the joint.²⁹ Larger errors were however shown at 60° angle of knee flexion. Even though there have been studies suggesting critical role of joint receptors in proprioception and motor control.^{30, 31}

Age has been shown to affect the balance physiology.^{32,33} On comparing the static balance scores, the arthritic group was found more unstable, which has been confirmed by previous study.²² The study used mCTSIB for evaluating static balance because elderly have been demonstrated to have difficulty balancing, when sensory inputs contributing to balance are reduced, so that they have less redundancy of sensory information.³⁴ The challenging stance conditions offered by the test placed greater reliance on peripheral proprioceptors,³⁵ and since arthritic individuals have larger proprioceptive deficits as compared to the normal elderly controls,^{22,36} they were found more unstable, while performing the test. On comparing the functional mobility in both the groups, the arthritic group demonstrated altered functional mobility, that is- they took significantly longer time to accomplish the task. Aging has been shown to affect quadriceps strength,^{35,37} so does arthritis.^{38,39} The altered function by the arthritic group could be because of the combined effects of aging and the pathology.

The study suggests screening for balance deficits in elderly with OA and providing balance re-education. Future studies are recommended, which include a bigger sample group, studies on genders separately, studying effect of balance training protocols on functional performance of subjects with OA knee.

Conclusion

The data obtained from this study shows that the elderly with knee osteoarthritis have decreased quadriceps strength, proprioceptive acuity, static balance and functional mobility,

when compared to healthy elderly controls. Hence the hypothesis that "elderly with knee osteoarthritis will display deterioration in quadriceps strength, proprioceptive acuity, static balance and functional mobility" holds true.

References

1. Wolfson L, Whipple R, Derby CA, Amerman P, Murphy T, Tobin JN, Nashner L. A dynamic posturography study of balance in healthy elderly. *Neurology* 1992; 42: 2069-2075.
2. Wollacott MH. Age related changes in posture and movement. *Journal of Gerontology* 1993; 48: 56-60.
3. Stelmach GE, Teasdale N, Di Fabio RP, Phillips J. Age Related Decline in Postural Control Mechanisms. *The International Journal of Aging and Human Development* 1989; 29: 205-223.
4. Davis MA, Ettinger WH, Neuhaus JM, Mallon KP. Knee osteoarthritis and physical functioning: evidence from the NHANES I Epidemiologic Followup Study. *The Journal of Rheumatology* 1991; 4: 591-598.
5. O'Reilly SC, Adrian Jones A, Muir KR, Doherty M. Quadriceps weakness in knee osteoarthritis: the effect on pain and disability. *Annals of Rheumatic Disease* 1998; 57: 588-594.
6. Pai Yi-C, Rymer WZ, Chang RW, Sharma L. Effect of age and osteoarthritis on knee proprioception. *Arthritis & Rheumatism*. 1997; 40: 2260-2265.
7. Sturnieks DL, Tiedemann A, Chapman K, Munro B, Murray SM, and Lord SR. Physiological Risk Factors for Falls in Older People with Lower Limb Arthritis. *Journal of Rheumatology* 2004; 31: 2272-2279.
8. Young A, Stokes M, Iles JF. Effects of Joint Pathology on Muscle. *Clinical Orthopedics and Related Research* 1987; 219: 21-28.
9. Birmingham TB, Kramer JF, Kirkley A, Inglis JT, Spaulding SJ, Vandervoort AA. Association among neuromuscular and anatomic measures for patients with knee osteoarthritis. *Archives of Physical Medicine and Rehabilitation* 2001; 82: 1115-1118.
10. Wegener L, Kisner C, Deborah Nichols D. Static and Dynamic Balance Responses in Persons With Bilateral Knee Osteoarthritis. *J Orthopedics and Sports physical therapy* 1997; 25: 13-18.
11. Hassan BS, Doherty SA, Mockett S, Doherty M. Effect of pain reduction on postural sway, proprioception, and quadriceps strength in subjects with knee osteoarthritis. *Annals of Rheumatic Disease* 2002; 61: 422-428.
12. Altman A, Bloch A, Bole G, Randt K. Development of Criteria for classification and reporting of osteoarthritis. *Arthritis and Rheumatism* 1986; 29: 1039-1049.
13. Edwards RHT, Young A, Hosking G P, Jones D A. Humanskeletal muscle function: description of tests and normal values. *Clinical science and molecular medicine* 1977; 52: 283-90.
14. Clarkson P, Kroll W. Age, Isometric Strength, Rate of tension development and fiber type composition. *Journal of Gerontology* 1981; 36: 648-653.
15. Lönn J, Crenshaw AG, Djupsjöbacka M, Pedersen J, Johansson H. Position sense testing: Influence of starting position and type of displacement. *Archives of Physical Medicine and Rehabilitation* 2000; 81: 592-597.
16. Gilman S. Joint position sense and vibration sense: anatomical organisation and assessment. *Journal of Neurology, Neurosurgery and Psychiatry* 2002; 73: 473-477.
17. Tsang WW, Hui-Chan CW. Effects of exercise on joint sense and balance in elderly men: Tai Chi versus golf. *Medicine Science and Sports Exercise* 2004; 36: 658-667.
18. Rogol IM, Ernest G, Perrin DH. Open and Closed Kinematic Chain Exercises Improve Shoulder Joint Reposition Sense in Healthy Subject. *Journal of Athletic Training* 1998; 33: 315-318.
19. Bonfim TR, Paccola CAJ, MD, Barela JA, PE. Proprioceptive and Behavior Impairments in Individuals with Anterior Cruciate Ligament. *Reconstructed Knees* 2003; 84: 1217-1223.
20. Shumway-Cook A, Horak FB. Assessing the Influence of Sensory Interaction on Balance Suggestion from the Field. *Physical Therapy* 1986; 66: 1548-1550.
21. Podsiadlo D, Richardson S. The timed "Up & Go": a test of basic functional mobility for frail elderly persons. *Journal of American Geriatric Society* 1991; 39: 142-8.
22. Hurley MV, Scott DL, Rees J, Newham DJ. Sensorimotor changes and functional

performance in patients with knee osteoarthritis. *Annals of Rheumatic Disease* 1997; 56: 641-648.

23. Lund JP, Donga R, Widmer CG, Stohler CS. The pain-adaptation model: a discussion of the relationship between chronic musculoskeletal pain and motor activity. *Canadian Journal of Physiology and Pharmacology* 1991; 69: 683-694.
24. Young A, Stokes M, Iles JF. Effects of joint pathology on muscle. *Clinical Orthopedics and Related Research* 1987; 21-27.
25. Jayson M I, St Dixon A J. Intra-articular pressure in rheumatoid arthritis of the knee. I. Pressure changes during passive joint distension. *Annals of Rheumatic Diseases* 1970; 29: 261-265.
26. Deandrade JR, Grant C, Dixon AS. Joint Distension and Reflex Muscle Inhibition in The Knee. *Journal of Bone and Joint Surgery (Am Vol)* 1965; 47: 313-22.
27. Fahrer H, Rentsch HU, Gerber NJ, Beyeler C, Hess CW, Grünig B. Knee effusion and reflex inhibition of the quadriceps. A bar to effective retraining. *Journal of Bone and Joint Surgery (Br Vol)* 1988; 70: 635-638.
28. Pai YC, Rymer WZ, Chang RW, Sharma L. Effect of age and osteoarthritis on knee proprioception. *Arthritis and Rheum* 1997; 40: 2260-2265.
29. Schultz RA, Miller DC, Kerr CS, Micheli L. Mechanoreceptors in human cruciate ligaments. A histological study. *Journal of Bone and Joint Surgery (Am Vol)* 1984; 66: 1072-1076.
30. Ferrell W R. The adequacy of stretch receptors in the cat knee joint for signalling joint angle throughout a full range of movement. *Journal of Physiology* 1980; 299: 85-99.
31. Ferrell WR, Baxendale RH, Carnachan C, Hart I.K. The Influence of Joint Afferent Discharge on Locomotion, Proprioception and Activity in Conscious Cats. *Brain Research* 1985; 347: 41-48.
32. Jerosch J, Prymk M. Knee Joint Proprioception in Normal Volunteers and Patients with Anterior Cruciate Ligament Tears, Taking Special Account of the Effect of a Knee Bandage. *Archives of Orthopaedic and Trauma Surgery* 1996; 115: 162-166.
33. Woollacott MH, Shumway-Cook A, Nashner LM. Aging and Posture Control: Changes in Sensory Organization and Muscular Coordination. *The International Journal of Aging and Human Development* 1986; 23: 97-114.
34. Woollacott MH, Shumway-Cook A. Changes in Posture Control Across the Life Span-A Systems Approach. *Physical Therapy* 1990; 70: 799-807.
35. Hurley MV, Rees J, Newham Di J. Quadriceps function, proprioceptive acuity and functional performance in healthy young, middle-aged and elderly subjects. *Age and Ageing* 1998; 27: 55-62.
36. Hinman RS, Bennell KL, Metcalf BR, Crossley KM. Balance impairments in individuals with symptomatic knee osteoarthritis: a comparison with matched controls using clinical tests. *Rheumatology* 2002; 41: 1388-1394.
37. Frontera WR, Suh D, Krivickas LS, Hughes VA, Goldstein R, Roubenoff R. Skeletal muscle fiber quality in older men and women. *American Journal of Physiology-Cell Physiology* 2000; 279: C611-18.
38. Wessel J. Isometric strength measurements of knee extensors in women with osteoarthritis of the knee. *The Journal of Rheumatology* 1996; 23: 328-331.
39. Lankhorst GJ, Van de Stadt RJ, Van der Korst JK. The relationships of functional capacity, pain, and isometric and isokinetic torque in osteoarthritis of the knee. *Scandinavian Journal of Rehabilitation Medicine* 1985; 17: 167-172.

Comparative Study of Neural Tissue Mobilization and Manual Traction in Patients with Cervical Spondylosis

Shipra Bhatia*, Neha Samvedi**, Aparna Sarkar***

Abstract

Objective: To compare the efficacy of Neural Tissue Mobilization and Manual Traction in patients with Cervical Spondylosis.

Study Design: Experimental design

Method: 30 subjects of cervical spondylosis, age group 50-65 yrs participated in the study and were divided into 3 groups (10 subjects in each group). Group A was treated with neural tissue mobilization, neck isometrics and hot pack; Group B was treated with cervical manual traction, neck isometrics and hot pack & Group C was treated with hot pack only. Then the results were compared on NDI scale, VAS scale and active ROM of cervical spine.

Result: This study showed significant results of cervical manual traction on all outcome measures. However, neural tissue mobilization was significant on NDI scale, cervical right rotation and left rotation.

Conclusion: The study concluded that in patients with cervical spondylosis, treatment with cervical manual traction, neck isometrics and hot pack helps in reducing the pain, increasing the range of motion of cervical spine and efficiency in activities of daily living, as seen by improvement in VAS scale, active ROM of cervical spine and NDI scale respectively. Cervical Manual Traction showed significantly better results on all outcome measures as compared to Neural Tissue Mobilization in patients with cervical spondylosis.

Keywords: Cervical Spondylosis, Cervical Manual Traction, Neural Tissue Mobilization.

Introduction

Cervical spondylosis is a generalized disease process affecting all levels of the cervical spine. Cervical spondylosis encompasses a sequence of degenerative changes in the intervertebral discs, osteophytes of the vertebral bodies, hypertrophy of the facets and laminal arches, and ligamentous and segmental instability. The natural history of cervical spondylosis is

associated with the ageing process. Senescent and pathologic processes are thus morphologically indistinguishable (1).

The outcome of neck pain depends on the underlying cause, but acute neck pain usually resolves within days or weeks, although it can recur or become chronic. Aetiological factors are poorly understood and are usually multifactorial, including poor posture, anxiety, depression, neck strain, and sporting or occupational activities. When mechanical factors are prominent, the condition is often referred to as "cervical spondylosis," although the term is often applied to all non-specific neck pain. Mechanical and degenerative factors are more likely to be present in chronic neck pain (2). The most common cause of cervical radiculopathy is foraminal encroachment of the spinal nerve due to

Author Affiliation: *PT, MPT (Musculoskeletal), Research Guide & Assistant Professor, **PT, student BPT, ***PhD Physiology, Amity Institute of Physiotherapy, Amity University, K- block, Sector-44, Noida.

Reprint's request: Dr. Shipra Bhatia, (PT), MPT (Musculoskeletal), Research Guide & Assistant Professor, Email: shipralibran@gmail.com, Mobile No.: +91-9810679195.

(Received on 22.06.2012, accepted on 06.10.2012)

combination of factors, including decreased disc height and degenerative changes of the uncocervical joints anteriorly and zygapophyseal joints posteriorly (i.e., cervical spondylosis). In contrast to disorders of the lumbar spine, herniation of the nucleus pulposus is responsible for only 20 to 25 percent of cases (3).

Presenting features of cervical spondylosis are cervical pain aggravated by movement, referred pain (occiput, between the shoulder blades, upper limbs), retro-orbital or temporal pain (from C1 to C2), cervical stiffness-reversible or irreversible, vague numbness, tingling, or weakness in upper limbs, dizziness or vertigo, poor balance and rarely, syncope, triggers migraine, "pseudo-angina". Signs in patients with cervical spondylosis generally are poorly localized tenderness, limited range of motion and minor neurological changes like supinator jerk (2).

Radiculopathy (nerve root compression) due to cervical spondylosis usually occurs at the C5 to C7 levels, although higher levels can also be affected. Neurological features follow a segmental distribution in the upper limb, with sensory symptom (shooting pains, numbness, hyperesthesia) being more common than weakness. Reflexes are usually diminished at the appropriate level (biceps (C5/6), supinator (C5/6), or triceps (C7)) (2).

Table 1: Comparison of mean NDI score in group A, B and C in Pre and Post condition

Group	Pre	Post	T-value	Level of significance	P-value
A	26.6	22.8	3.8	Significant	<0.01
B	27.9	21	6.44	Significant	<0.001
C	28.1	25.5	2.13	Insignificant	>0.05

Table 2: Comparison of VAS scale in group A, B and C in Pre and Post conditions.

Group	Pre	Post	T-value	Level of significance	Probability
A	6.75	5.65	2.03	Insignificant	>0.05
B	7.3	5.1	4.03	Significant	<0.01
C	6.85	6.15	1.11	Insignificant	>0.05

Exercise regimens-using proprioceptive, strengthening, endurance, or coordination exercises-are more effective than usual care (analgesics, non-steroidal anti-inflammatory drugs, or muscle relaxants) or stress management. Manual treatments (mobilization physiotherapy or manipulation) provide limited evidence that mobilization physiotherapy and manipulation are more effective for chronic neck pain than less active treatments (drug treatment, education, counselling). However, manipulation has occasionally been associated with serious neurological complications (2).

When neural mobilization is used for treatment of adverse neurodynamics, the primary theoretical objective is to attempt to restore the dynamic balance between the relative movement of neural tissues and surrounding mechanical interfaces, thereby allowing reduced intrinsic pressures on the neural tissue and thus promoting optimum physiologic function. The hypothesized benefits from such techniques include facilitation of nerve gliding, reduction of nerve

Table 3: Comparison of Cervical Active ROM in groups A, B and C in Pre and Post conditions

FLEXION ROM					
Group	Pre	Post	T-value	Level of significance	P-value
A	35.9	38.4	1.85	Insignificant	>0.05
B	33.4	38.9	3.95	Significant	<0.01
C	32.1	32.9	0.52	Insignificant	>0.05
EXTENSION ROM					
A	56.7	59.3	1.48	Insignificant	>0.05
B	60.4	65.7	4.95	Significant	<0.001
C	55.1	56	0.82	Insignificant	>0.05
RIGHT SIDE FLEXION ROM					
A	32.9	35.2	2.11	Insignificant	>0.05
B	31.6	36.4	4.03	Significant	<0.01
C	31.3	32.2	1.05	Insignificant	>0.05
LEFT SIDE FLEXION ROM					
A	36.2	38.6	1.69	Insignificant	>0.05
B	35.8	40.3	4.94	Significant	<0.001
C	36.5	37.5	1.96	Insignificant	>0.05
RIGHT ROTATION ROM					
A	57.2	59.7	2.97	Significant	<0.02
B	56.5	60.8	5.24	Significant	<0.001
C	55.2	56.4	1.76	Insignificant	>0.05
LEFT ROTATION ROM					
A	62.2	64.5	3.33	Significant	<0.01
B	62.1	66.5	4.65	Significant	<0.01
C	61.5	62.7	1.42	Insignificant	>0.05

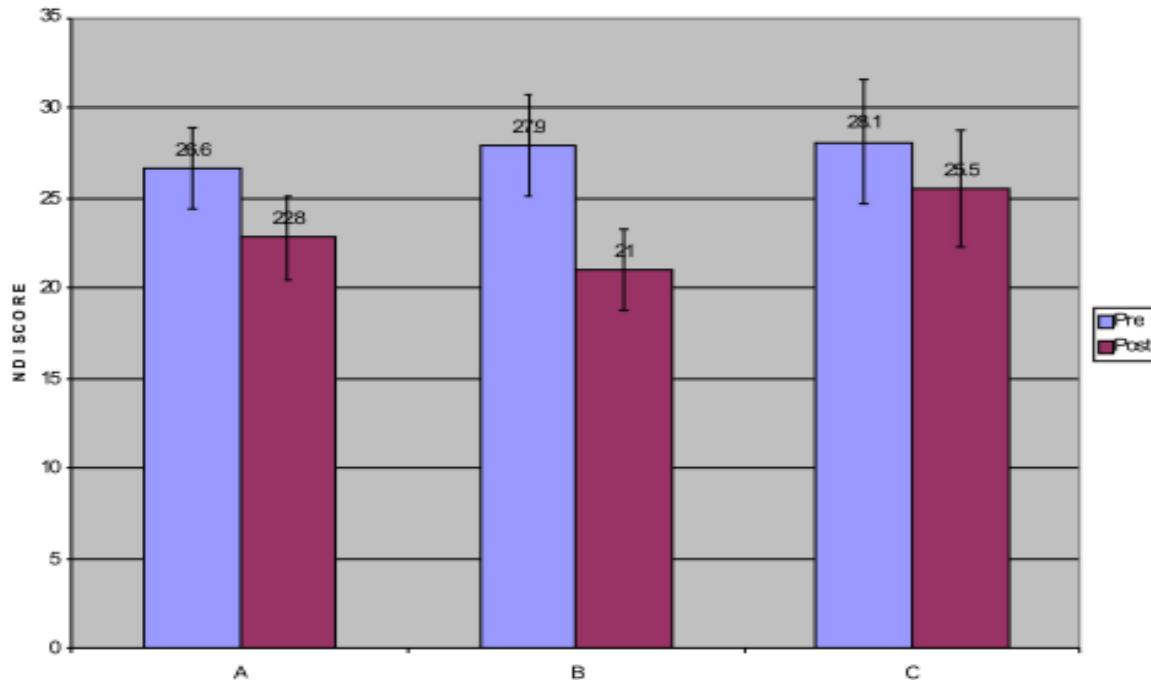
adherence, dispersion of noxious fluids, increased neural vascularity, and improvement of axoplasmic flow (4).

Traction has also been reported to decrease pain by providing muscle relaxation, stimulation of mechanoreceptors and inhibition of reflex muscle guarding (5). Manual cervical traction is suggested to relieve pain and muscle spasm in the neck and upper quartile. Afferent input generated by these procedures may lower the excitability of α -motoneuron pools of upper limb muscles. While joint receptors are traditionally viewed as the receptor most likely to evoke responses to manual therapy, a review of the literature into possible mechanisms underlying manual cervical traction suggests stretch generated in cervical muscles and skin during the procedure has the potential to influence the excitability of α -motoneurons (6).

This study aims to compare the efficacy of neural tissue mobilization & cervical manual traction in patients having cervical spondylosis.

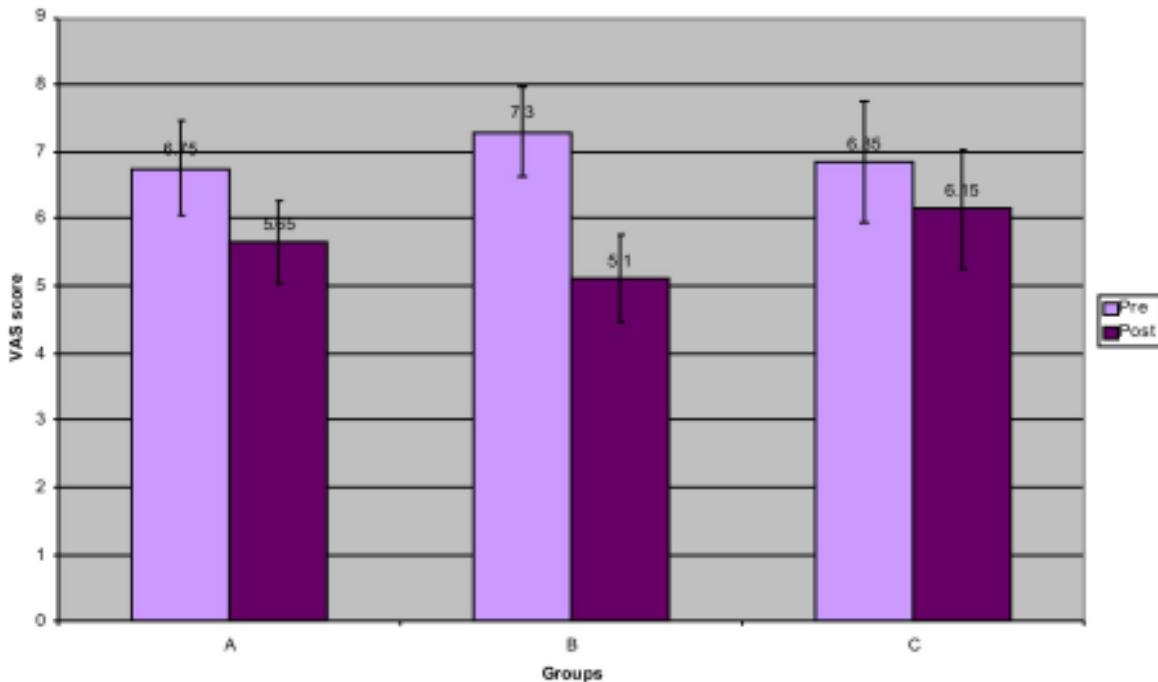
Materials and Method

Sample: 30 individuals with cervical spondylosis participated in study from RBTB hospital and residents in Ashok Nagar.

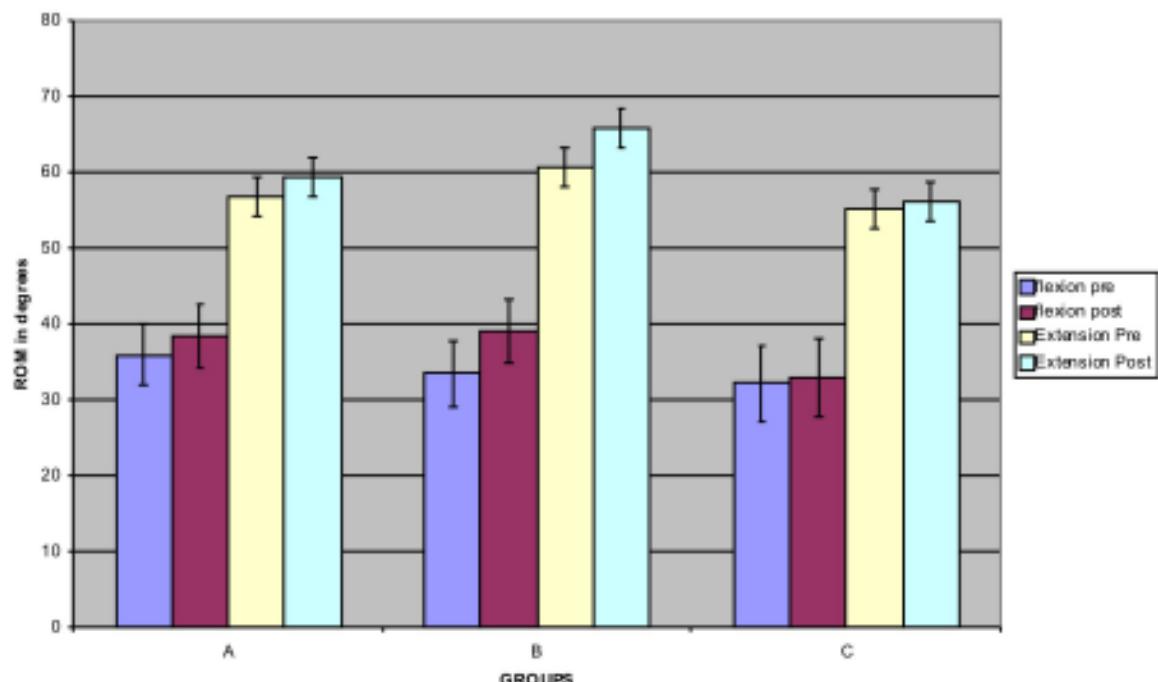

Inclusion criteria

1. Having cervical spondylosis since 10 or more years
2. Unilateral Radiculopathy
3. NDI score >24
4. ULTT1 positive
5. Ability to read English

Exclusion criteria


1. Contraindication to manual therapy techniques.
2. Cervical spine surgery.
3. Patients involved in compensation and/or ligament associated neck and/or upper limb pain.

Comparision of NDI Score between Groups



4. Soft tissue inflammatory condition like tendinitis, tenosynovitis, capsulitis & bursitis.
5. Tumors
6. Circulatory disturbances
7. Cervical myelopathy
8. Specific pathology due to trauma of the shoulder girdle complex, arm or hand on the affected side.

Comparison of VAS Scale between groups A,B & C

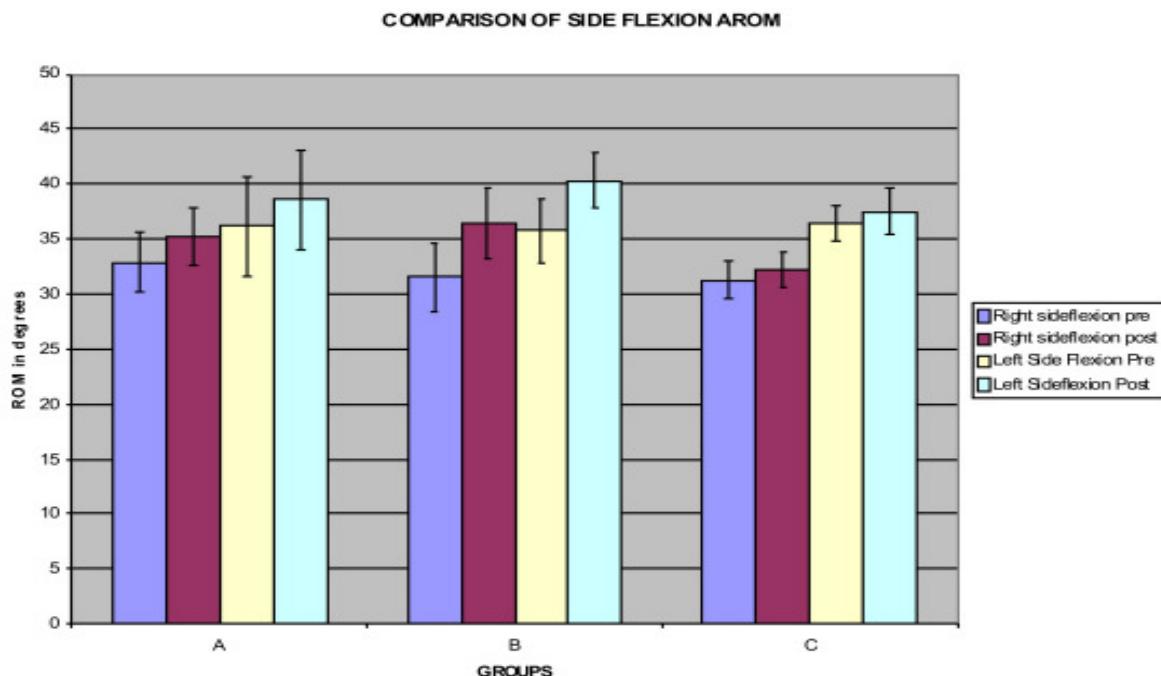
COMPARISON OF CERVICAL FLEXION & EXTENSION ROM

Procedure

30 individuals with cervical spondylosis were selected. They were assessed & randomly allocated to one to the three groups given below. Measurements of NDI scale, VAS scale and ROM of cervical spine were taken before and after the treatment to compare the effectiveness of the various treatments given.

Group A: Neural tissue mobilization (NTM), neck isometrics and hot pack;

Group B: Cervical manual traction, neck isometrics and hot pack;


Group C: Hot pack only

Group A: NTM was given by the therapist on the ipsilateral side of the patients by positioning them in supine lying, slightly diagonal across the bed with affected side towards the open side of the couch and shoulder placed slightly out of the couch. The therapist was standing next to the head of the patient, facing towards his feet. Constant shoulder depression was maintained throughout the treatment session, once started, with pressure application from the thigh of the therapist. While the shoulder girdle is depressed, the glenohumeral joint is taken to the appropriate abduction position (90 deg.), elbow extended, forearm supinated, wrist

extended, fingers & thumb extended and cervical spine side flexion of the contralateral side and neural tissue mobilization was then given by the therapist without any discontinuity in between the treatment. Dosage of mobilization was 2 sets of 30 repetitions each day, for 5 days. Following hot pack, neck isometric exercises to group A and B.

Group B: Manual cervical traction was given with patient in supine lying position and relaxed. The therapist stood at the head of the treatment table, supporting the weight of the patient's head in the hands. Hand placement depends on comfort, vary the patient's head position in flexion, extension, side bending with rotation until the tissues to be stretched are taut, and then apply a traction force by assuming a table stance and leaning backward in a controlled manner. The force was usually applied intermittently with a smooth and gradual building and releasing of the traction force. Dosage of cervical traction was 15 repetitions, twice a day for 5 days.

Group C: The patients in this group were treated with hot pack under the cervical spine for 15 min for 5 days.

Outcome measures

1. NDI Scale
2. VAS Scale
3. Active ROM of Cervical Spine

Result

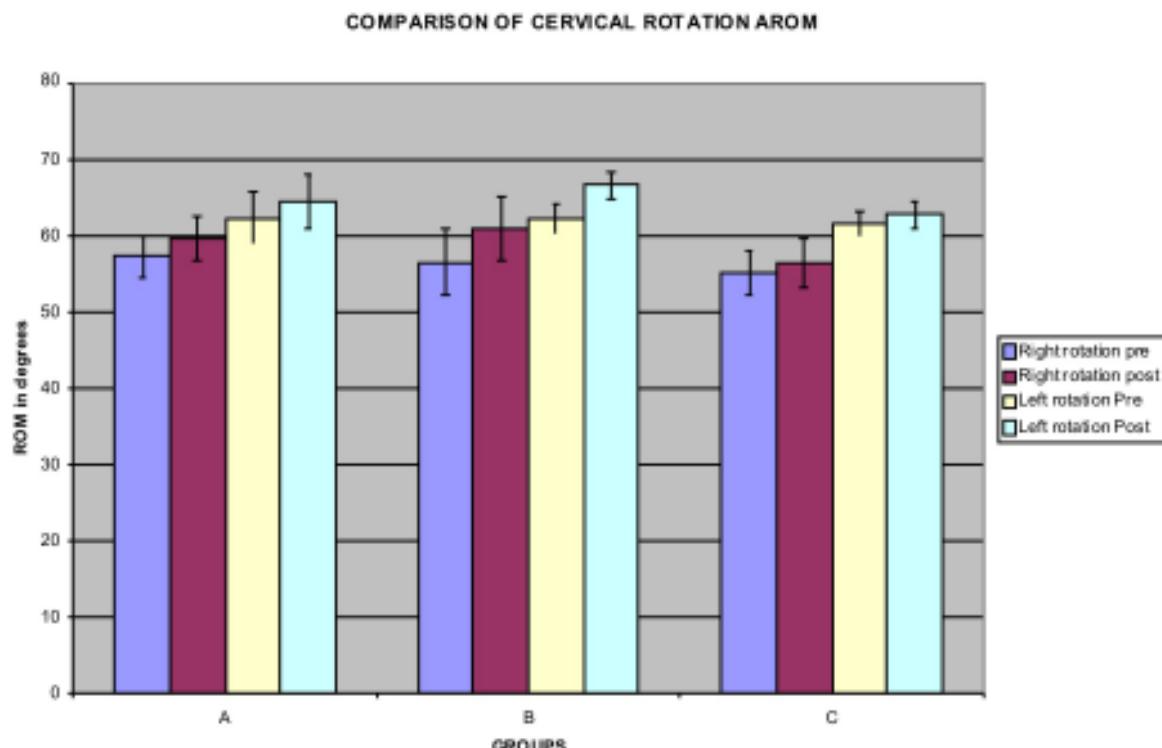
Baseline characteristics

The age of patients was between 50-65 years. Both males and females were included in the study and duration of cervical spondylosis symptoms were 10 years or more.

Both neural tissue mobilization and cervical manual traction were significantly effective with $p<0.001$ and Group C showed insignificant results with $p >0.05$.

Cervical manual traction was significantly effective with $P<0.01$; and neural tissue mobilization & application of hot pack showed insignificant results in cervical spondylosis patients on calculating T- values.

There was a significant improvement in active ROM of cervical spine with cervical


manual traction. However, with neural tissue mobilization, only rotation showed significant results.

This is a comparison of NDI scale in group A, B and C in Pre and Post conditions. Both neural tissue mobilization and cervical manual traction were significantly effective with $P<0.01$ & $P<0.001$ respectively and application of hot pack was found insignificant on cervical spondylosis patients on calculating T- values.

Cervical manual traction was significantly effective with $p<0.01$ and neural tissue mobilization & application of hot pack was found insignificant on comparing VAS score.

Cervical manual traction was significantly more effective with $P<0.01$ and neural tissue mobilization & application of hot pack were found insignificant in cervical spondylosis patients on calculating T- values.

Cervical manual traction showed significant results with $P<0.01$ and neural tissue mobilization & application of hot pack was found insignificant on cervical spondylosis patients.

Both neural tissue mobilization and cervical manual traction were significantly effective with $P<0.02$ & $P<0.001$ respectively. However, the application of hot pack was found insignificant.

Discussion

The study compared the effect of Neural Tissue Mobilization and Manual Traction in patients with cervical spondylosis. The outcome measures neck disability index, active ROM of cervical spine and pain assessment on VAS scale. The result of the study supports the manual traction as it shows significant results on all the outcome measures. Neural tissue mobilization was found significantly effective only on NDI scale and cervical left and right rotation.

The subjects chosen for this study fulfilled the inclusion criteria for cervical spondylosis. The cause of subject's signs was postulated to be neurogenic because of the distribution and behavior of pain and the adverse response to neural tissue provocative tests.

The group to which manual traction, neck isometric exercises and hot pack was given showed significant improvement in cervical spondylosis. *Ktavich, Lynley* in his study of Neural Mechanisms Underlying Manual Cervical Traction found that Manual cervical traction is suggested to relieve pain and muscle spasm in the neck and upper quartile. Afferent input generated by these procedures may lower the excitability of motor neuron pools of upper limb muscles. While joint receptors are traditionally viewed as the receptor most likely to evoke responses to manual therapy, a review of the literature into possible mechanisms underlying manual cervical traction suggests stretch generated in cervical muscles and skin during the procedure has the potential to influence the excitability of motor neurons (6).

It was found from a randomised clinical trial on the effects of cervical traction (CT) and exercise on the patients with chronic cervical spondylosis. There was a marked

improvement in both the groups treated with CT and NSAIDs ($P<0.001$). But there was nearly significant difference regarding improvement in treatment with CT plus exercise than with NSAID ($P = 0.06$). The results indicate that the improvement of the patients with chronic cervical spondylosis was more in CT plus exercise than analgesics. So, CT & neck muscle strengthening exercise may have some more beneficial effects than NSAIDs on chronic cervical spondylosis (7).

The group to which neural tissue mobilization, neck isometric exercises and hot pack were given, showed significant effects only on NDI scale and cervical rotation to both left and right sides, even Michael Shacklock also concluded in his study that Mobilization of the nervous system is an approach to physical treatment of pain. The method relies on influencing pain physiology *via* mechanical treatment of neural tissues and the non-neural structures surrounding the nervous system. Previous descriptions of this method have not clarified the relevant mechanics and physiology, including interactions between these two components. To address this, a concept of neurodynamics is described. The body presents the nervous system with a mechanical interface *via* the musculoskeletal system. With movement, the musculoskeletal system exerts non-uniform stresses and movement in neural tissues, depending on the local anatomical and mechanical characteristics and the pattern of body movement. This activates an array of mechanical and physiological responses in neural tissues. These responses include neural sliding, pressurization, elongation, tension and changes in intra-neural microcirculation, axonal transport and impulse traffic (8).

The neural tissue mobilization could not show significant improvement on VAS scale, cervical flexion, and extension and side flexion. Also Mark T. Walsh studied and discussed about the basic science and the research that supports or refutes the efficacy of these techniques. There is sufficient biomechanical evidence that the peripheral nerve under tension undergoes strain and glides within its

interfacing tissue. Evidence supports that Upper Limb Neural Tension Test causes strain within the peripheral nervous system however; it is also evident that Upper Limb Neural Tension Test places strain on other multi-segmental tissues. Clinical investigation has examined intra-rater reliability and has begun to define the parameters of a positive test but there is lack of randomized controlled studies. There is limited evidence reporting favorable outcomes when using neural mobilization to treat specific patient populations, and the appropriate parameters of dosage (i.e., duration, frequency, and amplitude) remain to be confirmed. Clinical application of these techniques must be applied in a practical manner that relies on continual clinical reasoning (9).

Limitations of the Study

The size of the sample was small. Long-term follow-up could not be taken.

Conclusion

The study concluded that in patients with cervical spondylosis, a treatment combining cervical manual traction, neck isometrics and hot pack helps in reducing the pain, increasing the range of motion of cervical spine and efficiency in activities of daily living, as seen by improvement in VAS scale, active ROM of cervical spine and NDI scale respectively.

Cervical Manual Traction showed significantly better results on all outcome measures as compared to Neural Tissue Mobilization in patients with cervical spondylosis.

References

1. Lestini, William F, Wiesel, Samuel W. Clinical Orthopaedics & Related Research. *The Pathogenesis of Cervical Spondylosis* 1989; 239: 69-93.
2. Cervical Spondylosis and neck pain. *BMJ* 2007; 334: 7592.
3. Simon Carette, Michael G Fehlings. Cervical Radiculopathy. *N Engl J Med* 2005; 353: 392-399.
4. Richard F Ellis, Wayne A Hing. Neural Mobilization: A Systematic Review of Randomized Controlled Trials with an Analysis of Therapeutic Efficacy. *Journal of Manual & Manipulative Therapy* 2008; 16(1): 8-22.
5. Nadine Graham, Anita R Gross, Charlie Goldsmith and the Cervical Overview Group. Mechanical Traction For Mechanical Neck Disorders: A Systematic Review. *J Rehabil Med* 2006; 38: 145-152.
6. Katavich, Lynley. Neural Mechanisms Underlying Manual Cervical Traction. *Journal of Manual & Manipulation Therapy* 1999; 7(1): 20-25(6).
7. Shakoor MA, Ahmed MS, Kibria G, Khan AA, Mian MA, Hasan SA, Nahar S, Hassain MA. Effects of Cervical Traction and Exercise Therapy in Cervical Spomdylosis. *Bangladesh Med Res Counc Bull* 2008; 28(2): 61-69.
8. Michael Shacklock. Neurodynamics. *Journal of the Orthopaedics Society of Physiotherapy* 1995; 81(1): 9-16.
9. Mark T Walsh. Upper Limb Neural Tension Testing and Mobilization. *Journal of Hand Therapy* 2005; 18(2): 241-258.

Effectiveness of Sensory Motor and Behavior Therapy on Drooling in Children with Cerebral Palsy

Banumathe KR*, Sugi S.**, Guruprasad V.***

Abstract

Aim: To determine the effectiveness of sensory motor and behavior therapy on drooling in children with cerebral palsy

Methodology: 20 children with drooling in cerebral palsy were selected for the study based on the screening tool. The assessment tools such as swab method, drooling quotient with activity and drooling quotient without activity were used for pre and post test scores. 10 children received conventional treatments who were control group and 10 children were given sensory motor and behavior therapy along with conventional treatment who were experimental group. Posttest was taken after 6 weeks of intervention for 10 min / session, 3 days a week and the scores were subjected to statistical analysis.

Results: The data were analyzed with Mann-Whitney U-test and Kruskal Wallis test using the SPSS version 16. Results showed statistical significant difference at $p<0.05$ levels of significance in post test scores of experimental when compared to control group. Constant droolers showed greater improvement than frequent droolers in swab method and drooling quotient with activity at $p<0.05$ levels of significance. The study also found that age and diagnosis do not have an effect on treatment outcome.

Conclusion: The study concluded that sensory motor and behavior therapy have a significant effect on reducing drooling in children with cerebral palsy.

Key Words: Cerebral palsy; Drooling; Sensory motor therapy; and Behavior therapy.

Introduction

Drooling is the unintentional loss of saliva from the mouth. Many children lose control of saliva and drool when they concentrate on gross and fine motor movements. Normal children develop the ability to perform most

activities without drooling around 2 years of age. Persistent drooling is most commonly associated with neuromuscular disorders such as Cerebral Palsy which is the most common physical disability in early childhood. Those children frequently have lifelong problem with oral motor control that can present as drooling, eating and drinking difficulties and / or speech problems [2].

The pathophysiology of drooling seems to be the result of problems exist in sensory awareness or organisation and children may be unable to perceive the pressure cues in the mouth that would normally serve to trigger an automatic swallow and may be aggravated by inability to close the mouth^[1].

Drooling can produce significant negative effects on physical health including irritated facial skin, unpleasant odor, increased oral and perioral infections, hygiene problems,

Author Affiliation: *MOT (Adv. OT Pediatrics), M.Sc. (Psy), Assistant Professor, Department of Occupational Therapy, Manipal College of Allied Health Sciences, Manipal University, Karnataka, **MOT (Adv. OT Pediatrics), Associate Professor, KMCH College of Occupational Therapy, Tamilnadu Dr. M.G.R Medical University, Tamilnadu, ***MOT (Neurosciences), Assistant Professor, Department Of Occupational Therapy, Manipal College of Allied Health Sciences, Manipal University, Karnataka.

Reprint's request: Mrs. Banumathe KR, Assistant Professor, Department of Occupational Therapy, Manipal College of Allied Health Sciences, Manipal University, Manipal-576104, Karnataka.

Email: banumathe.kr@manipal.edu

(Received on 13.03.2012, accepted on 15.04.2012)

dehydration, social isolation and affect the Quality of Life that can result in a loss of self-esteem. Thus drooling can lead to functional, social, psychological and clinical consequences for patients, families and caregivers.

Control of drooling requires developed oral sensory awareness provided by own secretions in order to swallow in a timely manner and to facilitate frequent swallowing, where sensory therapy is necessary [2]. Significant correlations have been found between jaw control ability and adequate swallowing by creating intraoral suction pressure, which implies the need for jaw control techniques^[3]. However, the above techniques alone need not facilitate swallowing. Habituation and generalization of swallowing is essential to reduce drooling even when the above techniques are not in use. This can be facilitated through the use of behaviour therapy techniques like positive reinforcement, prompting, cueing, modeling, shaping and prompt fading [4].

Thus there is a need for combination of behavior treatment methods along with sensory motor therapies to increase swallowing frequency, to facilitate mouth closure and thereby reducing drooling [5].

The current study attempts to find out the effectiveness of combinations of sensory, motor and behaviour therapy techniques to reduce drooling in children with cerebral palsy.

Methods

The study design was two group pretest-posttest quasi experimental designs in which the designed sensory motor and behavior therapy techniques were independent variable and drooling was the dependent variable. The study was conducted in KMCH Occupational therapy Department and Special schools in Coimbatore. 20 Children who have been diagnosed with Cerebral palsy, within the age group of 2 to 12 years of both genders, who were identified to have drooling based on screening tool who scored > 3 in frequency and severity, and who were not having any illness over the past week at the time of the

assessment were included for the study and others who were under medications, or undergone any surgeries for drooling or having care givers with psychiatric morbidity were excluded.

Modified drooling measure form and questionnaire on drooling were used for screening, Drooling Quotient (with activity and without activity) and Swab Method used as a primary outcome tool. The drooling quotient is a validated, semi quantitative, direct observational method. The drooling is observed and the presence or absence of drooling is evaluated at every 15th sec interval over a 10 minutes period (40 observations) while the subject is awake and sitting erect. An episode of drooling is defined as new saliva leaving the chin. The drooling quotient expressed as

$$DQ(\%) = \frac{\text{No. of drooling episodes in 10 min} \times 100}{40 \text{ observations in 10 minutes}}$$

The swab method is a highly reproducible method and can be used to evaluate salivary flow rates in drooling children in cerebral palsy during interventional studies under standardizes conditions. It was described by Rotteveel et al. after the mouth is dried with sterile gauze; the cotton roll is placed in the floor of the mouth for 2 minutes. The cotton roll should be weighed before and after the procedure using an electronic scale, which is sensitive to 0.01 gram. The increase in weight during the 2 minutes interval is calculated.

A written consent was taken from the head of the institution to conduct a study. The purpose of the study was explained and informed consent was obtained from the caregivers prior to the study. Modified drooling measure form and drooling questionnaire were given to caregivers of 23 children with cerebral palsy. Among them, 20 children were selected and 3 were excluded as they had mild, occasional drooling. The 20 children were divided into 2 groups: experimental and control, 10 in each. Pretest scores were taken using the swab method, drooling quotient without activity and drooling quotient with activities like listening to rhymes, stacking rings

and cups, and beads for both groups. The control group received conventional occupational therapy. The experimental group received conventional occupational therapy along with; Sensory stimulation by using lemon extract, jaw control techniques and behavior therapy techniques was used to facilitate mouth closure and to increase the frequency of swallowing. The behavior techniques were faded, as the child showed improvements. The intervention was given for 10 min/session for 3 days a week over a period of 6 weeks, after which the post test was done.

Results

The data was analyzed using SPSS version 16. Non-Parametric tests such as Mann-Whitney U test and Kruskal Wallis test were used. Table 1 and 2 shows that there were no significant differences at $p>0.05$ level among experimental and control groups in age,

gender, and diagnosis, which can be compared. According to Table 3, there was significant difference between experimental and control group at $p<0.05$ level, which shows the significant reduction in drooling. Table 4 and 5 shows the age and diagnosis do not have an effect on treatment outcome. The constant droolers showed significant improvement at $p<0.05$ which was showed in table 6 that frequency have an effect on treatment outcome.

Discussion

The main implication for occupational therapists is that the assessment and treatment of drooling should address both the sensory and motor elements of oral function [7]. Hence this study attempted to find out the effectiveness of the above combinations.

Based on the screening tool, the following were also analyzed, which implies the need

Table 1: Baseline Characteristics

CHARACTERISTICS	Experimental Group (N=10)		Control Group (N=10)		u-TEST (Z)	P
	MEAN	SD	MEAN	SD		
AGE	62.4	37.22	75.6	33	-1.064	.287
GENDER	1.30	.48	1.40	.51	-.457	.648
DIAGNOSIS	1.40	.51	1.60	.51	-.292	.771

Table 2: Comparison of pretest data of experimental and control group

DROOLING ASSESSMENT	PRE TEST				u-TEST (Z)	P		
	Experimental Group (N=10)		Control Group (N=10)					
	MEAN	SD	MEAN	SD				
SWAB	2.31	.70	1.91	.81	-.983	.326		
Drooling Quotient with activity	45.75	22.67	42.25	14.74	-.341	.733		
Drooling Quotient without activity	30.75	24.38	34.50	17.51	-.682	.495		

Table 3: Comparison of post test data of experimental and control group

DROOLING ASSESSMENT	POST TEST				u-TEST (Z)	P		
	Experimental Group (N=10)		Control Group (N=10)					
	MEAN	SD	MEAN	SD				
SWAB	1.03	.480	2.25	.717	-3.176	.001*		
Drooling Quotient with activity	13.00	13.165	44.50	8.959	-3.536	.001*		
Drooling Quotient without activity	6.25	9.736	32.50	10.671	-3.428	.001*		

* significant at p<0.05 levels

Table 4: Effect of chronological age on treatment outcome in experimental group

DROOLING ASSESSMENT	< 5 YEARS		> 5 YEARS		u-TEST (Z)	P
	MEAN	SD	MEAN	SD		
SWAB	1.156	.283	1.460	.949	-1.066	.286
Drooling Quotient with activity	-26.25	16.336	-31.00	18.389	-.000	1.000
Drooling Quotient without activity	-19.166	21.369	-32.50	17.677	-1.183	.237

Table 5: Effect of diagnosis on treatment outcome in experimental group

DROOLING ASSESSMENT	CP QUADRIPLEGIA		CP DIPLEGIA		u-TEST (Z)	P
	MEAN	SD	MEAN	SD		
SWAB	1.128	.640	1.502	.561	-.853	.394
Drooling Quotient with activity	-27.916	15.765	-28.500	19.659	-.107	.915
Drooling Quotient without activity	-21.666	18.819	-28.750	24.195	-.323	.747

for therapy. Parental views on drooling 90 % of them extremely worried about their child's drooling and their effects on his/her life, 85 % of them needed wiping most of the time, 75 % were frequent droolers, 25 % were constant droolers, 90 % had moderate to severe drooling and 10% had profuse drooling. Percentages of degree of drooling in the following activities were moderate to very severe. 100 % in concentrated activity like fine activities, e.g. stringing beads, putting pegs in a hole etc. 95 % in prone position, 90 % in

supported sit, while playing, while crying, 85 % in unsupported sit, 75 % during ill, 50 % while watching TV.

In 1987, Morris stated that the drooling can be reduced by improving sensory awareness or through improving the ability to perceive the pressure cues in the mouth which trigger swallow [8]. The alcohol based flavors may have served to heighten intra-oral sensory awareness in these children who displayed a diminished threshold to swallow. Using lemon

extract in the current study which consisted alcohol could trigger swallow by increasing intra-oral sensory awareness, participants learned to swallow more frequently and drooling diminished over time.

Children with cerebral palsy found to have significant positive correlations between drooling and reduced ability to voluntarily control the jaw [3]. So jaw control technique has been used in the present study which has the ability to facilitate mouth closure and helps in swallowing [9]. Behavior therapy techniques such as positive reinforcement, prompting, cueing can be used to learn new behavior or to increase the frequency of desired behavior [6]. Therefore, in the current study, behavior therapy techniques have been used

salivary flow rates till adolescence [10]. Similar findings were recorded in this study.

Heyring et al, 1980 found that there was no correlation between type of cerebral palsy and the incidence of drooling [3]. Likewise, the current study showed that the type of cerebral palsy has no effect on treatment outcome.

The constant droolers have higher improvement when compared to frequent droolers in both swab method and drooling quotient with activity. Generally the children with cerebral palsy have associated movements like opening mouth while concentrating on activities and movements. This may induce drooling. Intervention adopted in this study included sensory

Table 6: Effect of frequency of drooling on treatment outcome in experimental group

DROOLING ASSESSMENT	FREQUENT DROOLERS		CONSTANT DROOLERS		u-TEST (Z)	P
	MEAN	SD	MEAN	SD		
SWAB	1.007	.472	1.910	.371	-2.165	.030*
Drooling Quotient with activity	-25.00	15.275	-35.50	19.640	-.843	.054*
Drooling Quotient without activity	-17.50	20.00	-40.833	7.216	-1.720	.084

*significant at $p < 0.05$ levels

to increase the frequency of swallowing behavior to reduce drooling.

Nunn, 2000 suggested that combination of behavior therapy method and sensory motor therapy are the treatment approaches to be adopted to reduce drooling [5]. The current study findings also supported the above statement by showing the reduction in drooling through the use of sensory motor and behavior therapy in experimental group when compared to control group in all the 3 variables such as swab method, drooling quotient with activity and drooling quotient without activity.

Erasmus et al, 2009 had done a study on salivary flow rates in cerebral palsy of different ages and sex and concluded that no age related decline or increase in distribution of salivary flow in children from 3-19 years of age; age is not an important factor when measuring

stimulation (which would cue a child to swallow saliva), jaw control (which would facilitate appropriate swallowing), positive reinforcement, shaping, prompting (which would increase swallowing frequency). This probably could have reduced drooling during activities.

During the study period, the investigator appreciated the following incidents.

One of the children in experimental group showed marked reduction in drooling which made the special educator to recommend the investigator to give therapy to other children as well. Another child was applauded by teachers and other children in morning assembly as his drooling was reduced.

A similar incident was noted in another child where the special educator said that

there is no need to bring hand kerchief to school as his drooling reduced gradually. Some parents also noticed the reduction in drooling and gave positive verbal feedback.

The subjects were not assigned randomly and sample size was too small to generalize the study results. Biological variations and emotional variations were not considered during the assessment. As drooling quotient method was direct observational method, chances for the investigator to miss out the drool while observing is high. If it was videotaped and assessed, it would have been more standardized. The investigator found difficulty in prompt fading and could not assess the generalization as the duration of therapy was short. Longitudinal study would be beneficial. Since this study is the preliminary study to find out the factors like age, diagnosis, frequency affecting the intervention outcome, further research in this area is recommended.

The results of this study favored the alternate hypothesis by showing a significant reduction in drooling after the intervention. The study confirm the implication of intervention should consider the combination of sensory, motor and behavior therapies and further confirm the role of Occupational therapist to intervene for subjects with drooling.

References

- Palmer MM and Heyman B. The effects of sensory-based treatment of drooling in children: A preliminary study. *Physical and Occupational therapy in pediatrics* 1998; 18(3/4): 85-94.
- Scully C, et al. Drooling-review article. *J of oral pathological medicine* 2009; 38: 321-327.
- Heyring, Barton EJ, Madsen JJ. The use of awareness and omission training to control excessive drooling in a severely drooling in a severely retarded youth. *Child Behavior Therapy* 1980; 2(1): 55-63.
- Vanderburg JW, Didden R, Jongerius PH, Rotteveel JJ. A descriptive analysis of studies on behavioral treatment of drooling. *Developmental medicine and child neurology* 2007; 49: 390-394.
- Nunn JH. Drooling: review of the literature and proposals for management. *J of oral rehabilitation* 2000; 27: 735-743.
- Wong V, et al. Pilot study of oromotor rehabilitation program for children with drooling problems. *Hong Kong J of Pediatrics* 1999; 4: 96-100.
- Lambrou R, Tetreault S, Dudely J. The relationship between oral sensation and drooling in person with cerebral palsy. *The Am J of occupational therapy* 1989; 43(3): 155-161.
- Dunn KW, Cunningham CE, Backman JE. Self-control and reinforcement in the management of a cerebral-palsied adolescent's drooling. *Developmental medicine and child neurology* 1987; 29(3): 305-10.
- Iammatteo PA, Trombly C, Luecke L. The effect of mouth closure on drooling and speech. *The Am J of occupational therapy* 1990; 44(8): 686-691.
- Erasmus CE, et al. Drooling in cerebral palsy: Hyper salivation or dysfunctional oral motor control. *Developmental medicine and child neurology* 2009; 51(6): 454-459.

Test Retest Reliability of 6 Minute Walk Test and 1 Minute Walk Test in Spastic Cerebral Palsy

Ruchi Goel*, Pooja Sharma**

Abstract

Background and objectives: Timed walk tests over 1 and 6 minute intervals have been developed for use in evaluating patients with cerebral palsy but on a smaller sample size. Moreover it is important to establish its reliability according to their gross motor function classification system levels and in an age stratum for conclusive results.

Methods and materials: A total of 70 spastic cerebral palsy participants of age group 7 to 18 years took part in the study, who were classified according to GMFCS level. The walk tests were performed on the same day and retest was done after 7 days.

Results: The test retest reliability of 6 min walk test and 1 min walk test was obtained by cronbach alpha and the value was 0.99 and 0.97 respectively.

Conclusions & interpretations: The 6 min walk test and 1 min walk test has shown high test retest reliability across all gross motor function classification system levels.

Keywords: Cerebral Palsy; 6 minute walk test; 1 minute walk test.

Introduction

Cerebral palsy is defined as a persisting but not unchanging disorder of movement and posture, appearing in the early years of life and due to a non-progressive disorder of the brain, the result of interference during its development.¹ The motor disorders of cerebral palsy are often accompanied by disturbances of sensation, perception, cognition, communication, behavior and by secondary musculoskeletal problems.² The prevalence of cerebral palsy is approximately 2.12-2.45 cases per 1000 live births, indicating a slight rise in recent years.³ Improvements in neonatal nursing have helped reduce the number of

babies, who develop cerebral palsy, but the survival of babies with very low birth weights has increased, and these babies are less likely to have cerebral palsy.^{4, 5, 6} Walking is a complex functional activity; thus, many variables contribute to walking speed.^{7, 8, 9} The ability of children with cerebral palsy to walk has been quantified in various ways, from the relatively simple measures of velocity, step length, and cadence to the more sophisticated measures of kinematics and kinetics, as provided by instrumented three-dimensional analysis but many children have difficulty in tolerating the equipment, particularly the face mask, for the sustained period required for testing indicating the need of some simple tests which are easily clinically applicable.^{10, 11} The walking time required to achieve steady state varies in the literature from 3 to 10 minutes consequently many children with more disabling forms of the condition are unable to complete this type of test.¹² Butland et al. investigated the possibility of using shorter walking times in patients with respiratory

Author Affiliation: *Post graduate student, Amity institute of physiotherapy, Amity University, Noida,
**Assistant professor, Amity institute of physiotherapy, Amity University, Noida.

Reprint's request: Pooja Sharma, Assistant professor, Amity institute of physiotherapy, Amity University, Noida. Email: psharma1@amity.edu, Mb: 9911472722

(Received on 03.05.2012, accepted on 25.06.2012)

disease and found that 2 and 6 minute walks were as reproducible as a 12 minute walk.¹³. Timed walk tests are also now being used as measures of functional ability in clinical intervention trials that involve children with cerebral palsy.^{14,15} The 6-minute walk test is a self-paced, sub maximal test that assesses functional capacity for walking a prolonged distance.^{16,17} It may reflect exercise tolerance required for the performance of ADL,¹⁶ and predict ability to walk in the community.^{17,18} The 6MWT is increasingly used in the young

discriminator of their functional ability for dynamic balance, muscle performance, and endurance than that recorded at a self-selected speed. The duration of 1 minute allow the testing of most children with ambulatory cerebral palsy. The distance covered on the fast 1MWT has a significant relationship with net oxygen cost,²² a traditional measure of exercise capacity, and also correlates with the Gross Motor Function Measure-66, a global measure of functional ability score.²³ The gross motor function classification system (GMFCS)

Figure 1: Sphygmomanometer, Measuring Tape, Pulse Oximeter And Stop Watch

children in whom performing cardiopulmonary exercise tests is especially problematic, requiring a high degree of cooperation, good coordination and motivation^{19,20}. A new test i.e. 1 min walk test has been frequently used recently in children with cerebral palsy to measure functional abilities. 1 minute walk is considered as a potential measure of functional ability and walking endurance²¹. Testing a child at their maximum walking speed would be a greater

was developed to describe gross motor function in children with cerebral palsy and has its focus on self-initiated movements, in particular sitting and walking.²⁴ It is an age-related five-level system in which level I represents the least limitation and level V the most. The GMFCS has been internationally accepted and is widely used.^{25, 26, 27} Although the reliability of 6 min walk test and 1 min walk test has been studied in the cerebral palsy population but it was done on a smaller

sample size. So there is a need to study it on a larger sample size as devised by Donner and Elaisziw for reliability study sample size calculation, there should be atleast 40 participants within a single GMFCS level or age stratum to be confident of reliability of 0.90. Also, the 1 min walk test being relatively new, its efficacy needs to be studied further in the above population.

Methodology

The data was collected from special schools in Delhi and NCR. A total of 70 children diagnosed with spastic cerebral palsy were included in the study within the age range of 7-18 years and were classified as per GMFCS Levels I, II and III as determined by their developmental pediatrician . The children included were able to walk independently without stopping for 6 minutes, with or without a walking aid and were also able to follow verbal instructions. Those who underwent Orthopaedic surgery within past 6 months, who took Botulinum toxin type A injection in the lower limb within past 6 months., who were Currently ill, or those who have any documented cardio respiratory comorbidity or any documented mental retardation or intellectual disability were excluded .Children who had scores less than 24 on mini mental state examination were also excluded. The materials included weighing machine, stadiometer, stop watch, measuring tape, pulse oximeter, sphygmomanometer, two small cones, telephone and a chair. (Fig 1)

Procedure

A written informed consent to participate in the study was obtained from a legal guardian of each participant. The height and weight were taken on the first day of visit. The walking course was set in the corridor. Children wore their own clothing and shoes, allowed to wear their splints and use their walking aids as appropriate. Instructions were given clearly to the participants before the

procedure. The 6 minute walk test and 1 min walk test were performed on the same day. The 6 min walk test and 1 min walk test were randomly done with half an hour of seated rest. The retest was done after one week respectively for both tests.

6 minute walk test

The walking course was set in a quiet, rectangular corridor and marks were taped on the floor at 20-meter intervals. The turnaround points were marked with a cone. Children were instructed to walk as many laps as possible in 6 minutes without running. A demonstration was given to the children for one lap. The procedure was, the child was made to sit at rest in a chair, located near the starting position, for at least 10 minutes before the test started. During this time, the heart rate, blood pressure and oxygen saturation were recorded. The child was made to stand and their baseline dyspnea and overall fatigue using the Borg scale were recorded. The object of this test is to walk as far as possible for 6 minutes. The children walked back and forth in the ground. They were permitted to slow down, to stop and to rest as necessary if they get exhausted or breathe out. They may lean against the wall while resting, but resume walking as soon as they were able to. They were instructed to walk back and forth around the cones and pivot briskly around the cones and continue back the other way without hesitation. The child was positioned at the starting line. The therapist also stood near the starting line during the test. As soon as the child started to walk, the timer was started. They were not allowed to talk to anyone during the walk. An even tone of voice was kept when using the standard phrases of encouragement and the child was watched. After the first minute, the command given was: "You are doing well. You have 5 minutes to go." When the timer shows 4 minutes remaining, the child was instructed as the following: "Keep up the good work. You have 4 minutes to go." When the timer shows 3 minutes remaining, the child was told the following: "You are doing well.

Figure 2: The subject walking during the test

You are halfway done." When the timer shows 2 minutes remaining, the child was told the following: "Keep up the good work. You have only 2 minutes left." When the timer shows only 1 minute remaining, the child was told the following: "You are doing well. You have only 1 minute to go". When the timer ranged, the command was: "Stop!" The therapist then walked to the child and took the chair if they looked exhausted. The spot where they stopped was marked by placing a piece of tape on the floor. The post walk Borg dyspnea and fatigue levels were recorded by asking the child. By using pulse oximetry, SpO₂ and pulse rate were measured from the oximetry. The number of laps taken by the child and additional distance covered were recorded.

1 min walk test

It was done on the same track. They were instructed that whenever the instruction given to them to start they were to keep walking around the track as fast as possible for 1

minute. They were not allowed to run. Distance was calculated by the meter markings on the floor. The assessor explained the protocol to each subject before the test, demonstrated one lap of the track and gave the order to start and stop. The distance was calculated during the 1 minute. The heart rate, oxygen saturation, blood pressure and fatigue levels were taken before and after the test. (FIGURE 2)

Results

The data was collected from 70 subjects and it was statistically analyzed.

(Table 1),(table 2) , (table 3) , (table 4) , (table 5)

The result depicts the mean distance walked by these children. d₁ represents the first day the walk tests were conducted and d₇ represents the 7th day when the tests were reconducted.

The significant differences was present between males and females for 6 min walk test at level $p<0.05$. There was no significant difference present between males and females for 1 min walk test.

Table 1: Mean and standard deviation of 6MWD & 1 MWD

Walk Tests	N	MEAN(m)
6 min walk distance(d1)	70	426.19±74.9
6 min walk distance(d7)	70	434.20±76.71
1 min walk distance(d1)	70	71.79±13.38
1 min walk distance(d7)	70	73.97±14.82

Table 2: Test retest reliability values of 6 MWT AND 1 MWT

GMFCS LEVELS	N	Cronbach's alpha 6 min walk test	Cronbach's alpha 1 min walk test
All subjects	70	.99	.97
GMFCS-I	34	.84	.92
GMFCS-II	25	.96	.90
GMFCS-III	11	.98	.93

Table 3: Effect of gender upon distance walked

	GROUP	N	Mean	Std. Deviation	SIG (2-tailed)
6 min walk test	Males	33	443.64	61.87	0.043
	Females	37	410.62	82.58	
1 min walk test	Males	33	73.85	12.92	0.158
	Females	37	69.95	13.69	

The positive correlation was found significant between the height and walk distances at $p< 0.05$ level.

The positive correlation was found significant of age with both walk distances at $p< 0.05$.

Discussion

70 subjects met the inclusion criteria of being in the age group of 7 years to 18 years and constituted the study sample in which 34 subjects were in GMFCS I, 25 in GMFCS II and 11 IN GMFCS III. The mean distances walked by all the subjects in 6 min walk test was 426.19m & 434.2 m at baseline and retest

respectively. The results of this study are consistent with the results of Maher²⁸ who found out 448.7m and 449.5m respectively for test and retest at half an hour interval in the age group 11-17 years where as C Andersson²⁹ has reported that the mean distances walked by the subjects at the four tests were 316, 336, 341 and 345m within two week interval. This difference in results could be due to elderly age range *i.e.* 26-58 years, more number of subjects in GMFCS III and less sample size. There was no significant difference in the 6 min walk distance reached at two time points separated by a mean of 7 days. The test retest reliability of 6 min walk test was found to be high. This was consistent with the results of Maher²⁸ and Patricia Thompson³⁰ who found out ICC 0.98 in children with cerebral palsy whereas C Andersson²⁹ has stated ICC 0.99 in adults with cerebral palsy but all these studies have given their reliability values on a comparatively small sample size. The data regarding the mean distances walked across

Table 4: Correlation between height and walk distance

Height		6 min walk distance	1 min walk distance
	Pearson Correlation	.432	.364
	Sig. (2-tailed)	.000	.002
	N	70	70

all gross motor function classification system levels has been collected to find out the affect of GMFCS levels on the distances walked. The results were consistent with the results of Maher et al²⁸ and Patricia Thompson et al³⁰ except for GMFCS III. These studies have stated the mean distance walked by these children in GMFCS III were 234.7m and 254.7m respectively. The reason behind this variability could be the severity of spasticity

Table 5: Correlation between age and walk distance

Age		6 min walk distance	1 min walk distance
	Pearson Correlation	.447	.411
	Sig. (2-tailed)	.000	.000
	N	70	70

and the duration of intervention taken by these children. The distance walked has decreased with the increased GMFCS levels. There was no significant difference found between test and retest within all GMFCS levels. The 6 min walk test across all GMFCS has showed good to high reliability values. In the present study the reliability value for GMFCS I differs from the study of Maher²⁹ and C Andersson²⁹ who found out ICC 0.93. This could be due to faster children in this group which had increased the retest distances. These children had perhaps more physical capability to speed up on the retest after perhaps realizing from their first attempt that they could have gone faster. Conversely, children in Level III with their greater physical restriction and associated limits to performance were most consistent in their distance covered as demonstrated within each of the 6MWT analyses.³⁰ The distance walked by children of age stratum 7-12 years was 245m-502m and the mean distance was 403.2m. It shows the average distance walked by the children of this age group. The major problem observed with cerebral palsy children in this study was 'spasticity' in their legs rather than cardiorespiratory problems and this was the main reason for their reduced walking distance. These findings were confirmed by the study of Andersson²⁹ who showed that there was no correlation between heart rate and perceived exertion/ heart rate and walking distance. These results are also confirmed to a certain extent by Bean et al. who found that the six-minute walk test was a useful measure of functional limitation among mobility-limited elders without cardiorespiratory or peripheral vascular disease. There was a strong correlation found between the height and 6 min walk distance. This can be attributed to the longer length of

steps in taller individuals. The length of the step is one of the main determinants in gait velocity. Some studies like Troosters T et al³¹ and Lammers AE³² have shown a strong correlation of height with 6 min walk distance whereas only the study of Enright and Sherill³³ did not show a significant correlation. Age too had a significant influence on the 6MWD in several studies and in the present study also there was a strong correlation found between age and 6 min walk distance. In the studies involving children and adolescents³² a positive correlation was seen whereas in the studies involving healthy adults and elderly individuals^{33, 31} a negative correlation was observed. The correlation between age and 6MWD was not significant only in the study by Camarri et al³⁴ due to narrow age range assessed by the study. The shorter distance walked as age increases can be explained by the decrease in muscle mass and strength and the maximum oxygen consumption, inherent to the aging process. On the other hand, the positive correlation between the 6MWD and age < 20 years is the result of the higher degree of maturation among adolescents, as compared to children. In the present study there was a significant difference noticed in 6 min walk distance based on gender. Males were found to have greater 6 min walk distance than females possibly as a result of their greater muscle mass and the ability to achieve higher levels of physical activity. This was consistent with the results of Albert M. Li³⁵ in which the 6 min walk distance was higher in males than females. The same result is stated by A.M. Iwama³⁶, the difference being attributable to the greater absolute muscle strength, muscle mass and height of men compared to women. There was a weak correlation found between BMI and distances walked. This is supported by the study of Iwama³⁶ who said that 6MWD being shorter in subjects with greater body weight or higher BMI. Unlike the protocol for the original 6 min walk test as given by the American Thoracic Society, the practice trial was not included in this study. This decision was made on work by Van Loo¹⁷ which demonstrated no significant learning effect

when adults with spasticity did the 6 min walk test trials. This same result has been supported by Maher²⁸ that the distance walked during the 6 min walk test varied by less than 1% between the two trials suggesting that a practice walk is not necessary. These findings are in contrast to those of Andersson and colleagues²⁹ whose study on adults with cerebral palsy reported an improvement of 7% between trials 1 and 2. It is difficult to tell whether the different findings in this study were due to inherent differences between the pediatric and adult cerebral palsy populations or methodological differences in the way the 6 min walk tests were conducted between studies. According to Fry DK²⁰ et al a practice trial was not given for this lengthy test because of concerns about the impact of associated fatigue. Sciurba³⁷ hypothesized that long corridors are more effective when compared to short corridors for the walk test because, in the long corridors, the number of turns is reduced and, therefore, the effort is smaller. Nevertheless, in this study, the walked distances in the long corridor were not statistically greater when compared to the shorter corridor. Therefore, the authors concluded that the length of the corridor during the test would not be relevant to its standardization. However, the corridor should not be shorter than 15.23 meters as stated by Scuirba³⁷, unlike the American Thoracic Society minimum standard of corridor length which is 30 meter. The study by Troosters T³¹ had compared the 20 and 50-meter corridors for the test in adults and found no significant differences in the walked distance. Maher²⁸ has used a 10 m straight course which is considerably shorter than the 30m course recommended by the American Thoracic Society¹⁶. Although a 30m indoor course can often be found in hospital settings, in many cases young people with cerebral palsy are seen by health professionals in community settings where a 30m course may not feasible. The results indicated that 6 min walk distance can be achieved using a 10 m course for cerebral palsy population.²⁸ The results for 1 min walk test differed with the study B.C. McDowell²¹ whose observations were 81.4m

and 81.4m at baseline and retest respectively. The reason behind this could be due to a smaller sample size (17 subjects) in the above quoted study. The test retest reliability value of 1 min walk test was consistent with the study of B.C.McDowell²¹ who found ICC 0.94 and the repeatability coefficient was 13.1. This coefficient suggests that for individual patient data, walking distance may vary by up to 13 m between test occasions. In practical terms, this means that a child with bilateral spastic cerebral palsy (GMFCS levels I-III) would need to demonstrate an improved walking distance of at least 13 m following an intervention before one could attribute the change as 'real'. The significant differences in 1 min walking distances were noticed between GMFCS levels. The mean distance walked by the cerebral palsy children may provide a quick guide to expected walking distances for GMFCS I to III. There seems to be significant difference in the distance walked between GMFCS I and II but not much difference between levels II and III. This result concurs with previous findings in studies done by Baker R.¹⁰ which demonstrated a significant relationship between the 1 min walk test and functional ability($r=0.92$). The distance walked by these children of age stratum 7-12 years was 39-93m and the mean distance was $67.54m \pm 13.52m$. Age and height was found to be significantly correlated with the 1 min walk distance.. There was not significant gender difference found in 1 min walk distance. A negative correlation was found between BMI and 1 min walk distance. The anthropometric values were correlated in the study for the first time. The test is shorter in duration to other well reported walk tests of 2, 6 and 12 min , and therefore likely to be a poorer discriminator of exercise tolerance which is a limitation. Alternatively, the 1-min protocol is likely to be more acceptable for the majority of ambulant children with CP, particularly those children in GMFCS level III that use walking aids and/or a wheelchair for mobility within the community. Furthermore, due to the short duration of the test, it is more feasible to be included within a battery of tests assessing gait in CP²¹. This study found that

the distances walked either in a fast-paced 1min walk test or a self-selected 6 min walk test were highly correlated both with each other and with the GMFCS, suggesting that in practical terms, both of these timed walk tests are measuring the same construct. Still a large number of data is required across each gross motor classification system level for more conclusive results. The effect of puberty on 6 min and 1 min walk distance can be seen in further studies. A study by Spadano³⁸ stated that absolute total energy expenditure and physical activity level increased after puberty. Hence further study can compare the children and adolescents. Similar assessment of the 6 min walk test and 1 min walk test would need to be repeated in other age groups of cerebral palsy to ascertain its reliability and validity as age, sex and height have all been shown to affect the distance walked.

References

1. Mac Keith RC, MacKenzie ICK, Polani PE. The Little Club. Memorandum on terminology and classification of cerebral palsy. *Cerebral Palsy Bull* 1959; 1: 27-35.
2. Anonymus. Definition and classification of cerebral palsy, Feb 2007. *Developmental medicine and child neurology* 2007; 49(8): 8.
3. Summary of The Epidemiology of cerebral palsy: incidence, impairments and risk factors. United Cerebral Palsy Research and Education Foundation (U.S.). Retrieved.5 july 2007.
4. Groch, Judith (January 5). Medical News: Cerebral Palsy Rates Decline in Very Low Birth wgt Children - in Neurology. Med page today. Retrieved 2007-12-08.
5. Johnson, Ann. Prevalence and characteristics of children with cerebral palsy in Europe. *Developmental Medicine and Child Neurology* 2002; 44(a): 633-40.
6. Singhi PD, Ray M, Suri G. Clinical spectrum of cerebral palsy in north india- an analysis of 1,000 cases. *Journal of Tropical Pediatrics* 2002; 48(3): 162-6.
7. Steinwender G, Sarah V, Scheiber S, Zwick EB, Uitz C, Hackl K. Intrasubject repeatability of gait analysis data in normal and spastic children. *Clin Biomech* 2000; 15: 134-39.
8. Wright VF, Liu G, Milne F. Evaluation of the reliability of measurement of time-distance parameters of gait: a comparison in children with juvenile rheumatoid arthritis and children with cerebral palsy. *Physiother Can* 1999; 51: 191-200.
9. Fritz S, Lusardi M. White paper: walking speed: the sixth vital sign. *J Geriatr Phys Ther* 2009; 32(2): 46-9.
10. McDowell BC, Kerr C, Parkes J, Cosgrove A. Validity of a 1 minute walk test for children with cerebral palsy. *Dev Med Child Neurol* 2005; 47: 744-8.
11. Grethe Maanum, Reidun JahnSEN, Katherine F Frosile, Kerstine L Larsen. Walking ability and predictors of performance on the 6-minute walk test in adults with spastic cerebral palsy. *Developmental Medicine & Child Neurology* 2010; 52(6): 126-132.
12. Johnston TE, Moore SE, Quinn LT, Smith BT. Energy cost of walking in children with cerebral palsy: relation to the Gross Motor Function Classification System. *Dev Med Child Neurol* 2004; 46: 34-38.
13. Butland RJA, Pang J, Gross ER, Woodcock AA, Geddes DM. Two, six and 12-minute walking tests in respiratory disease. *Br Med J* 1982; 284: 1607-1608.
14. Chong J, Mackey AH, Broadbent E, Stott NS. Relationship between walk tests and parental reports of walking abilities in children with cerebral palsy. *Arch Phys Med Rehabil* 2011; 92: 265-70.
15. Evanirso S, Aquino, Flávio AG Mourão, Roberta KV Souza, Bráulio M. Glicério,¹ Cristiane C Coelho^{II}. Comparative analysis of the six-minute walk test in healthy children and adolescents. *Scielo* 2010; 14.
16. ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six minute walk test. *Am J Respir Crit Care Med* 2002; 166: 111-17.
17. Van Loo MA, Moseley AM, Bosman JM, de Bie RA, Hassett L. Test re-test reliability of walking speed, step length and step width measurement after traumatic brain injury: a pilot study. *Brain Inj* 2004; 18: 1041-48.
18. Enright PL. The six-minute walk test. *Respir Care* 2003; 48: 783-85.

19. Upton CJ, Tyrrell JC, Hiller EJ. Two minute walking distance in cystic fibrosis. *Arch Dis Child* 1988; 63: 1444-1448.
20. Fry DK, Pfalzer LA. Reliability of four functional tests and rating of perceived exertion in persons with multiple sclerosis. *Physiother Can* 2006; 58: 212-19.
21. Brona C Mc Dowellabl, Lee Humphresyab. Test retest reliability of a 1 min walk test in cerebral palsy. 2008; 29: 267-269.
22. Kerr C, McDowell BC, Cosgrove A. Oxygen cost versus a 1-minute walk test in a population of children with bilateral spastic cerebral palsy. *J Pediatr Orthop* 2007; 27: 283-7.
23. McDowell BC, Kerr C, Parkes J. Interobserver agreement of the Gross Motor Function Classification System in an ambulant population of children with cerebral palsy. *Dev Med Child Neurol* 2007; 49: 528-33.
24. Katharina Delhusen Carnahan, Marianne Arner . Association between gross motor function (GMFCS and manual ability (MACS) in children with cerebral palsy. A population-based study of 359 children. *BMC Musculoskeletal Disorders* 2007; 8: 50
25. Palisano RJ, Rosenbaum P, Bartlett D, Livingston MH. Content validity of the expanded and revised Gross Motor Function Classification System. *Dev Med Child Neurol* 2008; 50: 744-50.
26. Robert Palisano, Peter Rosenbaum, Doreen Bartlett, Michael Livingston. GMFCS - E & R Gross Motor Function Classification System. *Expanded and Revised* 2007.
27. Li AM, Yin J, Yu CC, Tsang T, So HK, Wong E, et al. The six-minute walk test in healthy children: reliability and validity. *Eur Respir J* 2005; 25(6): 1057-60.
28. Maher, Carol A, Williams MT, Olds TS. The six-minute walk test for children with cerebral palsy. *Int J Rehabil Res* 2008; 31: 185-188.
29. Christina Andresson, Lena Asztalos and Eva Mattsson. Six minute walk test in adults with cerebral palsy. A study of reliability. *Clinical Rehabilitation* 2006; 20: 488-495.
30. Thompson P, Beath T, Bell J, et al. Test-retest reliability of the 10-metre fast walk test and 6-minute walk test in ambulatory school-aged children with cerebral palsy. *Dev Med Child Neurol* 2008; 50: 370-6.
31. Troosters T, Gosselink R, Decramer M. Six minute walking distance in healthy elderly subjects. *Eur Respir J* 1999; 14(2): 270-4.
32. Lammers AE, Hislop AA, Flynn Y, Haworth SG. The 6-minute walk test: normal values for children of 4-11 years of age. *Arch Dis Child* 2008; 93(6): 464-8.
33. Enright PL, Sherrill DL. Reference equations for the six-minute walk in healthy adults. *Am J Respir Crit Care Med* 1998; 158(5 Pt 1): 1384-7.
34. Tolep K, and SG Kelsen. Effect of aging on respiratory skeletal muscles. *Clin. Chest Med* 1993; 3: 363-378.
35. Albert AM Li, Yin J, Au JT, So HK, Tsang T, Wong E, et al. Standard reference for the six-minute-walk test in healthy children aged 7 to 16 years. *Am J Respir Crit Care Med* 2007; 176(2): 174-80.
36. AM Iwama, GN Andrade, P Shima, SE Tanni, I Godoy. The six-minute walk test and body weight-walk distance product in healthy Brazilian subjects. *Braz J Med Biol Res* 2009; 42(11): 1080-1085.
37. Sciurba F, Criner GJ, Lee SM, Mohsenifar Z, Shade D, Slivka W, et al. Six-minute walk distance in chronic obstructive pulmonary disease: reproducibility and effect of walking course layout and length. *Am J Respir Crit Care Med* 2003; 167(11): 1522-7.
38. Spadano JL, Bandini LG, Must A, Dallal GE, Dietz WH. Longitudinal changes in energy expenditure in girls from late childhood through midadolescence. *Am J Clin Nutr* 2005; 81: 1102-1109.

Indian Journal of Emergency Pediatrics

Handsome offer for Indian Journal of Emergency Pediatrics subscribers

Subscribe **Indian Journal of Emergency Pediatrics** and get any one book or both books absolutely free worth Rs.400/-.

Offer and Subscription detail

Individual Subscriber

One year: Rs.1000/- (select any one book to receive absolutely free)

Life membership (valid for 10 years): Rs.5000/- (get both books absolutely free)

Books free for Subscribers of **Indian Journal of Emergency Pediatrics**. Please select as per your interest. So, don't wait and order it now.

Please note the offer is valid till stock last.

CHILD INTELLIGENCE

By Dr. Rajesh Shukla

ISBN: 81-901846-1-X, Pb, vi+141 Pages

Rs.150/-, US\$50/-

Published by **World Information Syndicate**

PEDIATRICS COMPANION

By Dr. Rajesh Shukla

ISBN: 81-901846-0-1, Hb, VIII+392 Pages

Rs.250/-, US\$50

Published by **World Information Syndicate**

Order from

Red Flower Publication Pvt. Ltd.

41/48, DSIDC, Pocket-II, Mayur Vihar, Phase-I

P.O. Box No. 9108, Delhi - 110 091 (India)

Tel: 91-11-65270068, 22754205, Fax: 91-11-22754205

E-mail: redflowerppl@gmail.com, redflowerppl@vsnl.net

Website: www.rfppl.com

Call for editorial board members & authors

Indian Journal of Genetics and Molecular Research

About the Journal

The Indian Journal of Genetics and Molecular Research (quarterly) will publish high-quality, original research papers, short reports and reviews in the rapidly expanding field of human genetics. The Journal considers contributions that present the results of original research in genetics, evolution and related scientific disciplines. The molecular basis of human genetic disease developmental genetics neurogenetics chromosome structure and function molecular aspects of cancer genetics gene therapy biochemical genetics major advances in gene mapping understanding of genome organization.

Editor-in-Chief

Dr. N. Sudhakar, Ph.D.

Associate Professor,

Department of Biotechnology,

Dr. MGR University,

Maduravoyal, Chennai- 600 095,

Tamil Nadu

E-mail: nsudha79@gmail.com / redflowerppl@vsnl.net

Please send your all quiries directly to the editor-in-chief or to

Red Flower Publication Pvt. Ltd.

41/48 DSIDC, Pocket-II

Mayur Vihar Phase-I

Delhi - 110 091, India

Tel: 91-11-22754205, Fax: 91-11-22754205

E-mail: redflowerppl@vsnl.net, redflowerppl@gmail.com

Website: www.rfppl.com

Call for editorial board members & authors

Indian Journal of Anatomy

About the Journal

The Indian Journal of Anatomy is a half yearly print and online journal of the **Red Flower Publication Pvt. Ltd.** publishes original and peer-reviewed articles, for the dissemination of anatomical knowledge with clinical, surgical and imaging guidance. Includes articles of history, reviews and biographies, locomotors, splachnology, neuroanatomy, imaging anatomy, anatomical variations, anatomical techniques, education and pedagogy in anatomy, Human Anatomy, Veterinary Anatomy, Embryology, Gross Anatomy (Macroscopic), Microscopic Anatomy (Histology, Cytology), Plant Anatomy (Phytotomy), Comparative Anatomy, editorials, letters to the editor, and case reports. Articles of veterinary anatomy, comparative and other morphological sciences are accepted.

Editor-in-Chief

Dr. Dope Santoshkumar Ankushrao
MBBS, MS ANATOMY, DDV
Assist. Prof. Anatomy
Govt Med College
Latur, Maharashtra
Mb.No-9423538580, 9420016834
E-mail: drdopesantosh@yahoo.co.in

Please send your all quieries directly to the editor-in-chief or to

Red Flower Publication Pvt. Ltd.
41/48 DSIDC, Pocket-II
Mayur Vihar Phase-I
Delhi - 110 091, India
Tel: 91-11-22754205, Fax: 91-11-22754205
E-mail: redflowerppl@vsnl.net, redflowerppl@gmail.com
Website: www.rfppl.com

Manuscripts must be prepared in accordance with "Uniform requirements for Manuscripts submitted to Biomedical Journal" developed by international committee of medical Journal Editors.

Types of Manuscripts and Limits

Original articles: Up to 3000 words excluding references and abstract and up to 10 references.

Original articles: Up to 2500 words excluding references and abstract and up to 10 references.

Case reports: Up to 1000 words excluding references and abstract and up to 10 references.

Online Submission of the Manuscripts

Articles can also be submitted online from <http://www.rfppl.com> (currently send your articles through e-mail attachments)

1) First Page File: Prepare the title page, covering letter, acknowledgement, etc. using a word processor program. All information which can reveal your identity should be here. use text/rtf/doc/PDF files. Do not zip the files.

2) Article file: The main text of the article, beginning from Abstract till References (including tables) should be in this file. Do not include any information (such as acknowledgement, your name in page headers, etc.) in this file. Use text/rtf/doc/PDF files. Do not zip the files. Limit the file size to 400 kb. Do not incorporate images in the file. If file size is large, graphs can be submitted as images separately without incorporating them in the article file to reduce the size of the file.

3) Images: Submit good quality color images. Each image should be less than 100 kb in size. Size of the image can be reduced by decreasing the actual height and width of the images (keep up to 400 pixels or 3 inches). All image formats (jpeg, tiff, gif, bmp, png, eps etc.) are acceptable; jpeg is most suitable.

Legends: Legends for the figures/images should be included at the end of the article file.

If the manuscript is submitted online, the contributors' form and copyright transfer form has to be submitted in original with the signatures of all the contributors within two weeks from submission. Hard copies of the images (3 sets), for articles submitted online, should be sent to the journal office at the time of submission of a revised manuscript. Editorial office: **Red Flower Publication Pvt. Ltd., 41/48, DSIDC, Pocket-II, Mayur Vihar Phase-I, Delhi - 110 091, India, Phone: 91-11-22754205, Fax: 91-11-22754205, E-mail: redflowerppl@vsnl.net.**

Preparation of the Manuscript

The text of observational and experimental articles should be divided into sections with the headings: Introduction, Methods, Results, Discussion, References, Tables, Figures, Figure legends, and Acknowledgment. Do not make subheadings in these sections.

Title Page

The title page should carry

- 1) Type of manuscript (e.g. Original article, Review article, Case Report)
- 2) The title of the article, which should be concise, but informative;
- 3) Running title or short title not more than 50 characters;
- 4) The name by which each contributor is known (Last name, First name and initials of middle name), with his or her highest academic degree(s) and institutional affiliation;
- 5) The name of the department(s) and institution(s) to which the work should be attributed;
- 6) The name, address, phone numbers, facsimile numbers and e-mail address of the contributor responsible for correspondence about the manuscript;
- 7) The total number of pages, total number of photographs and word counts separately for abstract and for the text (excluding the references and abstract);
- 8) Source(s) of support in the form of grants, equipment, drugs, or all of these;
- 9) Acknowledgement, if any; and
- 10) If the manuscript was presented as part at a meeting, the organization, place, and exact date on which it was read.

Abstract Page

The second page should carry the full title of the manuscript and an abstract (of no more than 150 words for case reports, brief reports and 250 words for original articles). The abstract should be structured and state the Context (Background), Aims, Settings and Design, Methods and Material, Statistical analysis used, Results and Conclusions. Below the abstract should provide 3 to 10 keywords.

Introduction

State the background of the study and purpose of the study and summarize the rationale for the study or observation.

Methods

The methods section should include only information that was available at the time the plan or protocol for the study was written such as study approach, design, type of sample, sample size, sampling technique, setting of the study, description of data collection tools and methods; all information obtained during the conduct of the study belongs in the Results section.

Reports of randomized clinical trials should be based on the CONSORT Statement (<http://www.consort-statement.org>). When reporting experiments on human subjects, indicate whether the procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional or regional) and with the Helsinki Declaration of 1975, as revised in 2000 (available at http://www.wma.net/e/policy/17-c_e.html).

Results

Present your results in logical sequence in the text, tables, and illustrations, giving the main or most important findings first. Do not repeat in the text all the data in the tables or illustrations; emphasize or summarize only important observations. Extra or supplementary materials and technical details can be placed in an appendix where it will be accessible but will not interrupt the flow of the text; alternatively, it can be published only in the electronic version of the journal.

Discussion

Include summary of key findings (primary outcome measures, secondary outcome measures, results as they relate to a prior hypothesis); Strengths and limitations of the study (study question, study design, data collection, analysis and interpretation); Interpretation and implications in the context of the totality of evidence (is there a systematic review to refer to, if not, could one be reasonably done here and now?, what this study adds to the available evidence, effects on patient care and health policy, possible mechanisms); Controversies raised by this study; and Future research directions (for this particular research collaboration, underlying mechanisms, clinical research). Do not repeat in detail data or other material given in the Introduction or the Results section.

References

List references in alphabetical order. Each listed reference should be cited in text (not in alphabetic order), and each text citation should be listed in the References section. Identify references in text, tables, and legends by Arabic numerals in square bracket (e.g. [10]). Please refer to ICMJE Guidelines (http://www.nlm.nih.gov/bsd/uniform_requirements.html) for more examples.

Standard journal article

[1] Flink H, Tegelberg Å, Thörn M, Lagerlöf F. Effect of oral iron supplementation on unstimulated salivary flow rate: A randomized, double-blind, placebo-controlled trial. *J Oral Pathol Med* 2006;35:540-7.

[2] Twetman S, Axelsson S, Dahlgren H, Holm AK, Källestål C, Lagerlöf F, et al. Caries-preventive effect of

fluoride toothpaste: A systematic review. *Acta Odontol Scand* 2003;61:347-55.

Article in supplement or special issue

[3] Fleischer W, Reimer K. Povidone iodine antiseptis. State of the art. *Dermatology* 1997;195 Suppl 2:3-9.

Corporate (collective) author

[4] American Academy of Periodontology. Sonic and ultrasonic scalers in periodontics. *J Periodontol* 2000;71:1792-801.

Unpublished article

[5] Garoushi S, Lassila LV, Tezvergil A, Vallittu PK. Static and fatigue compression test for particulate filler composite resin with fiber-reinforced composite substructure. *Dent Mater* 2006.

Personal author(s)

[6] Hosmer D, Lemeshow S. *Applied logistic regression*, 2nd edn. New York: Wiley-Interscience; 2000.

Chapter in book

[7] Nauntofte B, Tenovuo J, Lagerlöf F. Secretion and composition of saliva. In: Fejerskov O, Kidd EAM, editors. *Dental caries: The disease and its clinical management*. Oxford: Blackwell Munksgaard; 2003. p. 7-27.

No author given

[8] World Health Organization. *Oral health surveys - basic methods*, 4th edn. Geneva: World Health Organization; 1997.

Reference from electronic media

[9] National Statistics Online—Trends in suicide by method in England and Wales, 1979-2001. www.statistics.gov.uk/downloads/theme_health/HSQ20.pdf (accessed Jan 24, 2005): 7-18. Only verified references against the original documents should be cited. Authors are responsible for the accuracy and completeness of their references and for correct text citation. The number of reference should be kept limited to 20 in case of major communications and 10 for short communications.

More information about other reference types is available at www.nlm.nih.gov/bsd/uniform_requirements.html, but observes some minor deviations (no full stop after journal title, no issue or date after volume, etc).

Tables

Tables should be self-explanatory and should not duplicate textual material.

Tables with more than 10 columns and 25 rows are not acceptable.

Number tables, in Arabic numerals, consecutively in the order of their first citation in the text and supply a brief title for each.

Explain in footnotes all non-standard abbreviations that are used in each table.

For footnotes use the following symbols, in this sequence: *, ¶, †, ‡,

Illustrations (Figures)

Graphics files are welcome if supplied as Tiff, EPS, or PowerPoint files of minimum 1200x1600 pixel size. The minimum line weight for line art is 0.5 point for optimal printing.

When possible, please place symbol legends below the figure instead of to the side.

Original color figures can be printed in color at the editor's and publisher's discretion provided the author agrees to pay

Type or print out legends (maximum 40 words, excluding the credit line) for illustrations using double spacing, with Arabic numerals corresponding to the illustrations.

Sending a revised manuscript

While submitting a revised manuscript, contributors are requested to include, along with single copy of the final revised manuscript, a photocopy of the revised manuscript with the changes underlined in red and copy of the comments with the point to point clarification to each comment. The manuscript number should be written on each of these documents. If the manuscript is submitted online, the contributors' form and copyright transfer form has to be submitted in original with the signatures of all the contributors within two weeks of submission. Hard copies of images should be sent to the office of the journal. There is no need to send printed manuscript for articles submitted online.

Reprints

Journal provides no free printed reprints, however a author copy is sent to the main author and additional copies are available on payment (ask to the journal office).

Copyrights

The whole of the literary matter in the journal is copyright and cannot be reproduced without the written permission.

Declaration

A declaration should be submitted stating that the manuscript represents valid work and that neither this manuscript nor one with substantially similar content under the present authorship has been published or is being considered for publication elsewhere and the authorship of this article will not be contested by any one whose name (s) is/are not listed here, and that the order of authorship as placed in the manuscript is final and accepted by the co-authors. Declarations should be signed by all the authors in the order in which they are mentioned in the original manuscript. Matters appearing in the Journal are covered by copyright but no objection will be made to their reproduction provided permission is obtained from the Editor prior to publication and due acknowledgment of the source is made.

Abbreviations

Standard abbreviations should be used and be spelt out when first used in the text. Abbreviations should not be used in the title or abstract.

Checklist

- Manuscript Title
- Covering letter: Signed by all contributors
- Previous publication/ presentations mentioned
- Source of funding mentioned
- Conflicts of interest disclosed

Authors

- Middle name initials provided.
- Author for correspondence, with e-mail address provided.
- Number of contributors restricted as per the instructions
- Identity not revealed in paper except title page (e.g. name of the institute in Methods, citing previous study as 'our study')

Presentation and Format

- Double spacing
- Margins 2.5 cm from all four sides
- Title page contains all the desired information. Running title provided (not more than 50 characters)
- Abstract page contains the full title of the manuscript
- Abstract provided: Structured abstract provided for an original article.
- Key words provided (three or more)
- Introduction of 75-100 words

- Headings in title case (not ALL CAPITALS). References cited in square brackets
- References according to the journal's instructions

Language and grammar

- Uniformly American English
- Abbreviations spelt out in full for the first time. Numerals from 1 to 10 spelt out
- Numerals at the beginning of the sentence spelt out

Tables and figures

- No repetition of data in tables and graphs and in text.
- Actual numbers from which graphs drawn, provided.
- Figures necessary and of good quality (color)
- Table and figure numbers in Arabic letters (not Roman).
- Labels pasted on back of the photographs (no names written)
- Figure legends provided (not more than 40 words)
- Patients' privacy maintained, (if not permission taken)
- Credit note for borrowed figures/tables provided

- Manuscript provided on a CDROM (with double spacing)

Submitting the Manuscript

- Is the journal editor's contact information current?
- Is a cover letter included with the manuscript? Does the letter
 1. Include the author's postal address, e-mail address, telephone number, and fax number for future correspondence?
 2. State that the manuscript is original, not previously published, and not under concurrent consideration elsewhere?
 3. Inform the journal editor of the existence of any similar published manuscripts written by the author?
 4. Mention any supplemental material you are submitting for the online version of your article?

Contributors' Form (to be modified as applicable and one signed copy attached with the manuscript)

Library Recommendation Form

If you would like to recommend this journal to your library, simply complete the form below and return it to us. Please type or print the information clearly. We will forward a sample copy to your library, along with this recommendation card.

Please send a sample copy to:

Name of Librarian

Library

Address of Library

Recommended by:

Your Name/ Title

Department

Address

Dear Librarian,

I would like to recommend that your library subscribe to the **Physiotherapy and Occupational Therapy Journal**. I believe the major future uses of the journal for your library would be:

1. As useful information for members of my specialty.
2. As an excellent research aid.
3. As an invaluable student resource.
4. **I have a personal subscription and understand and appreciate the value an institutional subscription would mean to our staff.**
5. Other

Should the journal you're reading right now be a part of your University or institution's library? To have a free sample sent to your librarian, simply fill out and mail this today!

Stock Manager

Red Flower Publication Pvt. Ltd.

41/48, DSIDC, Pocket-II, Mayur Vihar, Phase-I

P.O. Box No. 9108, Delhi - 110 091 (India)

Tel: 91-11-65270068, 22754205, Fax: 91-11-22754205

E-mail: redflowerppl@gmail.com, redflowerppl@vsnl.net

Website: www.rfppl.com

BOOKS FOR SALE

CHILD INTELLIGENCE

By Dr. Rajesh Shukla

ISBN: 81-901846-1-X, Pb, vi+141 Pages

Price: Rs.150/-, US\$50/-

Published by World Informations Syndicate

This century will be the century of the brain. Intelligence will define success of individuals; it remains the main ingredient of success. Developed and used properly, intelligence of an individual takes him to greater heights. Ask yourself, is your child intelligent! If yes, is he or she utilizing the capacity as well as he can? I believe majority of people, up to 80% may not be using their brain to best potential. Once a substantial part of life has passed, effective use of this human faculty cannot take one very far. So, parents need to know how does their child grow and how he becomes intelligent in due course of time. As the pressure for intelligence increases, the child is asked to perform in different aspects of life equally well. At times, it may be counter-productive. Facts about various facets of intelligence are given here. Other topics like emotional intelligence, delayed development, retardation, vaccines, advice to parents and attitude have also been discussed in a nutshell. The aim of this book is to help the child reach the best intellectual capacity. I think if the book turns even one individual into a user of his best intelligence potential, it is a success.

PEDIATRICS COMPANION

By Dr. Rajesh Shukla

ISBN: 81-901846-0-1, Hb, VIII+392 Pages

Price: Rs.250/-, US\$50

Published by World Informations Syndicate

This book has been addressed to young doctors who take care of children, such as postgraduate students, junior doctors working in various capacities in Pediatrics and private practitioners. Standard Pediatric practices as well as diseases have been described in a nutshell. List of causes, differential diagnosis and tips for examination have been given to help examination-going students revise it quickly. Parent guidance techniques, vaccination and food have been included for private practitioners and family physicians that see a large child population in our country. Parents can have some understanding of how the doctors will try to manage a particular condition in a child systematically. A list of commonly used pediatric drugs and dosage is also given. Some views on controversies in Pediatrics have also been included. Few important techniques have been described which include procedures like endotracheal intubations, collecting blood samples and ventilation. I hope this book helps young doctors serve children better.

Order from

Red Flower Publication Pvt. Ltd.

41/48, DSIDC, Pocket-II, Mayur Vihar, Phase-I

P.O. Box No. 9108, Delhi - 110 091 (India)

Tel: 91-11-65270068, 22754205, Fax: 91-11-22754205

E-mail: redflowerppl@gmail.com, redflowerppl@vsnl.net

Subscription Form

I want to renew/subscribe to international class journal "**Physiotherapy and Occupational Therapy Journal**" of Red Flower Publication Pvt. Ltd.

Subscription Rates:

- India: Institutional: Rs.6000, Individual: Rs.1000, Life membership (10 years only for individuals) Rs.5000.
- All other countries: \$300

Name and complete address (in capitals):

Payment detail:

Demand Draft No.
Date of DD
Amount paid Rs./USD

1. Advance payment required by Demand Draft payable to Red Flower Publication Pvt. Ltd. payable at Delhi.
2. Cancellation not allowed except for duplicate payment.
3. Agents allowed 10% discount.
4. Claim must be made within six months from issue date.

Mail all orders to

Red Flower Publication Pvt. Ltd.

41/48, DSIDC, Pocket-II, Mayur Vihar Phase-I, Delhi - 110 091 (India)
Tel: 91-11-22754205, Fax: 91-11-22754205
E-mail: redflowerppl@vsnl.net, redflowerppl@gmail.com
Website: www.rfppl.com

Revised Rates for 2013 (Institutional)

Title	Frequency	Rate (Rs): India	Rate (\$):ROW
Indian Journal of Agricultural and Forest Meteorology	3	21000	800
Indian Journal of Agriculture Business	3	11500	600
Indian Journal of Agriculture, Ecosystems and Environment	3	18000	800
Indian Journal of Anatomy	2	3000	260
Indian Journal of Ancient Medicine and Yoga	4	6600	330
Indian Journal of Anesthesia and Analgesia	2	4000	600
Indian Journal of Animal Feed Science and Technology	3	22000	850
Indian Journal of Animal Reproduction Science	3	19000	700
Indian Journal of Cancer Education and Research	2	4500	500
Indian Journal of Dental Education	4	3000	288
Indian Journal of Emergency Pediatrics	4	6000	302
Indian Journal of Food Additives and Contaminants	3	28000	900
Indian Journal of Food and Chemical Toxicology	3	22000	800
Indian Journal of Food Chemistry	3	37000	1100
Indian Journal of Food Engineering	3	25000	800
Indian Journal of Forensic Medicine and Pathology	4	12000	576
Indian Journal of Forensic Odontology	4	3000	288
Indian Journal of Genetics and Molecular Research	2	4800	262
Indian Journal of Library and Information Science	3	7200	600
Indian Journal of Nutrition & Food Sciences	3	38000	900
Indian Journal of Obstetrics and Gynecology	2	1500	200
Indian Journal of Pathology: Research and Practice	3	22000	915
Indian Journal of Pediatric Education	4	3000	150
Indian Journal of Plant and Soil	3	51000	1700
Indian Journal of Preventive Medicine	2	3000	270
Indian Journal of Soil Science	3	34000	1000
Indian Journal of Surgical Nursing	3	1450	70
International Journal of Neurology and Neurosurgery	2	7200	276
Journal of Human Nutrition and Dietetics	2	3000	270
Journal of Psychiatric Nursing	3	1450	70
Journal of Social Welfare and Management	4	6600	276
Meat Science International	3	20000	800
New Indian Journal of Surgery	4	6300	360
Physiotherapy and Occupational Therapy Journal	4	6600	360

1. Advance payment required by Demand Draft payable to Red Flower Publication Pvt. Ltd. payable at Delhi.
2. Cancellation not allowed except for duplicate payment.
3. Agents allowed 10% discount.
4. Claim must be made within six months from issue date.

Order from

Red Flower Publication Pvt. Ltd., 41/48, DSIDC, Pocket-II, Mayur Vihar Phase-I, P.O. Box No. 9108, Delhi - 110 091 (India), Tel: 91-11-22754205, 65270068, Fax: 91-11-22754205. E-mail: redflowerppl@vsnl.net, redflowerppl@gmail.com, Website: www.rfppl.com