

---

---

## Call for Editorial Board Members

As you are well aware that we are a medical and health sciences publishers; publishing peer-reviewed journals and books since 2004.

We are always looking for dedicated editorial board members for our journals. If you completed your master's degree and must have at least five years experience in teaching and having good publication records in journals and books.

If you are interested to be an editorial board member of the journal; please provide your complete resume and affiliation through e-mail (i.e. info@rfppl.co.in) or visit our website (i.e. www.rfppl.co.in) to register yourself online.

---

## Call for Publication of Conference Papers/Abstracts

We publish pre-conference or post-conference papers and abstracts in our journals, and deliver hard copy and giving online access in a timely fashion to the authors.

For more information, please contact:

For more information, please contact:

A Lal

Publication-in-charge

Red Flower Publication Pvt. Ltd.

48/41-42, DSIDC, Pocket-II

Mayur Vihar Phase-I

Delhi - 110 091 (India)

Phone: 91-11-22754205, 45796900

E-mail: info@rfppl.co.in

---

---

## **Free Announcements of your Conferences/Workshops/CMEs**

This privilege to all Indian and other countries conferences organizing committee members to publish free announcements of your conferences/ workshops. If you are interested, please send your matter in word formats and images or pictures in JPG/JPEG/Tiff formats through e-mail attachments to [sales@rfppl.co.in](mailto:sales@rfppl.co.in).

### **Terms & Conditions to publish free announcements:**

1. Only conference organizers are eligible up to one full black and white page, but not applicable for the front, inside front, inside back and back cover, however, these pages are paid.
2. Only five pages in every issue are available for free announcements for different conferences.
3. This announcement will come in the next coming issue and no priority will be given.
4. All legal disputes subject to Delhi jurisdiction only.
5. The executive committee of the Red Flower Publication reserve the right to cancel, revise or modify terms and conditions any time without prior notice.

For more information, please contact:  
A Lal  
Publication-in-charge  
Red Flower Publication Pvt. Ltd.  
48/41-42, DSIDC, Pocket-II  
Mayur Vihar Phase-I  
Delhi - 110 091 (India)  
Phone: 91-11-22754205, 45796900  
E-mail: [info@rfppl.co.in](mailto:info@rfppl.co.in)

---

---

## Win Free Institutional Subscription!

Simply fill out this form and return scanned copy through e-mail or by post to us.

Name of the Institution\_\_\_\_\_

Name of the Principal/Chairman\_\_\_\_\_

Management (Trust/Society/Govt./Company)\_\_\_\_\_

Address 1\_\_\_\_\_

Address 2\_\_\_\_\_

Address 3\_\_\_\_\_

City\_\_\_\_\_

Country\_\_\_\_\_

PIN Code\_\_\_\_\_

Mobile\_\_\_\_\_

Email\_\_\_\_\_

We are regular subscriber of Red Flower Publication journals.

Year of first subscription\_\_\_\_\_

List of ordered journals (if you subscriberd more than 5 titles, please attach separate sheet)

**Ordered through**

| Name of the Vendor | Subscription Year | Direct/subs Yr |
|--------------------|-------------------|----------------|
|                    |                   |                |
|                    |                   |                |
|                    |                   |                |
|                    |                   |                |

**Name of the journal for which you wish to be free winner**

Terms & Conditions to win free institutional subscription

1. Only institutions can participate in this scheme
2. In group institutions only one institution would be winner
3. Only five institutions will be winner for each journal
4. An institution will be winner only for one journal
5. The free subscription will be valid for one year only (i.e. 1 Jan – 31 Dec)
6. This free subscription is not renewable, however, can be renewed with payment
7. Any institution can again participate after five years
8. All legal disputes subject to Delhi jurisdiction only
9. This scheme will be available to participate throughout year, but draw will be held in last week of August every year
10. The executive committee of the Red Flower Publication reserve the right to cancel, revise or modify terms and conditions any time without prior notice.

I confirm and certify that the above information is true and correct to the best of my knowledge and belief.

Place:

Signature with Seal

Date:

| <i>Revised Rates for 2020 (Institutional)</i>                                  |   | <i>Frequency</i> | <i>India(INR)<br/>Print Only</i> | <i>India(INR)<br/>Online Only</i> | <i>Outside<br/>India(USD)<br/>Print Only</i> | <i>Outside<br/>India(USD)<br/>Online Only</i> |
|--------------------------------------------------------------------------------|---|------------------|----------------------------------|-----------------------------------|----------------------------------------------|-----------------------------------------------|
| <b>Title of the Journal</b>                                                    |   |                  |                                  |                                   |                                              |                                               |
| Community and Public Health Nursing                                            | 3 | 6000             | 5500                             | 469                               | 430                                          |                                               |
| Indian Journal of Agriculture Business                                         | 2 | 6000             | 5500                             | 469                               | 430                                          |                                               |
| Indian Journal of Anatomy                                                      | 4 | 9000             | 8500                             | 703                               | 664                                          |                                               |
| Indian Journal of Ancient Medicine and Yoga                                    | 4 | 8500             | 8000                             | 664                               | 625                                          |                                               |
| Indian Journal of Anesthesia and Analgesia                                     | 6 | 8000             | 7500                             | 625                               | 586                                          |                                               |
| Indian Journal of Biology                                                      | 2 | 6000             | 5500                             | 469                               | 430                                          |                                               |
| Indian Journal of Cancer Education and Research                                | 2 | 9500             | 9000                             | 742                               | 703                                          |                                               |
| Indian Journal of Communicable Diseases                                        | 2 | 9000             | 8500                             | 703                               | 664                                          |                                               |
| Indian Journal of Dental Education                                             | 4 | 6000             | 5500                             | 469                               | 430                                          |                                               |
| Indian Journal of Diabetes and Endocrinology                                   | 2 | 8500             | 8000                             | 664                               | 625                                          |                                               |
| Indian Journal of Emergency Medicine                                           | 4 | 13000            | 12500                            | 1016                              | 977                                          |                                               |
| Indian Journal of Forensic Medicine and Pathology                              | 4 | 16500            | 16000                            | 1289                              | 1250                                         |                                               |
| Indian Journal of Forensic Odontology                                          | 2 | 6000             | 5500                             | 469                               | 430                                          |                                               |
| Indian Journal of Genetics and Molecular Research                              | 2 | 7500             | 7000                             | 586                               | 547                                          |                                               |
| Indian Journal of Law and Human Behavior                                       | 3 | 6500             | 6000                             | 508                               | 469                                          |                                               |
| Indian Journal of Legal Medicine                                               | 2 | 9000             | 8500                             | 703                               | 664                                          |                                               |
| Indian Journal of Library and Information Science                              | 3 | 10000            | 9500                             | 781                               | 742                                          |                                               |
| Indian Journal of Maternal-Fetal & Neonatal Medicine                           | 2 | 10000            | 9500                             | 781                               | 742                                          |                                               |
| Indian Journal of Medical and Health Sciences                                  | 2 | 7500             | 7000                             | 586                               | 547                                          |                                               |
| Indian Journal of Obstetrics and Gynecology                                    | 4 | 10000            | 9500                             | 781                               | 742                                          |                                               |
| Indian Journal of Pathology: Research and Practice                             | 6 | 12500            | 12000                            | 977                               | 938                                          |                                               |
| Indian Journal of Plant and Soil                                               | 2 | 7000             | 6500                             | 547                               | 508                                          |                                               |
| Indian Journal of Preventive Medicine                                          | 2 | 7500             | 7000                             | 586                               | 547                                          |                                               |
| Indian Journal of Research in Anthropology                                     | 2 | 13000            | 12500                            | 1016                              | 977                                          |                                               |
| Indian Journal of Surgical Nursing                                             | 3 | 6000             | 5500                             | 469                               | 430                                          |                                               |
| Indian Journal of Trauma and Emergency Pediatrics                              | 4 | 10000            | 9500                             | 781                               | 742                                          |                                               |
| Indian Journal of Waste Management                                             | 2 | 10000            | 9500                             | 781                               | 742                                          |                                               |
| International Journal of Food, Nutrition & Dietetics                           | 3 | 6000             | 5500                             | 469                               | 430                                          |                                               |
| International Journal of Forensic Science                                      | 2 | 10500            | 10000                            | 820                               | 781                                          |                                               |
| International Journal of Neurology and Neurosurgery                            | 4 | 11000            | 10500                            | 859                               | 820                                          |                                               |
| International Journal of Pediatric Nursing                                     | 3 | 6000             | 5500                             | 469                               | 430                                          |                                               |
| International Journal of Political Science                                     | 2 | 6500             | 6000                             | 508                               | 469                                          |                                               |
| International Journal of Practical Nursing                                     | 3 | 6000             | 5500                             | 469                               | 430                                          |                                               |
| International Physiology                                                       | 3 | 8000             | 7500                             | 625                               | 586                                          |                                               |
| Journal of Animal Feed Science and Technology                                  | 2 | 8300             | 7800                             | 648                               | 609                                          |                                               |
| Journal of Cardiovascular Medicine and Surgery                                 | 4 | 10500            | 10000                            | 820                               | 781                                          |                                               |
| Journal of Emergency and Trauma Nursing                                        | 2 | 6000             | 5500                             | 469                               | 430                                          |                                               |
| Journal of Food Additives and Contaminants                                     | 2 | 6000             | 5500                             | 430                               | 391                                          |                                               |
| Journal of Food Technology and Engineering                                     | 2 | 5500             | 5000                             | 430                               | 391                                          |                                               |
| Journal of Forensic Chemistry and Toxicology                                   | 2 | 10000            | 9500                             | 781                               | 742                                          |                                               |
| Journal of Global Medical Education and Research                               | 2 | 6400             | 5900                             | 500                               | 461                                          |                                               |
| Journal of Global Public Health                                                | 2 | 12500            | 12000                            | 977                               | 938                                          |                                               |
| Journal of Microbiology and Related Research                                   | 2 | 9000             | 8500                             | 703                               | 664                                          |                                               |
| Journal of Nurse Midwifery and Maternal Health                                 | 3 | 6000             | 5500                             | 469                               | 430                                          |                                               |
| Journal of Orthopedic Education                                                | 3 | 6000             | 5500                             | 469                               | 430                                          |                                               |
| Journal of Pharmaceutical and Medicinal Chemistry                              | 2 | 17000            | 16500                            | 1328                              | 1289                                         |                                               |
| Journal of Plastic Surgery and Transplantation                                 | 2 | 8000             | 7500                             | 625                               | 575                                          |                                               |
| Journal of Psychiatric Nursing                                                 | 3 | 6000             | 5500                             | 469                               | 430                                          |                                               |
| Journal of Radiology                                                           | 2 | 8500             | 8000                             | 664                               | 625                                          |                                               |
| Journal of Social Welfare and Management                                       | 4 | 8000             | 7500                             | 625                               | 586                                          |                                               |
| New Indian Journal of Surgery                                                  | 6 | 8500             | 7500                             | 664                               | 625                                          |                                               |
| Ophthalmology and Allied Sciences                                              | 3 | 6500             | 6000                             | 508                               | 469                                          |                                               |
| Pediatric Education and Research                                               | 4 | 8000             | 7500                             | 625                               | 586                                          |                                               |
| Physiotherapy and Occupational Therapy Journal                                 | 4 | 9500             | 9000                             | 742                               | 703                                          |                                               |
| RFP Gastroenterology International                                             | 2 | 6500             | 6000                             | 508                               | 469                                          |                                               |
| RFP Indian Journal of Hospital Infection                                       | 2 | 13000            | 12500                            | 1016                              | 977                                          |                                               |
| RFP Indian Journal of Medical Psychiatry                                       | 2 | 8500             | 8000                             | 664                               | 625                                          |                                               |
| RFP Journal of Biochemistry and Biophysics                                     | 2 | 7500             | 7000                             | 586                               | 547                                          |                                               |
| RFP Journal of Dermatology (Formerly Dermatology International)                | 2 | 6000             | 5500                             | 469                               | 430                                          |                                               |
| RFP Journal of ENT and Allied Sciences (Formerly Otolaryngology International) | 2 | 6000             | 5500                             | 469                               | 430                                          |                                               |
| RFP Journal of Gerontology and Geriatric Nursing                               | 2 | 6000             | 5500                             | 469                               | 430                                          |                                               |
| RFP Journal of Hospital Administration                                         | 2 | 7500             | 7000                             | 586                               | 547                                          |                                               |
| Urology, Nephrology and Andrology International                                | 2 | 8000             | 7500                             | 625                               | 586                                          |                                               |

**Terms of Supply:**

1. Agency discount 12.5%. Issues will be sent directly to the end user, otherwise foreign rates will be charged.
2. All back volumes of all journals are available at current rates.
3. All journals are available free online with print order within the subscription period.
4. All legal disputes subject to Delhi jurisdiction.
5. Cancellations are not accepted orders once processed.
6. Demand draft/cheque should be issued in favour of **"Red Flower Publication Pvt. Ltd."** payable at **Delhi**.
7. Full pre-payment is required. It can be done through online (<http://rfppl.co.in/subscribe.php?mid=7>).
8. No claims will be entertained if not reported within 6 months of the publishing date.
9. Orders and payments are to be sent to our office address as given below.
10. Postage & Handling is included in the subscription rates.
11. Subscription period is accepted on calendar year basis (i.e. Jan to Dec). However orders may be placed any time throughout the year.

**Order from**

Red Flower Publication Pvt. Ltd., 48/41-42, DSIDC, Pocket-II, Mayur Vihar Phase-I, Delhi - 110 091 (India)  
Mobile: 8130750089, Phone: 91-11-45796900, 22754205, 22756995, E-mail: [sales@rfppl.co.in](mailto:sales@rfppl.co.in), Website: [www.rfppl.co.in](http://www.rfppl.co.in)

**Editor-in-Chief****Meenakshi Singh**

Amity Institute of Physiotherapy, Noida

**Former Editor-in-Chief****Narasimman S, Mangalore**

---

**National Editorial Advisory Board****Akshat Pandey, Rohtak****Asir John Samuel, Mullana****Beulah Jebakani, Pondicherry****Davinder Kumar Gaur, Delhi****Manisha Uttam, Patiala****Meenakshi, Rohtak****Niraj Kumar, Dehradun****Neeraj Kumar, Loni****Ravinder Narwal, Dehradun****Sanjai Kumar, Meerut****Shivani Bhatt, Changa****Vaibhav Agarwal, Dehradun****Vencita Priyanka Aranha, Mullana****International Editorial Advisory Board****Sabitha Eunice Regima, MAHSA University, Saujana Putra, Malaysia****Kedar Mate, McGill University, Montreal, Hutchinson, Canada****Krunal Vishwas Desai, Physical Medicine & Rehabilitation Hospital, Kuwait****Md. Abu Shaphe, Jazan University, Saudi Arabia****Managing Editor**

A. Lal

**Publication Editor**

Dinesh Kr. Kashyap

**Indexing information:** Index Copernicus, Poland; NLM catalogue & locator plus, USA; JournalSeek; World Cat; Gaudeamus Academia; Science Library Index; The International Committee of Medical Journal Editors (ICMJE).

---

© 2021 Red Flower Publication Pvt. Ltd. All rights reserved.

The views and opinions expressed are of the authors and not of the **Physiotherapy and Occupational Therapy Journal**. Physiotherapy and Occupational Therapy Journal does not guarantee directly or indirectly the quality or efficacy of any product or service featured in the advertisement in the journal, which are purely commercial.

© Red Flower Publication Pvt. Ltd.

Corresponding address

**Red Flower Publication Pvt. Ltd.**  
48/41-42, DSIDC, Pocket-II, Mayur Vihar, Phase-I  
Delhi - 110 091 (India).

Phone: 91-11-22756995, 22754205, 79695648  
E-mail: info@rfppl.co.in  
Website: www.rfppl.co.in

**The Physiotherapy and Occupational Therapy Journal** (pISSN: 0974-5777, eISSN: 2455-8362, Registered with Registrar of Newspapers for India: DELENG/2007/22242) on topics pertaining to physical therapy and rehabilitation. Coverage includes geriatric therapy, pain management techniques, cardiac, orthopaedic and pulmonary rehabilitation, working with stroke patients, occupational therapy techniques and much more. The editorial contents comprise research papers, treatment notes and clinical observations, case histories, professional opinion and memoirs and comments on professional issues. The Editorial Board's mission is to publish significant research which has important implications for physiotherapy and occupational therapy. Our vision is for the journal to be the pre-eminent international publication of the science and practice of physiotherapy and occupational therapy.

**Readership:** Physiotherapist, Occupational therapists, medical engineers, epidemiologists, family physicians, occupational health nurses etc.

---

### **Subscription Information**

Individual (1 year): Contact us

Institutional (1 year): INR9500/USD742

#### *Payment methods*

*Bank draft / cashier s order / check / cheque / demand draft / money order* should be in the name of **Red Flower Publication Pvt. Ltd.** payable at **Delhi**.

*International Bank transfer / bank wire / electronic funds transfer / money remittance / money wire / telegraphic transfer / telex*

1. **Complete Bank Account No.** 604320110000467
2. **Beneficiary Name (As per Bank Pass Book):** Red Flower Publication Pvt. Ltd.
3. **Address:** 41/48, DSIDC, Pocket-II, Mayur Vihar Phase-I, Delhi – 110 091(India).
4. **Bank & Branch Name:** Bank of India; Mayur Vihar
5. **Bank Address & Phone Number:** 13/14, Sri Balaji Shop, Pocket II, Mayur Vihar Phase- I, New Delhi - 110091 (India); Tel: 22750372, 22753401. Email: mayurvihar.newdelhi@bankofindia.co.in
6. **MICR Code:** 110013045
7. **Branch Code:** 6043
8. **IFSC Code:** BKID0006043 (used for RTGS and NEFT transactions)
9. **Swift Code:** BKIDINBBDOS
10. **Beneficiary Contact No. & E-mail ID:** 91-11-22754205, 45796900, E-mail: info@rfppl.co.in

**Online** You can now renew online using our RFPPL renewal website. Visit <http://rfppl.co.in/subscribe.php?mid=7> and enter the required information and than you will be able to pay online.

---

**Send all Orders to:** Subscription and Marketing Manager, Red Flower Publication Pvt. Ltd., 48/41-42, DSIDC, Pocket-II, Mayur Vihar Phase-I, Delhi - 110 091(India), Mobile: 8130750089, Phone: 91-11-79695648, 22754205, 22756995. E-mail: sales@rfppl.co.in.

---

**Contents**

---

***Original Articles***

|                                                                                                                                                                    |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| <b>Effects of Impairment Based Manual Physical Therapy on Pain and Disability<br/>Diabetic Frozen Shoulder: A Part 1 of Randomized Clinical Trial</b>              | <b>61</b> |
| Mohd Javed Iqbal, Senthil P Kumar                                                                                                                                  |           |
| <b>A Study to Compare the Effect of Bicycle Ergo Meter &amp; Treadmill Training<br/>on Blood Pressure &amp; Heart Rate in Post Menopausal Hypertensive Females</b> | <b>71</b> |
| Navmita Bhosle Khan, Md Shadab Khan, Ravinder Narwal                                                                                                               |           |
| <b>A Study to find the Effect of Posterior Anterior Vertebral Mobilization on<br/>Blood Pressure and Heart Rate in Prehypertensive Subjects</b>                    | <b>79</b> |
| Md Shadab Khan, Navmita Bhosle Khan, Ravinder Narwal                                                                                                               |           |
| <b>Effects of Impairment Based Manual Physical Therapy on Range of Motion<br/>and Function in Diabetic Frozen Shoulder: Part 2 of a Randomized Clinical Trial</b>  | <b>87</b> |
| Mohd Javed Iqbal, Senthil P Kumar                                                                                                                                  |           |

|                               |           |
|-------------------------------|-----------|
| <b>Guidelines for Authors</b> | <b>97</b> |
|-------------------------------|-----------|

## Red Flower Publication (P) Ltd.

*Presents its Book Publications for sale*

|                                                                                                                                                                          |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 1. <b>Drugs in Anesthesia and Critical Care (2019)</b><br><i>By Bhavna Gupta, Lalit Gupta</i>                                                                            | INR 595/USD46 |
| 2. <b>Critical Care Nursing in Emergency Toxicology (2019)</b><br><i>By Vivekanshu Verma, Sandhya Shankar Pandey, Atul Bansal</i>                                        | INR 460/USD34 |
| 3. <b>Practical Record Book of Forensic Medicine and Toxicology (2019)</b><br><i>By Akhilesh K. Pathak</i>                                                               | INR 299/USD23 |
| 4. <b>Skeletal and Structural Organizations of Human Body (2019)</b><br><i>By D. R. Singh</i>                                                                            | INR 659/USD51 |
| 5. <b>Comprehensive Medical Pharmacology (2019)</b><br><i>By Ahmad Najmi</i>                                                                                             | INR 599/USD47 |
| 6. <b>Practical Emergency Trauma Toxicology Cases Workbook in Simulation Training (2019)</b><br><i>by Vivekanshu Verma, Shiv Rattan Kochar &amp; Devendra Richhariya</i> | INR395/USD31  |
| 7. <b>MCQs in Minimal Access &amp; Bariatric Surgery (2019)</b><br><i>by Anshuman Kaushal &amp; Dhruv Kundra</i>                                                         | INR450/USD35  |
| 8. <b>Biostatistics Methods for Medical Research (2019)</b><br><i>by Sanjeev Sarmukaddam</i>                                                                             | INR549/USD44  |
| 9. <b>MCQs in Medical Physiology (2019)</b> <i>by Bharati Mehta &amp; Bharti Bhandari Rathore</i>                                                                        | INR300/USD29  |
| 10. <b>Synopsis of Anesthesia (2019)</b> <i>by Lalit Gupta &amp; Bhavna Gupta</i>                                                                                        | INR1195/USD95 |
| 11. <b>Shipping Economics (2018)</b> <i>by D. Amutha, Ph.D.</i>                                                                                                          | INR345/USD27  |
| 12. <b>Breast Cancer: Biology, Prevention and Treatment (2015)</b><br><i>by Rana P. Singh, Ph.D. &amp; A. Ramesh Rao, Ph.D.</i>                                          | INR395/USD100 |
| 13. <b>Child Intelligence (2005)</b> <i>by Rajesh Shukla, MD.</i>                                                                                                        | INR150/USD50  |
| 14. <b>Pediatric Companion (2001)</b> <i>by Rajesh Shukla, MD.</i>                                                                                                       | INR250/USD50  |

### Order from

**Red Flower Publication Pvt. Ltd.**

48/41-42, DSIDC, Pocket-II

Mayur Vihar Phase-I

Delhi - 110 091(India)

Mobile: 8130750089, Phone: 91-11-79695648, 22754205, 22756995

E-mail: sales@rfppl.co.in

## Effects of Impairment Based Manual Physical Therapy on Pain and Disability Diabetic Frozen Shoulder: A Part 1 of Randomized Clinical Trial

Mohd Javed Iqbal<sup>1</sup>, Senthil P Kumar<sup>2</sup>

### How to cite this article:

Mohd Javed Iqbal, Senthil P Kumar. Effects of Impairment Based Manual Physical Therapy on Pain and Disability Diabetic Frozen Shoulder: Part 1 of Randomized Clinical Trial. Physiotherapy and Occupational Therapy Journal. 2021;14(2):61-69.

### Abstract

**Purpose:** To assess the efficacy of impairment-based manual physical therapy compared to sham conservative treatment for painful stiff shoulder in diabetic subjects.

**Relevance:** Adhesive capsulitis or painful stiff shoulder is a common condition among diabetes mellitus (DM) subjects. Effects of manual therapy techniques have been widely studied in the literature but not as integrated impairment-based manual therapy techniques.

**Participants:** Ninety patients of age ( $54.14 \pm 12.85$  years), both gender (41 male, 49 female) were selected on convenient sampling. Subjects were selected based on following: Physician diagnosed type-II DM of at-least two years duration; complaint of shoulder pain and stiffness ( $> 3$  months duration); ability to understand and co-operate for instructions of tester.

**Methods:** The subjects then were randomized to receive either of two interventions- sham intervention + standard care and experimental intervention + standard care. The sham control group received drugs for glycemic control, analgesics for shoulder pain, active mobilization exercises to shoulder girdle and shoulder joint. The experimental group received in addition, impairment-based manual therapy comprising of joint mobilization, neurodynamic mobilization, myofascial release and trigger point therapy. The treatment session was of one hour duration on five sessions (one session per week) for total study duration of five weeks. Patients were instructed to perform home programme once daily and were given patient log to ensure compliance. Data was collected twice- pre and post intervention by an independent blinded observer.

**Analysis:** The two outcome measures (shoulder pain and disability index- SPADI, and pain intensity on visual analogue scale- VAS) were analyzed using students' t-test at 95% confidence interval by SPSS 11.5 for Windows.

**Results:** The experimental group showed statistically significant improvements post treatment in both the outcomes. The pre-post mean differences for SPADI ( $17.28 \pm 3.18$ ), and pain on VAS ( $3.29 \pm 1.4$ ) was significant ( $p<.05$ ) in favor of experimental group.

**Conclusions:** Impairment-based manual physical therapy in addition to standard physical therapy care was better than standard physical therapy care combined with sham intervention to relieve pain and disability in type-2 diabetes mellitus patients with painful stiff shoulders.

**Implications:** Inclusion of impairment-based manual physical therapy should be considered based on clinical examination findings of articular, myofascial and neural tissue impairments through their contribution to shoulder pain and dysfunction in patients with type-2 diabetes mellitus. Further studies are warranted with large, population-based, multicenter, multinational trials on patients with idiopathic shoulder pain and dysfunction or in other clinical states following trauma, rupture, dislocation or surgery.

**Keywords:** Shoulder Dysfunction; Rehabilitation; Physical Therapy.

**Author Affiliation:** <sup>1</sup>Assistant Professor, Department of Physiotherapy, Faculty of Allied Health Sciences, Integral University, Lucknow, 226026 India, <sup>2</sup>Chief Instructor, Academy of Orthopedic Manual Physical Therapists, Bangalore, Karnataka 560058 India.

**Corresponding Author:** Senthil P Kumar, Chief Instructor, Academy of Orthopedic Manual Physical Therapists, Bangalore, Karnataka 560058 India.

**Email:** Prof.senthil.p.kumar@gmail.com

### Introduction

Shoulder pain is the third most common complaint for a visit to a physical therapist, next only to back pain and neck pain<sup>1</sup>. The estimated prevalence of shoulder pain in general population ranges from 1% to 4% and from 31% to 48% among patients with musculoskeletal complaints<sup>2</sup>. Shoulder pain was present in 25.7% of diabetic patients compared with 5.0% of general medical patients. 7% of

patients with shoulder pain report complaints of both pain and stiffness<sup>3</sup> which necessitates clinical nomenclature of "painful stiff shoulder" as put forward by Bunker<sup>4</sup> instead of terms such as adhesive capsulitis or frozen shoulder<sup>5,6</sup>.

The prevalence of painful stiff shoulder was 4.3% in diabetic patients compared 0.5% of the general medical patients<sup>9</sup>. Adhesive capsulitis was seen in 17.9% diabetics compared to 7% in non-diabetics<sup>10</sup>. Diabetes mellitus is by far the most common comorbid condition to painful stiff shoulder with an estimated incidence of 10-37%<sup>11</sup>. The extent and severity of dysfunction and range of motion limitation in adhesive capsulitis was independently associated with duration of diabetes than from the patients' age<sup>12</sup>.

Conservative treatments aimed at relieving pain and improving range of motion of shoulder include medications like NSAIDs,<sup>17</sup> oral steroids or prednisolone,<sup>18,19</sup> diclofenac sodium,<sup>20</sup> corticosteroid injections,<sup>21,22</sup> dynamic splinting,<sup>23</sup> continuous passive motion,<sup>24</sup> physical therapy<sup>25-28</sup> and acupuncture<sup>29</sup>.

To date, a number of systematic reviews have evaluated the effectiveness of conservative treatment in shoulder disorders<sup>30-36</sup>. Manual therapy techniques primarily focus on three tissue components where they can be grouped as under; articular, myofascial and neural. Articular techniques studied in shoulder pain population comprised of mobilizations with movements, oscillatory joint mobilizations of cervical spine, scapula and glenohumeral joint, and application of manipulative thrust to thoracic spine. Myofascial techniques like trigger point therapy for infraspinatus, subscapularis, upper trapezius and gross myofascial release for the upper quarter like arm-pull were also described in literature. Neurodynamic techniques for arm pain secondary to shoulder problems include the neurodynamic mobilization techniques of sliders and tensioners for nerves around the shoulder and arm. Manual physical therapy when added to supervised exercise programme in shoulder impingement syndrome patients was found to be better in improving range of motion, strength and function when compared to exercise alone<sup>48,49</sup>.

Recent systematic review<sup>50</sup> concluded in favor of manual physical therapy in the management of painful shoulder conditions and the findings of improved range of motion and decreased pain was observed across the reviewed studies. Another systematic review suggested combining manual therapy with exercises for better long-term pain

improvements in shoulder impingement syndrome patients<sup>51</sup>. Adding manual therapy to usual medical care was found to accelerate recovery in patients with shoulder dysfunction and pain<sup>52</sup>.

The aim of our study was to observe the efficacy of impairment-based manual physical therapy intervention for painful stiff shoulder condition in type-II diabetes mellitus subjects. We hypothesized that impairment-based manual physical therapy when added to standard physical therapy would be better to relieve pain, improve range of motion and improve shoulder function than standard physical therapy care with sham intervention in these patients.

## Materials and methods

### *Study design and ethical approval*

Observer-blinded randomized sham-controlled clinical trial. The study conduct was approved by Institutional Ethics Committee and was registered at Clinical Trials Registry-India under UTRN 022104848-130120101648203.

### *Subjects*

Medically diagnosed stable type-2 diabetes mellitus patients of either gender of age group 18-65 years were recruited by convenient sampling from two locations- outpatient treatment unit of physiotherapy department of multispecialty teaching hospital (screened by a physician experienced for 20 years) and a primary healthcare hospital (screened by a physician experienced for 25 years) between July 2008 and December 2009. All patients were required to give written informed consent and consented patients were then screened for their suitability in participating in the study by inclusion and exclusion criteria.

### *Inclusion criteria*

symptoms of unilateral or bilateral shoulder pain and restriction of motion for atleast 6 months duration; ability to understand written and spoken English and fill the SPADI questionnaire; and, stage-1 or stage-2 adhesive capsulitis as described by Kelley et al<sup>55</sup>.

Patients with atleast five of the eight following Delphi Consensus Criteria<sup>56</sup> reported by Walmsley et al for adhesive capsulitis; (1) night pain, (2) increase in pain with rapid/ unguarded movements, (3) uncomfortable to lie on affected side, (4) pain aggravated by movement, (5) onset age greater than 35 years, (6) global loss of active

and passive ROM on examination, (7) end-of-range pain in all directions, and (8) global loss of passive glenohumeral joint movement and;

(9) Minimum total score 3 with atleast score of 1 per item for the three items- hand behind neck(0-4), hand to opposite scapula backwards(0-4), hand to opposite scapula forwards(0-3) on Shoulder Function-related Tests Battery (SFTB) studied by Yang and Lin<sup>57</sup>.

#### ***Exclusion criteria***

History of trauma, surgery or systemic disorders and diseases, or received any form of treatment for shoulder complaints within the past 6 months and patient's voluntary disapproval or withdrawal from participation in the study.

Demographic information (age, sex, involved side) of all patients was collected, as well as duration of diabetes and shoulder symptoms.

#### ***Outcome measures***

Four primary outcome measures were assessed before and after the treatment duration. They are; Visual analogue scale-VAS (0-10) for pain intensity. Pain intensity was measured on a 10cm line (0-10), where 0 indicated "no pain" and 10 indicated "pain as bad as it could be". Current pain intensity, as well as best and worst pain intensity since onset of symptoms, was collected. Subjective pain intensity ratings were averaged from current, best, and worst pain score for each subject because this method was recommended earlier for better reliability and validity of findings<sup>58,59</sup> which also best suited our sample. The minimum clinically important difference (MCID) for VAS was  $1.2 \pm 0.3$  at 95% confidence interval.<sup>58</sup> Patients with greater pain intensity required greater change to be clinically important<sup>60</sup> and hence roughly a 36% change was meant to be a clinically significant change for the VAS<sup>61</sup>.

Shoulder pain and disability index (SPADI)- for assessing pain and functional limitation in shoulder pain patients. Roach et al<sup>66</sup> developed the Shoulder Pain and Disability Index in the year 1991. It is the shoulder-specific self report measure studied extensively for its psychometric properties<sup>67</sup>. The SPADI is a 13-item joint- specific measure of shoulder disability. The questionnaire consists of 2 subscales based on domains of pain (5 items) and function (8 items). Higher scores indicate higher levels of disability. It has shown high responsiveness to detect change following an initial episode of shoulder pain for a spectrum of shoulder conditions. The internal consistencies of

the SPADI total and subscales of pain and function ranged from 0.86 to 0.95, and it has demonstrated moderate test-retest reliability of total and subscale scores (ICC = 0.64 to 0.66)<sup>66</sup>. Responsiveness<sup>68</sup> of SPADI was shown to be clinically useful with a minimum detectable difference of 17 points on total 0-100 score with an ICC of .89 for test-retest reproducibility. Construct validity<sup>69</sup> of the SPADI was studied comparing to sickness impact profile and was shown to be more responsive among the two. SPADI was shown to have high factor, construct and longitudinal validity<sup>70</sup>. Discriminant validity of SPADI to differentiate between patients-improved versus worsened- was shown to be high, together with its good responsiveness, was thus recommended for its clinical use<sup>71</sup>. Total SPADI score was taken for analysis and not the pain and disability subscale scores since factorial analysis did not support so earlier<sup>72</sup>.

Manual therapy evaluation of impairment: Examination was based on a multistructural approach<sup>73</sup>. After the therapist assessed selective tissue tension tests as described by Cyriax,<sup>74</sup> a thorough manual examination for presenting impairments were identified and then related to symptom reproduction and subjective history to arrive at a probable pattern-recognition based on clinical reasoning<sup>75</sup>.

#### ***Articular examination***

Articular impairment was considered as a presence of restricted mobility during passive physiological and/or passive accessory examination or joint play testing. The four cardinal principles- positioning, stabilization, mobilization and comfort, as explained by Stevenson and Vaughn<sup>76</sup> were followed throughout the joint play testing and joint mobility assessments. Joint mobility testing was graded by using a seven-point scale. Its reliability was shown to be moderate to good for intra-tester and fair to moderate for inter-tester ratings<sup>77</sup>. The cervical and thoracic spine, and the joints of the shoulder complex were thus evaluated by an orthopaedic manual physical therapist with seven years experience.

#### ***Myofascial examination***

Myofascial impairment was considered as a presence of myofascial tightness, tenderness and/ or trigger points associated with palpable taut band, muscle twitch with jump sign or referred pain<sup>78</sup>. Manual palpation with fascial stretch, muscle contraction and/or muscle stretch was done to confirm the tissue involved. Scapular and

glenohumeral motor control evaluation using scapular assistance test<sup>79</sup> (scapular force couple), dynamic rotator stability test (internal vs external rotator force couple),<sup>80</sup> and dynamic relocation test (rotator cuff force couple)<sup>81</sup> was done to ascertain associated stability dysfunction.

#### Neural tissue examination

Neural tissue impairment<sup>82</sup> was considered when there was a presence of neuropathic symptoms like dysesthesia, paresthesia, hyperesthesia, allodynia during nerve palpation<sup>83</sup> and/or percussion (Tinel's sign). Presence or elicitation of subjective symptoms during neurodynamic testing<sup>84</sup> where the responses were altered with structural differentiation<sup>85</sup> manoeuvres were considered positive neurodynamic test findings<sup>86</sup>. Evaluation of neural tissue mechanosensitivity was done to interpret the observed movement dysfunction associated with patient's pain. Two types of

neural dysfunctions slider and tensioner were identified<sup>87</sup>. Evaluation was done using upper limb neurodynamic test-1 or median neurodynamic test since it was shown to be associated with shoulder girdle movement dysfunction<sup>88,89</sup>.

#### Treatment allocation

The procedure using CON solidated Standards of Reporting Trials Consort 2010 flowchart<sup>90</sup> is outlined in figure-1. Included patients were randomly assigned to receive either of the two interventions- sham intervention and standard physical therapy care or experimental intervention and standard physical therapy care using block randomization. The allocation method was concealed using sequentially numbered sealed opaque envelopes. Both the interventions were provided by a treating orthopaedic manual physical therapist trained and experienced in orthopaedic manual physical therapy (OMPT) for eight years,

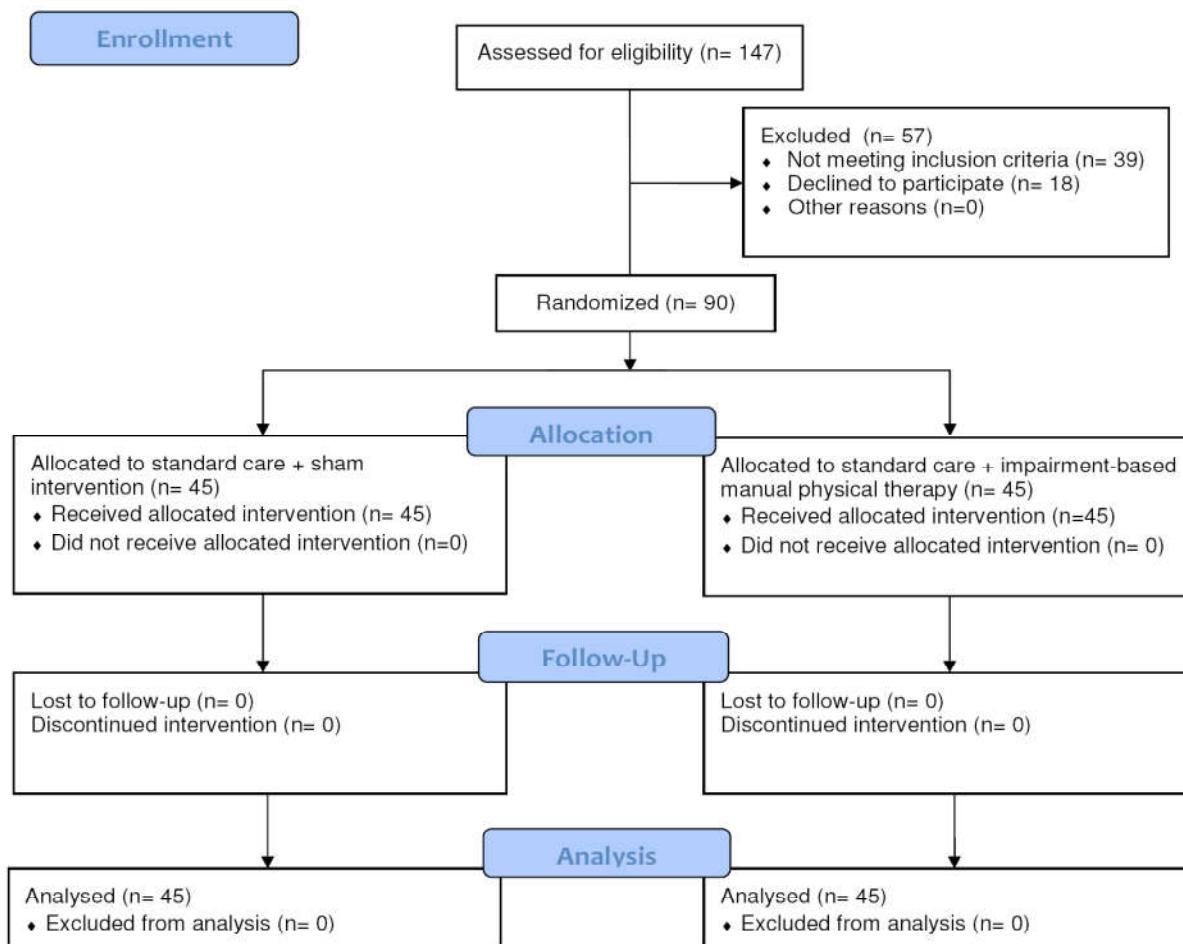



Fig.1: Consort flow chart showing the flow of study participants.

who was not blinded to the procedures. By nature, manual physical therapy is an open-label treatment for which no patients, general practitioners, nor can manual therapist be blinded. To optimize blinding, the research assistants, who are responsible for the outcome measurements, were blinded for the allocated treatment. Also, patients were instructed not to inform the research assistants or the general medical practitioner about the received treatment.

**Standard physical therapy care + sham-control group**

Standard physical therapy care as described by Kelley et al<sup>55</sup> and comprising of active mobilization exercises for cervical spine, thoracic spine, shoulder girdle and glenohumeral joint; Codman's pendular exercises, wall-climbing exercises for shoulder elevation through abduction and flexion; and strengthening to shoulder muscle groups initially being isometric later progressing to isotonic. Sham intervention consisted of the therapist applying manual contact and forces similar to actual manual physical therapy intervention but performed in a way not to induce any potential therapeutic effects<sup>91</sup>. Example, the lesser grades of mobilization was applied at other than the levels identified as hypomobile. Hand contact was done for glenohumeral glides but glides were not applied. Hand contact was done on muscles with trigger points simulating superficial massage with light strokes. Passive movements of shoulder or elbow and/or wrist were done separately instead of in combination for sham neurodynamic intervention<sup>92,93</sup>.

**Standard physical therapy care + impairment-based manual physical therapy group**

The experimental group received standard physical therapy intervention following which impairment-based manual physical therapy was given which comprised of the following techniques;

**Articular Mobilization techniques**

Mobilization with movement (MWM) techniques,<sup>94</sup> Cervical lateral glide,<sup>95</sup> selective posterior capsular stretching,<sup>96</sup> coracohumeral ligament stretching,<sup>97</sup> scapular mobilization, end-range mobilizations for restricted glenohumeral movements,<sup>75,98</sup> manipulative thrust for thoracic extension mobilization<sup>99</sup> were used as indicated by examination findings and dictated by therapist's clinical reasoning process<sup>100</sup>.

**Myofascial techniques**

Gross myofascial release technique (arm pull),<sup>101</sup> followed by specific local release of longitudinal, transverse and oblique fascial stretches around the trigger point, and ischemic compression at 7/10 VAS for 30 secs, 5 reps, 2 sets<sup>102</sup>. Motor control training began with scapular control exercises emphasizing on lateral rotation than elevation,<sup>103</sup> and rotator cuff co-activation using mental imagery<sup>104</sup> and dynamic stability training using DRST and DRT reported by Magarey and Jones<sup>80,81</sup>.

**Neural tissue techniques**

Nerve massage was given to the mechanically sensitized peripheral nerve along its course first in the transverse direction and then in the longitudinal direction. The nerve found tender on manual nerve palpation was chosen for application of nerve massage<sup>83</sup>. Nerve massage was done for suprascapular nerve, median nerve, radial nerve and ulnar nerve respectively. Neurodynamic mobilization comprised of nerve slider and/or nerve tensioner techniques according to the type of neural dysfunction (slider or tensioner dysfunctions)<sup>85</sup>. The mobilization grades III and IV originally described for peripheral joints by Maitland<sup>98</sup> and later integrated into neural mobilization by Butler<sup>105</sup> was used and frequency of 5Hz for the neurodynamic techniques. Care was taken to avoid holding the neurodynamically sensitized position to more than 10 secs during the tensioner techniques<sup>106</sup>.

The total treatment duration in a single intervention session for both the groups were for 60 min per shoulder. Treatments consisted of one session per week for total study duration of five weeks per patient. Patients in both groups received a home programme of exercises administered in standard physical therapy care. Patients were given a log to ensure compliance with the home programme, which was again verified by the tester on subsequent visits during the study period.

**Other interventions**

The two physicians at either of the two study locations, administered medications for glycemic control<sup>107</sup> and analgesics (oral NSAIDs<sup>17</sup> and topical diclofenac sodium<sup>20</sup> gel) for shoulder pain. All patients in addition received dietary advice,<sup>108</sup> lifestyle modification,<sup>109,110</sup> and regular physical activity<sup>109,111</sup> (walking) prescription as part of their routine treatments for diabetes in both the locations. The prescription patterns were maintained the same for both the treatment groups in both the

study locations. The two physicians were blinded to the intervention group of the patient.

### Data collection

Outcome assessment was done by an assessor blinded to the patient's intervention group before the commencement of the intervention and after the completion of the intervention. Outcome assessment did not require much training for administration for our chosen outcomes and hence was not given. Same assessor measured pre and post-intervention for all the subjects.

Adverse effects if any were to be reported by patients on subsequent visits, which were also analyzed for between-group comparison.

### Data analysis

#### *Sample size determination<sup>112</sup>*

The sample size for this study was based on a predetermined 15-point difference between groups in the reduction on the SPADI total score. Power calculations indicated that a sample of 90 participants (45 per group) would provide an 80% probability of detecting a  $15 \pm 24$  points, with an alpha of .05, and an estimated loss to follow-up of 10%. The minimum important clinical difference earlier reported by Roach et al<sup>66</sup> was 13 points on the SPADI total score.

#### *Baseline demographic characteristics*

Age, gender, duration of diabetes, duration of shoulder symptoms and side of involved shoulder were analyzed using descriptives and compared for between-group homogeneity using independent t-test for data with normal distribution (verified by Kolmogorov-Smirnov test) and Mann-Whitney U test for non-normal and qualitative data.

#### *Between-group and within-group comparisons*

The four outcome measures were analyzed using students' t-test at 95% confidence interval using SPSS 12.0.1 for Windows.

### Results

Of the 147 patients who were screened for eligibility, 90 patients fulfilled the study criteria and were then randomized. Of the 57 patients excluded- 18 declined to participate due to their personal reasons to follow the study schedule and follow-

up; 9 had a history of trauma to the symptomatic shoulder; 13 had a history of cervical spondylosis; 12 had peripheral neuropathy, and 5 had peripheral vascular disease.

#### *Overall demographic characteristics*

A total of 90 medically diagnosed type-II diabetes mellitus patients of either gender (41 men, 49 women) with age  $54.14 \pm 12.85$  years and average diabetes duration of  $4 \pm 1.11$  years were thus recruited into our study. They had complaints of shoulder pain and restricted shoulder movements for  $2.28 \pm .66$  years. The side of involvement was right (31 patients), left (53 patients) and 6 patients had bilateral shoulder involvement. The overall sample characteristics are provided in table-1.

**Table-1:** Combined sample characteristics (patient demographics and baseline clinical findings) in the study.

| Characteristic of study sample            | Descriptive value                      |
|-------------------------------------------|----------------------------------------|
| Total Number of patients, N               | 90                                     |
| Gender                                    | 41 men; 49 women                       |
| Age                                       | $54.14 \pm 12.85$ years**              |
| Duration of type-2 diabetes               | $4 \pm 1.11$ years**                   |
| Duration of shoulder symptoms             | $2.28 \pm .66$ years**                 |
| Side of involved shoulder                 | Right(31); Left (53),<br>Bilateral (6) |
| SPADI Total score                         | $56.82 \pm 8.92$ **                    |
| Abduction ROM                             | $106.28 \pm 18.02$ **                  |
| Flexion ROM                               | $123.54 \pm 19.84$ **                  |
| External rotation ROM                     | $20.42 \pm 7.98$ **                    |
| Internal rotation ROM                     | $31.85 \pm 6.97$ **                    |
| Visual analogue scale- VAS<br>(0-10cm)    | $6.65 \pm .76$ **                      |
| Shoulder Functional Test<br>Battery- SFTB | $6.60 \pm 1.35$ **                     |

All mentioned values are mean  $\pm$  SD unless stated in numbers directly.

Key terms: SPADI- shoulder pain and disability index; ROM- range of motion (in degrees); VAS-visual analogue scale (points).

#### *Test for homogeneity between-groups:*

Comparison of groups for homogeneity showed both groups were comparable in terms of all the study measures. The comparison of patient demographics and baseline outcome measures between the two treatment-groups are outlined in table-2.

**Table-2:** Individual sample characteristics (patient demographics and baseline clinical findings) and their comparisons.

| Groups Variables                                                        | Control group<br>N= 45 | Experimental<br>group<br>N= 45 | Level of<br>significance,<br>p value |
|-------------------------------------------------------------------------|------------------------|--------------------------------|--------------------------------------|
| Age (years)                                                             | 54.27 ± 14             | 54 ± 11.93                     | .95 (NS)                             |
| Duration of Diabetes (years)                                            | 4.05 ± 1.16            | 3.94 ± 1.08                    | .76 (NS)                             |
| Duration of shoulder symptoms (years)                                   | 2.38 ± .69             | 2.17 ± .63                     | .35 (NS)                             |
| Gender <sup>a</sup> Male (female)                                       | 20 (25)                | 21 (24)                        | .236 (NS)                            |
| Side of involved/ affected shoulder <sup>a</sup> Left, right, bilateral | 29,13,3                | 24,18,3                        | .773 (NS)                            |
| SPADI (Total score) pre-treatment                                       | 56.41 ± 9.26           | 57.25 ± 8.82                   | .786 (NS)                            |
| Abduction ROM pre-treatment (degrees)                                   | 106.72 ± 18.22         | 105.82 ± 18.36                 | .885 (NS)                            |
| Flexion ROM pre-treatment (degrees)                                     | 124.22 ± 20.26         | 122.82 ± 19.97                 | .838 (NS)                            |
| External rotation ROM pre-treatment (degrees)                           | 20.55 ± 8.02           | 20.29 ± 8.19                   | .925 (NS)                            |
| Internal rotation ROM pre-treatment (degrees)                           | 32.22 ± 7.32           | 31.47 ± 6.79                   | .755 (NS)                            |
| VAS pre-treatment (degrees)                                             | 6.66 ± .76             | 6.64 ± .78                     | .941 (NS)                            |
| SFTB pre-treatment (degrees)                                            | 6.55 ± 1.33            | 6.64 ± 1.41                    | .845 (NS)                            |
| SPADI (Total score) post-treatment                                      | 47.91 ± 8.59           | 39.96 ± 9.77                   | .015 (S)                             |
| Abduction ROM post-treatment (degrees)                                  | 117.33 ± 17.34         | 132.47 ± 15.95                 | .011 (S)                             |
| Flexion ROM post-treatment (degrees)                                    | 133.83 ± 18.99         | 146.94 ± 13.81                 | .027 (S)                             |
| External rotation ROM post-treatment (degrees)                          | 30 ± 6.8               | 35.41 ± 8.28                   | .042 (S)                             |
| Internal rotation ROM post-treatment (degrees)                          | 43.83 ± 6.86           | 50.94 ± 9.06                   | .012 (S)                             |
| VAS post-treatment                                                      | 5.22 ± .54             | 3.35 ± 1.41                    | .000 (S)                             |
| SFTB post-treatment                                                     | 5.16 ± 1.42            | 4.29 ± .46                     | .022 (S)                             |

NS-not statistically significant at p&lt;.05, S-Statistically significant at p&lt;.05

All comparisons done using independent t-test unless mentioned.

A: comparisons done using Mann-Whitney U test.

Key terms: SPADI: shoulder pain and disability index; ROM-range of motion (in degrees); VAS-visual analogue scale (0-10 cm); SFTB-shoulder functional tests battery.

#### *Between-group analysis of pre-post change in outcome measures*

Detailed results for all outcome measures are shown in table-3.

**Table 3:** Between-group comparison for measured changes in outcome measures.

| Group<br>Outcomes   | Control<br>group | Experimental<br>group | P-value |
|---------------------|------------------|-----------------------|---------|
| SPADI (Total score) | 8.5 ± 4.07       | 17.28 ± 3.18          | .00*    |
| VAS                 | 1.44 ± .78       | 3.29 ± 1.4            | .00*    |

Statistically significant at p&lt;.05

All comparisons done using independent t-test.

Key terms: SPADI shoulder pain and disability index; VAS- visual analogue scale (0-10 cm).

### VAS score

The experimental group had a statistically significant ( $p<.05$ ) change of  $3.29 \pm 1.4$  points decrease in averaged VAS pain scores compared to the change of  $1.44 \pm .78$  points in the sham-control group. See figure-2

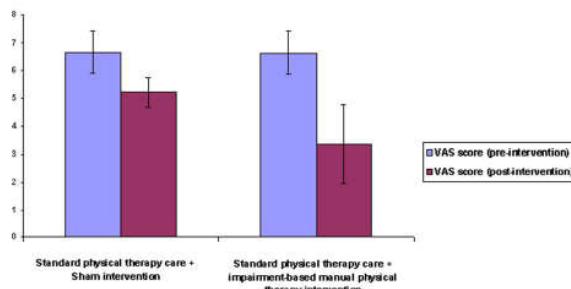



Fig. 2: Between-group comparison of visual analogue scale (VAS) scores pre-post intervention.

### SPADI (Total score)

The experimental group had a statistically significant ( $p<.05$ ) change  $17.28 \pm 3.18$  points decrease in total SPADI score compared to the change of  $8.5 \pm 4.07$  points in the sham-control group. See figure-7.

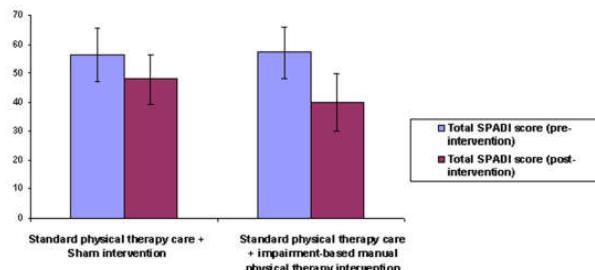



Fig.7: Between-group comparison of shoulder pain and disability index (SPADI) scores pre-post intervention

### Discussion:

#### Similar studies

Our study results were similar to studies of Bergman et al<sup>113</sup> and Bergman et al<sup>114</sup>. The first study<sup>113</sup> compared manual therapy to usual care in shoulder pain and dysfunction population while the second,<sup>114</sup> between manual therapy and usual medical care in shoulder pain patients. Both the studies used only thoracic spine and ribcage manipulation and mobilization techniques for the manual therapy group whereas we used a combination of manual techniques to address articular, myofascial and neural tissue impairments associated with shoulder pain and dysfunction. The earlier authors found improvements in shoulder pain and function after 12 weeks. Our study is

the first of its kind reporting significant treatment effects in five weeks. The interventions integrated into our treatment methods were joint mobilization and exercises both of which were found to have a high positive likelihood for pain reduction and improved function in patients with adhesive capsulitis in an out-patient physical therapy setup<sup>115</sup>. Another study<sup>112</sup> which found no added effect of manual therapy when compared to advice and exercise used passive mobilization techniques alone which was likely to address predominantly the articular impairments of the shoulder pain and dysfunction patients.

#### Effect size of our findings

The combined impairment-based manual physical therapy (IBMPT) intervention could possibly be responsible for the magnitude of the treatment effect measured in all the study outcomes. The pre-post decrease in the SPADI total score noted in the experimental group was 17 points which was higher than minimum clinically important difference (MCID) of 15 points reported earlier for the SPADI<sup>66,68,112</sup>.

The VAS scores for pain intensity decreased in the experimental group to as much as by 3.2 points which is again much higher than the MCID of 1.3 points<sup>58</sup> and 3 points<sup>61</sup> described earlier.

#### Relationship between changes in study outcomes

The corresponding change in the study outcomes was evident when we found a significant correlation of the pre-post change between the measures. Our secondary analysis showed that decrease in SPADI (total score) was positively associated with ROM improvements for abduction ( $r = .717$ ), flexion ( $r = .600$ ), external rotation ( $r = .423$ ), and internal rotation ( $r = .345$ ). The SPADI decrease was also positively associated with VAS improvements ( $r = .645$ ). Change in VAS was positively associated with improvements in ROM abduction ( $r = .572$ ) and ROM external rotation ( $r = .346$ ). The VAS decrease was also positively associated with reduction in SFTB score ( $r = .375$ ).

The basis of manual physical therapy was not just with regard to interventions but also with regard to diagnosis. The emphasis needs to be placed on patient-based evidence that links individual patient characteristics to characteristics derived at the group level; one way to achieve this is to continue on the avenue of developing clinical prediction rules<sup>127</sup>. On those lines, an impairment-based

manual physical therapy (IBMPT) approach would be justified. There is scope for developing clinical prediction rules to identify responders to IBMPT among patients with painful stiff shoulders, and being tested across multiple locations and across diverse patient populations.

### Conclusion

Impairment-based manual physical therapy in addition to standard physical therapy care was better than standard physical therapy care combined with sham intervention in type-2 diabetes mellitus patients with painful stiff shoulders.

Further validation of this study's findings could be warranted in the future with large multi-center trials to derive clinical prediction rules for this subgroup of patients who are likely to benefit from manual therapy techniques.

### References

1. Lock C, Allgar V, Jones K, Marples G, Chandler C, Dawson P. Prevalence of back, neck and shoulder problems in the inner city: implications for the provision of physiotherapy services in primary healthcare. *Physiotherapy Research International* 1999; 4 (3): 161-169.
2. Pope DP, Croft PR, Pritchard CM, Cilman AJ. Prevalence of shoulder pain in the community: the influence of case definition. *Annals of Rheumatic Diseases* 1997; 56: 308-312.
3. Dziedzic K, Stevenson K, Thomas E, Sim J, Hay E. Development and implementation of a physiotherapy intervention for use in a pragmatic randomized controlled trial in primary care for shoulder pain. *Musculoskeletal Care* 2009; 7(2): 67-77.
4. Bunker TD. Time for a new name for frozen shoulder. *British Medical Journal* 1985; 290: 1233-1234.
5. Jayson MIV. Adhesive capsulitis: frozen shoulder. *British Medical Journal* 1981; 283(6298): 1005-1006.
6. Mitchell C, Adebajo A, Hay E, Carr A. Shoulder pain: diagnosis and management in primary care. *British Medical Journal* 2005; 331: 1124-1128.
7. Dias R, Cutts S, Massoud S. Frozen shoulder. *British Medical Journal* 2005; 331: 1453- 1456.
8. Martin DF. Adhesive capsulitis: a reminder to treat the whole patient. *Southern Medical Journal* 2008; 101(6): 578-579.
9. Thomas SJ, McDougall C, Brown IDM, Jaberoo MC, Stearns A, Ashraf R, Fisher M, Kelly IG. Prevalence of symptoms and signs of shoulder problems in people with diabetes mellitus. *Journal of Shoulder and Elbow Surgery* 2007; 16: 748-751.
10. Sarkar RN, Banerjee S, Basu AK, Bandyopadhyay D. Rheumatological manifestations of diabetes mellitus. *Journal of Indian Rheumatological Association* 2003; 11: 25-29.
11. Manske RC, Prohaska D. Diagnosis and management of adhesive capsulitis. *Current Reviews in Musculoskeletal Medicine* 2008; 1: 180-189.
12. Balci N, Balci MK, Tuzuner S. Shoulder adhesive capsulitis and shoulder range of motion in type-II diabetes mellitus: association with diabetic complications. *Journal of Diabetes Complications* 1999; 13(3): 135-140.
13. Tighe CB, Oakley WS Jr. The prevalence of a diabetic condition and adhesive capsulitis of the shoulder. *Southern Medical Journal* 2008; 101(6): 591-595.
14. Lapner PC, Athwal GS. The stiff shoulder: how, why and when to treat? *Current Orthopaedic Practice* 2008; 19(5): 538-541.
15. Rodeo SA, Hannafin JA, Tom J, Warren RF, Wickiewicz TL. Immunolocalization of cytokines and their receptors in adhesive capsulitis of the shoulder. *Journal of Orthopaedic Research* 1997; 15(3): 427- 436.
16. Neviaser RJ, Neviaser T. The frozen shoulder: diagnosis and management. *Clinical Orthopaedics and Related Research* 1987; 223: 59-64.
17. Van der Windt D A, van der Heijden G J, Scholten RJ, Koes B W, Bouter L M. The efficacy of non-steroidal anti-inflammatory drugs (NSAIDS) for shoulder complaints: a systematic review. *Journal of Clinical Epidemiology* 1995; 48(5): 691-704.
18. Buchbinder R, Hoving JL, Green S, Hall S, Forbes A, Nash P. Short course prednisolone for adhesive capsulitis (frozen shoulder or stiff painful shoulder): a randomized, double-blind, placebo-controlled trial. *Annals of Rheumatic Diseases* 2004a; 63(11): 1460-1469.
19. Buchbinder R, Green S, Youd JM, Johnston RV. Oral steroids for adhesive capsulitis. *Cochrane Database of Systematic Reviews* 2006; 18(4): CD006189.
20. Huskisson EC, Bryans R. Diclofenac sodium in the treatment of painful stiff shoulder. *Current Medical Research and Opinion* 1983; 8(5): 350-353.



## Instructions to Authors

Submission to the journal must comply with the Guidelines for Authors. Non-compliant submission will be returned to the author for correction.

To access the online submission system and for the most up-to-date version of the Guide for Authors please visit:

<http://www.rfppl.co.in>

Technical problems or general questions on publishing with **POTJ** are supported by Red Flower Publication Pvt. Ltd.'s Author Support team ([http://rfppl.co.in/article\\_submission\\_system.php?mid=5#](http://rfppl.co.in/article_submission_system.php?mid=5#))

Alternatively, please contact the Journal's Editorial Office for further assistance.

Editorial Manager

Red Flower Publication Pvt. Ltd.

48/41-42, DSIDC, Pocket-II

Mayur Vihar Phase-I

Delhi - 110 091(India).

Mobile: 9821671871, Phone: 91-11-22754205, 79695648, 22756995

E-mail: [author@rfppl.co.in](mailto:author@rfppl.co.in)

## A Study to Compare the Effect of Bicycle Ergo Meter & Treadmill Training on Blood Pressure & Heart Rate in Post Menopausal Hypertensive Females

Navmita Bhosle Khan<sup>1</sup>, Md Shadab Khan<sup>2</sup>, Ravinder Narwal<sup>3</sup>

### How to cite this article:

Navmita Bhosle Khan, Md Shadab Khan, Ravinder Narwal. A Study to Compare the Effect of Bicycle Ergo Meter & Treadmill Training on Blood Pressure & Heart Rate in Post Menopausal Hypertensive Females. Physiotherapy and Occupational Therapy Journal. 2021;14(2):71-77.

### Abstract

**Aims and Objectives:** The aim of research is to compare the effectiveness of aerobic exercise training on treadmill and bicycle ergometer on physiological parameter in hypertensive post menopausal womens. **Methodology:** A sample of 30 hypertensive post menopausal subjects were recruited for this experimental study. The subjects were randomly divided into 2 groups Group A (Treadmill exercise) and Group B (Bicycle ergometer). The exercise session of 30 minutes with intensity set at 60%-65% of the reserve heart rate according to the Karvonen method for 4 weeks training session/week. Data collected in the form of Systolic Blood Pressure (SBP), Diastolic Blood Pressure (DBP) and Heart Rate (HR) every pre & post exercise session. **Results:** Comparing of SBP of Group A and Group B at 4 weeks of aerobic training is significant. Comparison of SBP variable has significant difference between the two groups. **Discussion:** Results of our study explained that aerobic exercise training on treadmill and bicycle ergometer showed the significant lowering effect SBP & DBP but not on HR variable for both group. Treadmill exercise is much more impressive in decreasing systolic blood pressure (SBP) with significant change as compare to bicycle ergometer. **Conclusions:** Aerobic physical activity should be considered an important component of lifestyle modification for prevention and treatment of high blood pressure in post menopausal females.

**Keywords:** SBP; DBP; HR; Treadmill exercise; Bicycle ergometer.

### Introduction

Menopause is a cessation of monthly cycles or menstrual cycles of female and characterized by stoppage of regular menstrual cycle more than 1 year. Menopause usually happens in mid life (45-55

yr of age), signaling end of fertile phase of women life. It is related to conditions like mood swings, hot flashes, obesity & high blood pressure. More than 1 in 3 women are postmenopausal are affected by cardiovascular disease and is the primary cause of death among women of postmenopausal age<sup>1</sup>.

Menopause starts as function of ovaries begin to change the ripening & release of ovum become unpredictable, ovulation starts to skipped, gradually ovaries almost completely stop producing progesterone & estrogens hormones. A natural or physiological menopause is that which occurs as a part of a woman's normal aging process.

This causes an increase in circulating follicle stimulating hormone (FSH) and luteinizing hormone (LH) levels as there are a decreased in producing estrogen. This decrease in the production of estrogen leads to the perimenopausal symptoms

**Author Affiliation:** <sup>1</sup>Physiotherapist, Tahya Home Health Care, Central District, Abu Dhabi, United Arab Emirates, <sup>2</sup>Supervisor Physiotherapist, Department of Physiotherapy, Afaq Medical Care Centre LLC, Central District, Abu Dhabi, United Arab Emirates, <sup>3</sup>Physiotherapist, Department of Physiotherapy, Bhagat Phool Singh Government Medical College for women, Khanpur Kalan, Sonipat 131001 Haryana.

**Corresponding Author:** Ravinder Narwal, Physiotherapist, Department of Physiotherapy, Bhagat Phool Singh Government Medical College for women, Khanpur Kalan, Sonipat 131001 Haryana.

**Email:** [ravinarwal@gmail.com](mailto:ravinarwal@gmail.com)

of hot flashes, insomnia and mood changes, as well as post-menopausal osteoporosis and vaginal atrophy<sup>2</sup>.

Menopause increases risk of high blood pressure. Clinical studies have proved that, once other factors are eliminated, the menopause does indeed place women at a higher risk of developing high blood pressure. During the menopause women experience a dramatic decrease in levels of the hormone estrogen. It is thought that this hormone plays a protective role in maintaining healthy blood pressure, and when it declines suddenly, high blood pressure can be the result<sup>3</sup>.

Menopause women's systolic pressure can go up by an average of about 5mm Hg, due to the decrease in estrogen levels. Estrogen withdrawal during menopause has a detrimental effect on metabolism and brings changes in body fat distribution. From a gynoid to an android pattern, reduced glucose tolerance, abnormal plasma lipids, increased blood pressure, increased sympathetic tone, endothelial dysfunction and vascular inflammation<sup>4</sup>.

Life style modification in the form of regular physical activity is considered a cornerstone in the prevention and management of hypertension and keeping menopause women physically and mentally fit. Epidemiological studies indicate that greater physical activity or fitness is associated with a lower blood pressure (BP), and meta-analyses of randomized controlled trials have shown that chronic dynamic aerobic endurance training is able to reduce BP<sup>5</sup>.

It is well known that exercise plays a vital role in physical fitness, it also helps in keeping blood pressure normal. Aerobic exercise may have a potential role in blood pressure management of long-term-treated hypertensive. So we have done this study to reduce hypertension in postmenopausal females, to provide them easy aerobic exercise regime which can further improve their quality of life.

The aim of study is to compare the effect produced by aerobic exercise in reducing the blood pressure by on treadmill & bicycle ergometer in post menopausal females with hypertension. The purpose of this study is to provide a better treatment regime for the post menopausal females for lowering down their elevated B.P and to create awareness about the risk of hypertension.

## Methodology

### Research design & sampling

Total 100 subjects were screened for this experimental study and 30 subjects were selected as per inclusion criteria and exclusion criteria. All subjects were divided in two equal 15 subjects/ group Treadmill Group A and Bicycle ergometer Group B by randomization method. Dependent variables of this experimental study were SBP,DBP,HR.Independent variables of this experimental study were Treadmill exercise and Cycle ergometer exercise.

### Inclusion criteria

Postmenopausal women with age 45-55 yr old and no natural menses for at least 1 yr

Blood pressure should be Stage 1 hypertension  $>130/99$  mm Hg monitored for continuously three days

Women should be physically capable of exercise; participants must be able to exercise safely at the required doses<sup>6</sup>.

### Exclusion criteria

Significant any disorders including arrhythmias, myocarditis, cardiomyopathy, congestive heart failure, heart disease etc<sup>7</sup>.

Bmi should taken and obesity should considered.

### Equipments used

- Treadmill, Model -T 7000
- Cycle ergometer, Model -R8000
- Digital Sphygmomanometer, Model no CH-432B<sup>8</sup>.



### Procedure

The exercise session consisted of 30 minutes of aerobic exercise on treadmill/ cycle-ergometer and 5 minutes of warm-up and cool-down. Exercise intensity was set at 60%-65% of the reserve heart rate according to the Karvonen method. Entire training period for both the groups is designed for

4 week aerobic exercise with 5 training session/ week. Blood pressure and heart rate is taken every pre & post exercise session<sup>9</sup>.

### Data Analysis

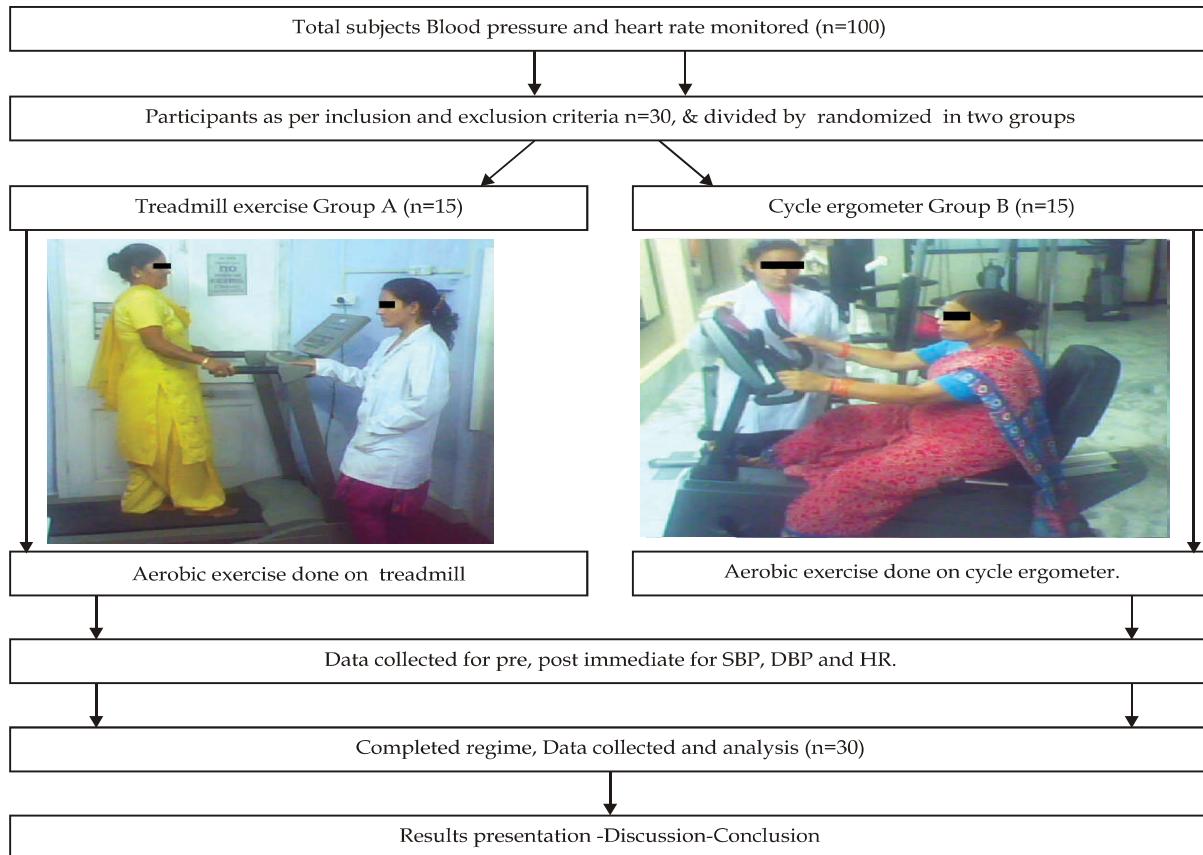



Fig. 1: Research flow chart.

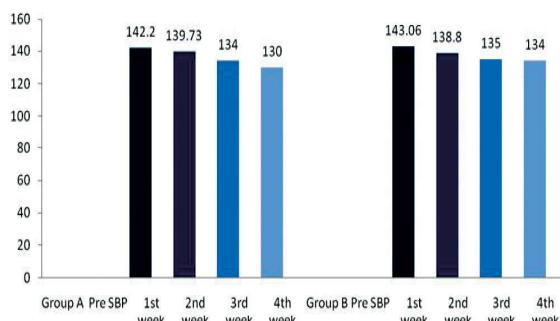
### Research flow chart

### Result

**Table 1:** Comparison of mean values of SBP at Pre interval between 1<sup>st</sup> week, 2<sup>nd</sup> week, 3<sup>rd</sup> week and 4<sup>th</sup> week within Group A and Group B.

| Treadmill exercise Group A |        |       |         |          |
|----------------------------|--------|-------|---------|----------|
| Pre SBP                    | Mean   | SD    | F value | P value  |
| 1 <sup>st</sup> week       | 142.20 | 5.44  |         |          |
| 2 <sup>nd</sup> week       | 139.73 | 14.14 | 9.56    | P < 0.05 |
| 3 <sup>rd</sup> week       | 134    | 10.68 |         |          |
| 4 <sup>th</sup> week       | 130    | 8.01  |         |          |

| Cycle ergometer exercise Group B |        |      |         |          |
|----------------------------------|--------|------|---------|----------|
| Pre SBP                          | Mean   | SD   | F value | P value  |
| 1 <sup>st</sup> week             | 143.06 | 6.61 |         |          |
| 2 <sup>nd</sup> week             | 138.80 | 8.34 | 7.91    | P < 0.05 |
| 3 <sup>rd</sup> week             | 135    | 6.32 |         |          |
| 4 <sup>th</sup> week             | 134    | 8.30 |         |          |

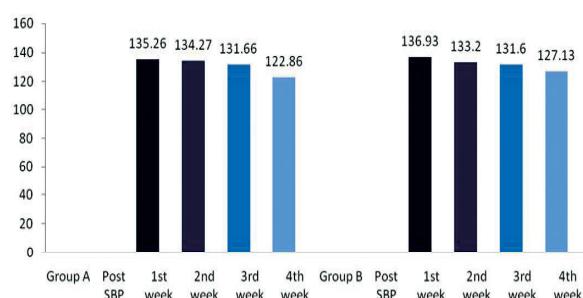

Data analysis is performed by the SPSS11. the significant level is set at p-value  $\leq 0.05$ .with confidence level 95%, t- test is used for inter group and one way ANOVA for intra group analysis.

**Table 2:** Comparison of mean values of SBP at Post interval between 1<sup>st</sup> week, 2<sup>nd</sup> week, 3<sup>rd</sup> week and 4<sup>th</sup> week within Group A and Group B.

| Treadmill exercise Group A |        |       |         |          |
|----------------------------|--------|-------|---------|----------|
| Pre SBP                    | Mean   | SD    | F value | P value  |
| 1 <sup>st</sup> week       | 135.26 | 11.21 |         |          |
| 2 <sup>nd</sup> week       | 134.27 | 11.14 | 9.46    | P < 0.05 |
| 3 <sup>rd</sup> week       | 131.66 | 7.39  |         |          |
| 4 <sup>th</sup> week       | 122.86 | 8.00  |         |          |

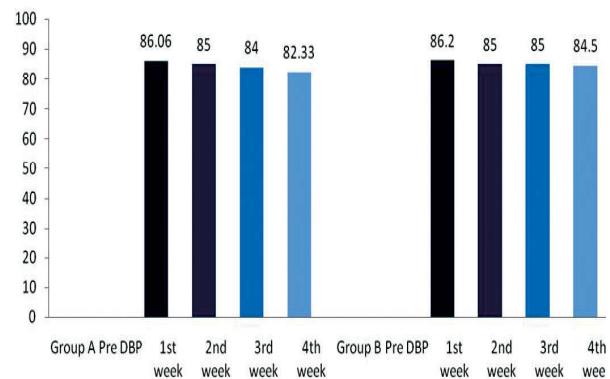
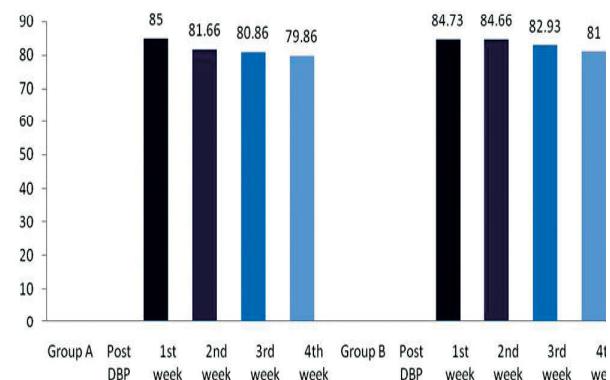
| Cycle ergometer exercise Group B |        |       |         |          |
|----------------------------------|--------|-------|---------|----------|
| Pre SBP                          | Mean   | SD    | F value | P value  |
| 1 <sup>st</sup> week             | 136.93 | 13.31 |         |          |
| 2 <sup>nd</sup> week             | 133.20 | 9.17  | 7.29    | P < 0.05 |
| 3 <sup>rd</sup> week             | 131.60 | 7.41  |         |          |
| 4 <sup>th</sup> week             | 127.13 | 6.96  |         |          |

**Comparison of mean values for pre SBP at 1<sup>st</sup> week, 2<sup>nd</sup> week, 3<sup>rd</sup> week and 4<sup>th</sup> week between Group A and Group B****Table 3:** Comparison of mean values of DBP at Pre interval between 1<sup>st</sup> week, 2<sup>nd</sup> week, 3<sup>rd</sup> week and 4<sup>th</sup> week within Group A and Group B.**Treadmill exercise Group A**


| Pre SBP              | Mean  | SD    | F value | P value  |
|----------------------|-------|-------|---------|----------|
| 1 <sup>nd</sup> week | 86.06 | 6.45  |         |          |
| 2 <sup>nd</sup> week | 85.00 | 10.47 |         |          |
| 3 <sup>rd</sup> week | 84.00 | 6.65  | 1.816   | P < 0.05 |
| 4 <sup>th</sup> week | 82.33 | 8.36  |         |          |

**Cycle ergometer exercise Group B**

| Pre SBP              | Mean  | SD    | F value | P value  |
|----------------------|-------|-------|---------|----------|
| 1 <sup>nd</sup> week | 86.20 | 10.21 |         |          |
| 2 <sup>nd</sup> week | 85.00 | 8.11  |         |          |
| 3 <sup>rd</sup> week | 85.00 | 10.82 | 2.814   | P < 0.05 |
| 4 <sup>th</sup> week | 84.5  | 7.27  |         |          |



| SBP After four weeks             | Mean | SD   | F value | P value  |
|----------------------------------|------|------|---------|----------|
| Treadmill exercise Group A       | 130  | 8.01 |         |          |
| Cycle ergometer exercise Group B | 134  | 8.30 | 3.47    | P < 0.05 |

**Comparison of mean value for Post SBP at 1<sup>st</sup>, 2<sup>nd</sup>, 3<sup>rd</sup> and 4<sup>th</sup> weeks between Group A and Group B****Table 4:** Comparison of mean values of DBP at Post interval between 1<sup>st</sup> week, 2<sup>nd</sup> week, 3<sup>rd</sup> week and 4<sup>th</sup> week within Group A and Group B.

| <b>Treadmill exercise Group A</b> |       |      |         |          |
|-----------------------------------|-------|------|---------|----------|
| Pre SBP                           | Mean  | SD   | F value | P value  |
| 1 <sup>nd</sup> week              | 85.00 | 7.80 |         |          |
| 2 <sup>nd</sup> week              | 81.66 | 7.26 | 4.123   | P < 0.05 |
| 3 <sup>rd</sup> week              | 80.86 | 7.44 |         |          |
| 4 <sup>th</sup> week              | 79.86 | 6.78 |         |          |

| <b>DBP After four weeks</b>      |       |      |         |          |
|----------------------------------|-------|------|---------|----------|
| Pre SBP                          | Mean  | SD   | F value | P value  |
| Treadmill exercise Group A       | 79.86 | 6.78 |         |          |
| Cycle ergometer exercise Group B | 81.00 | 7.06 | -2.948  | P > 0.05 |

**Comparison of mean value for Pre DBP at 1<sup>st</sup>, 2<sup>nd</sup>, 3<sup>rd</sup> and 4<sup>th</sup> weeks between Group A and Group B****Comparison of mean value for Post DBP at 1<sup>st</sup>, 2<sup>nd</sup>, 3<sup>rd</sup> and 4<sup>th</sup> weeks between Group A and Group B**

**Table no 6:** Comparison of mean values of HR at Post interval between 1<sup>st</sup> week, 2<sup>nd</sup> week, 3<sup>rd</sup> week and 4<sup>th</sup> week within Group A and Group B.

| <i>Treadmill exercise Group A</i>       |       |       |         |          |
|-----------------------------------------|-------|-------|---------|----------|
| Pre SBP                                 | Mean  | SD    | F value | P value  |
| 1 <sup>nd</sup> week                    | 86.00 | 8.21  |         |          |
| 2 <sup>nd</sup> week                    | 85.06 | 12.52 | 0.498   | P <0.05  |
| 3 <sup>rd</sup> week                    | 84.53 | 10.92 |         |          |
| 4 <sup>th</sup> week                    | 83.86 | 9.17  |         |          |
| <i>Cycle ergometer exercise Group B</i> |       |       |         |          |
| Pre SBP                                 | Mean  | SD    | F value | P value  |
| 1 <sup>nd</sup> week                    | 86.73 | 10.31 |         |          |
| 2 <sup>nd</sup> week                    | 86.00 | 9.58  | 0.208   | P < 0.05 |
| 3 <sup>rd</sup> week                    | 85.46 | 9.14  |         |          |
| 4 <sup>th</sup> week                    | 84.86 | 9.67  |         |          |

**Table no 6:** Comparison of mean values of HR at Post interval between 1st week, 2nd week, 3rd week and 4th week within Group A and Group B.

| <i>Treadmill exercise Group A</i>       |       |       |         |          |
|-----------------------------------------|-------|-------|---------|----------|
| Pre SBP                                 | Mean  | SD    | F value | P value  |
| 1 <sup>nd</sup> week                    | 85.66 | 9.65  |         |          |
| 2 <sup>nd</sup> week                    | 84.93 | 10.70 | 2.96    | P <0.05  |
| 3 <sup>rd</sup> week                    | 84.06 | 7.69  |         |          |
| 4 <sup>th</sup> week                    | 83.53 | 8.45  |         |          |
| <i>Cycle ergometer exercise Group B</i> |       |       |         |          |
| Pre SBP                                 | Mean  | SD    | F value | P value  |
| 1 <sup>nd</sup> week                    | 86.20 | 5.93  |         |          |
| 2 <sup>nd</sup> week                    | 85.86 | 5.98  | 0.588   | P < 0.05 |
| 3 <sup>rd</sup> week                    | 84.53 | 9.17  |         |          |
| 4 <sup>th</sup> week                    | 84.13 | 7.31  |         |          |

## Discussion

The important findings of our study are that, the aerobic exercise reduces the blood pressure. After four weeks of aerobic exercise we found that blood pressure has reduced with significant changes in the mean of systolic & diastolic blood pressure in both the groups. There is slight reduction in heart rate by aerobics exercise training in both the groups but not significant.

**First important finding** of our study is that while doing aerobic exercise on treadmill in four weeks significantly reduced systolic blood pressure up to 11.97mmhg. Aerobic exercise on cycle ergometer in four weeks significantly reduced systolic blood pressure upto 9.8 mmhg. Aerobic exercise on treadmill seems to be much benefiting and significance as compare to cycle ergometer. A result of our study shows that SBP and DBP was reduced in first few weeks of training but not up to

statistically significant level. It reduced significantly in 3<sup>rd</sup> & 4<sup>th</sup> week of our study.

Timothy S.& T-M Asikainen et al. have studied on post-menopausal women with aerobic exercise training done on treadmill for 40-45 min 3 days a week at 70-75% of maximum heart rate for 12 weeks. They found that systolic blood pressure was reduced approximately 8mmhg<sup>7,10</sup>.

T.Sai et al. examined the effects of regular exercise on blood pressure in 20 and 60 years old adults. The exercise program consisted of 10 minutes of warm up, 30 minutes of treadmill walking or jogging, and 10 minutes of cool down 3 times per week for 10 weeks. Blood pressure was statistically significantly reduced up to 13.1 mm Hg in the exercise group at 10 weeks<sup>11</sup>.

Dubbert, P M et al. did a study on endurance exercise in mild hypertension on treadmill with intensity of 50-60% of maximal heart rate, for 40 min 3 days a week up to 36 weeks. They found that systolic blood pressure was significantly reduced<sup>12</sup>.

Emmanuel G. Ciolac et al have demonstrated that Exercise intensity with 60% of the reserve heart rate on Cycle ergometer was able to decrease the SBP up to 8.6 mmhg<sup>13</sup>.

Another study by Peter F. Kokkinos, Ph.D et al also supports the reduction of systolic blood pressure by aerobic exercise done on cycle ergometer. They observed a significant reduction in Systolic blood pressure by 7 mm Hg and 6 mm Hg after 16 and 32 weeks of exercise, respectively<sup>14</sup>.

**Second finding** of present study is that diastolic blood pressure was also reduced significantly up to 5.14mmhg on treadmill and up to 3.73 mmhg on cycle ergometer. There was no significance difference between two group on the bases of reduction in DBP .

Timothy S.& T-M Asikainen et al, studied that post-menopausal women age with aerobic exercise training on treadmill reduced significantly to diastolic blood pressure up to 5mmhg .Treadmill exercise was done for 40-45 min 3 days a week at 70-75% of maximum heart rate for 12 weeks<sup>7,10</sup>.

Tsai et al. in 2004 examined the effects of regular exercise on blood pressure in adults. The exercise program consisted of 10 minutes of warm up, 30 minutes of treadmill walking or jogging, and 10 minutes of cool down 3 times per week for 10 weeks. Diastolic blood pressure was statistically significantly reduced up to 6.3 mm Hg in the exercise group at 10 weeks<sup>11</sup>.

Moreira W.D,Fuchs.F.D et al studied the effect

of different intensities of aerobic exercise on cycle ergometer for 10 weeks at 20% & 60% of their maximum work load .They noted the reduction in DBP up to 6.8 mmHg. Peter F. Kokkinos, Ph.D etal also demonstrated the reduction in DBP up to 7 mm Hg in the patients who exercised<sup>14,15</sup>.

Seamus P. Whelton etal did meta-analysis of randomized, controlled trials was conducted to determine the effect of aerobic exercise on blood pressure & concluded that aerobic exercise reduces blood pressure in both hypertensive and normotensive persons. An increase in aerobic physical activity should be considered an important component of lifestyle modification for prevention and treatment of high blood pressure<sup>16</sup>.

Third finding of our study was that there was decrease in heart rate of 2.13 beats/minute by treadmill and 0.63 beats/minute by cycle ergometer, in 4weeks of aerobic exercise training, but it was not statistically significant. Kevin D Monahan etal, conducted a intervention study for 3 month aerobic exercise in the form of walking . They explained that cardiovagal tonicity take time to shows its results in sedentary middle-aged and older healthy people<sup>17</sup>.

Result of our study suggests that aerobic exercise done on treadmill & cycle ergometer both reduced blood pressure. Aerobic exercise on treadmill seems to be better as compare to cycle ergometer because walking is an activity of daily living and it requires less co-ordination, muscle fatigueness. Walking also involves action of large muscle group so produces more aerobic stress on heart & hence improve vagal strength. Therefore treadmill exercise is more effective in lowering both systolic & diastolic BP than the aerobic exercise done by cycle ergometer<sup>18,19</sup>.

Thus it can be surmised the importance of physical activity in treatment of hypertension. that regularly performed aerobic exercise for long period of time induces adaptations in the cardiac autonomic nervous system. Aerobic exercise training leads to enhanced vagal activity at rest, which may contribute in part to decrease the blood pressure in long period of exercise training in post menopausal women.

## Conclusion

Low levels of cardio respiratory fitness are associated with high risk of cardiovascular disease (CVD) and all-cause mortality and improvements in fitness are associated with reduced mortality

risk. Among women in the postmenopausal age range, 30% report no physical activity at all, and the prevalence of inactivity progressively increases with age<sup>20</sup>.

Regular physical activity makes positive contributions to health and well-being. The consensus recommended dose described in guidelines is perhaps most clearly presented as obtaining 30 min of moderate-intensity physical activity. Aerobic physical activity should be considered an important component of lifestyle modification for prevention and treatment of high blood pressure in post menopausal females.

Aerobic exercise done by treadmill effectively lowers blood pressure & prevents hypertension. Results of this study showed that early postmenopausal women could benefit from 30 minutes of daily moderate walking on treadmill and cycle ergometer . Aerobic exercise helps to lower high blood pressure by normalizing biochemical, neural and hormonal changes in the blood vessel walls induce an acute and long-term blood vessel relaxation.

Both techniques have their advantages and limitations but treadmill instrumental exercise seems to be better and more effective in reduction of hypertension especially in post menopausal females.

## *Relevance in clinical practice*

Women after menopause face many changes that may lead to loss of health-related fitness (HRF), especially if sedentary. Results of this study elaborate that early post menopausal sedentary females could benefit from 30 minute of daily moderate walking which is feasible & can be incorporated in daily life.

Lifestyle modification in form of aerobic exercise is an important strategy for the prevention and treatment of high blood pressure. It also cut the cost and side effect pharmacologic therapy. Exercise is now relevant for early postmenopausal women and should be routinely performed in order to improve exercise capacity as a preventive measure in subjects with high BP. This can be a informational study that will provide awareness of risks of high blood pressure in postmenopausal women .

## *Future study*

The research can be further extended by taking large sample size, different age group and for long period of time.

## References

1. Nanette Santoro, MD et al. Menopausal Symptoms and Their Management, *Endocrinol Metab Clin North Am.* 2015 Sep; 44(3): 497-515.
2. Guthrie JR, Dennerstein L, Taffe JR, et al. Health care-seeking for menopausal problems. *Climacteric.* 2003;6:112-117.
3. Freeman EW, Sammel MD, Lin H, et al. Symptoms associated with menopausal transition and reproductive hormones in midlife women. *Obstet Gynecol.* 2007;110:230-240.
4. Amin Z, Canli T, Epperson CN. Effect of estrogen-serotonin interactions on mood and cognition. *Behav Cogn Neurosci Rev.* 2005;4:43-58.
5. Asikainen, Tuula-Maria etal. Exercise for Health for Early Postmenopausal Women: A Systematic Review of Randomised Controlled Trials. *Sports Medicine.* 34(11):753-778, 2004.
6. Len Kravitz, Ph.D Kelley, G. Aetal. Progressive resistance exercise and resting blood pressure: A meta-analysis of randomized controlled trials. *Hypertension,* 35, 838-843.
7. Timothy S. Church, MD, MPH, PhD etal. Effects of different doses of physical activity on cardiorespiratory fitness among sedentary, overweight or obese postmenopausal women with elevated blood pressure,A Randomized Controlled Trial,*JAMA.* 2007;297(19):2081-2091.
8. Ishikawa-Takata K etal, How much exercise is required to reduce blood pressure in essential hypertensives: a dose-response study. *Am J Hypertens.* 2003;16:629-633.
9. S. N. Blairetal. Physical fitness and incidence of hypertension in healthy normotensive men and women 1984,*JAHA Vol. 252 No. 4.*
10. T-M Asikainen etal. Randomised, controlled walking trials in postmenopausal women: the minimum dose to improve aerobic fitness. *Br J Sports Med,* 2002;36:189-194.
11. Tsai JC, Yang H-Y et al. The beneficial effect of regular endurance exercise training on blood pressure and quality of life in patients with hypertension. *Clin Exp Hypertension.* 2004;26:255-265.
12. Dubbert, P M etal. Endurance exercise in mild hypertension: effects on blood pressure and associated metabolic and quality of life variables. *J-Hum-Hypertens.* 1994 Apr; 8(4): 265-72.
13. Emmanuel G. Ciolac et al. Acute aerobic exercise reduces 24-h ambulatory blood pressure levels in long-term-treated hypertensive patients. *Clinics,* 2008 Dec; 63(6): 753-758.
14. Peter F. Kokkinos, Ph.D etal. Effects of Regular Exercise on Blood Pressure and Left Ventricular Hypertrophy in African-American Men with Severe Hypertension. *volume, N Engl J Med* 1995; 333:1462-1467.
15. Moreira W.D,Fuchs.F.D etal. The Effects of Two Aerobic Training Intensities on Ambulatory Blood Pressure in Hypertensive Patients, A Randomized Trial,
16. Journal of Clinical Epidemiology, Volume 52, Issue 7, Pages 637-642.
17. 16. Seamus P. Whelton; etal. Effect of Aerobic Exercise on Blood Pressure A Meta-Analysis of Randomized, Controlled Trials. *Annals of internal medicine, April 2002 : Volume 136 Issue 7 : Pages 493-503.*
18. Kevin D Monahan etal. Regular aerobic exercise modulates age-associated declines in cardiovagal baroreflex sensitivity in healthy men. *J Physiol, November 15, 2000,Volume 529, Number 1, 263-271.*
19. Blumenthal JA etal. Exercise and weight loss reduce blood pressure in men and women with mild hypertension: effects on cardiovascular, metabolic, and hemodynamic functioning. *Arch Intern Med.* 2000;160:1947-1958. January 15, 2009.
20. Richard P. Sloan, PhDetal. The Effect of Aerobic Training and Cardiac Autonomic Regulation in Young Adults . *American Journal of Public Health ,May 2009, Vol 99, No. 5 , 921-928.*
21. Stephen P. Juraschek etal. Physical Fitness and Hypertension in a Population at Risk for Cardiovascular Disease: The Henry Ford Exercise Testing (FIT) Project, Dec 2014 *JAHA, Vol. 3, No. 6.*



Red Flower Publication Pvt. Ltd.

## CAPTURE YOUR MARKET

*For advertising in this journal*

Please contact:

### **International print and online display advertising sales**

*Advertisement Manager*

Phone: 91-11-79695648, 22754205, 79695648, Cell: +91-9821671871  
E-mail: [sales@rfppl.co.in](mailto:sales@rfppl.co.in)

### **Recruitment and Classified Advertising**

*Advertisement Manager*

Phone: 91-11-79695648, 22754205, 79695648, Cell: +91-9821671871  
E-mail: [sales@rfppl.co.in](mailto:sales@rfppl.co.in)

## A Study to find the Effect of Posterior Anterior Vertebral Mobilization on Blood Pressure and Heart Rate in Prehypertensive Subjects

Md Shadab Khan<sup>1</sup>, Navmita Bhosle Khan<sup>2</sup>, Ravinder Narwal<sup>3</sup>

### How to cite this article:

Md Shadab Khan, Navmita Bhosle Khan, Ravinder Narwal. A Study to find the Effect of Posterior Anterior Vertebral Mobilization on Blood Pressure and Heart Rate in Prehypertensive Subjects. Physiotherapy and Occupational Therapy Journal. 2021;14(2):79-85.

### Abstract

**Aims and Objectives:** The aim of research is to compare the effectiveness of thoracic versus cervical mobilization on physiological parameter in prehypertensive subjects. **Methodology:** A sample of 30 prehypertensive subjects were recruited for the study. The subjects were randomly divided into 2 groups Group A (Cervical Mobilization) and Group B (Thoracic mobilization group). Grade III posterior anterior vertebral mobilization, single sitting was given for both the groups for 60 sec at each level of spinous process from C2-C7 and T1 to T5. Data collected for pre, post immediate and post 30 min for Systolic Blood Pressure (SBP), Diastolic Blood Pressure (DBP) and Heart Rate (HR). **Results:** Comparing of SBP of thoracic and cervical group at pre mobilization, post immediate mobilization and post 30 min mobilization is significant. **Discussion:** Results of our study explained that when we compare the systolic blood pressure (SBP) variable for cervical group and thoracic mobilization showed the significant lowering effect. Diastolic blood pressure variable, Heart rate variable did not achieve significant level of mean change between the both groups. **Conclusions:** So it is concluded that thoracic mobilization is much more impressive in decreasing systolic blood pressure (SBP) with significant change as compared to cervical mobilization.

**Keywords:** SBP, DBP, HR, Thoracic Mobilization and Cervical mobilization.

### Introduction

Blood pressure is the force exerted on your artery walls as blood flows through your body. Medical associations have given a term called prehypertension which is defined as chronically elevated high blood pressure with systolic blood pressure (SBP) of 130

mmHg or greater and diastolic blood pressure (DBP) of 80 mmHg or greater<sup>1</sup>.

Prehypertension on long term may lead to hypertension (HTN) and it is the one of the leading cause of death in world. This can be controlled by exercises, life style modifications and antihypertensive drugs. However, as a result of high cost, multiple adverse results and reduced adherences of antihypertensive drugs, life style modifications and exercises are being of interest for high BP treatment. Some studies have demonstrated that with a single bout of endurance training BP is reduced up to 22 hours of post training<sup>2,3</sup>.

Physical inactivity is a major risk for cardiovascular disease, and persons who are less active and less fit have a 30% to 50% greater risk for high BP<sup>8</sup>. Laura P svetkey et al. has found the beneficial effects of life style modification as a nonpharmacological treatment for prehypertension<sup>4</sup>.

**Author Affiliation:** <sup>1</sup>Supervisor Physiotherapist, Department of Physiotherapy, Afaq Medical Care Centre LLC, Central District, Abu Dhabi, United Arab Emirates, <sup>2</sup>Physiotherapist, Tahya Home Health Care, Central District, Abu Dhabi, United Arab Emirates, <sup>3</sup>Physiotherapist, Department of Physiotherapy, Bhagat Phool Singh Government Medical College for women, Khanpur Kalan, Sonipat 131001 Haryana.

**Corresponding Author:** Ravinder Narwal, Physiotherapist, Department of Physiotherapy, Bhagat Phool Singh Government Medical College for women, Khanpur Kalan, Sonipat 131001 Haryana.

**Email:** [ravinarwal@gmail.com](mailto:ravinarwal@gmail.com)

Posterior anterior vertebral mobilization reduces BP in patients with mild to moderate essential hypertension and is now recommended to lower BP in such patients. Posterior anterior vertebral mobilization reduces the risk of injury and cardiac complications and makes exercise feasible for most patients. These factors along with the low cost, absence of side effects, and additional cardiovascular benefits, make the use of mobilization to lower BP appealing<sup>5</sup>.

Mobilization is a commonly used passive, skilled, manual therapy technique applied to vertebral joint and related soft tissue at varying speed and amplitude using physiological or accessory motion for therapeutic purpose. The speed and amplitude could range from a small amplitude force at high velocity.

Posterior anterior vertebral mobilization involves passive rhythmic and repetitive movement within a range of motion or against a restrictive barrier and improves physiological motion of joint. Mobilization is technique that is claiming to be used in variety of condition. It is a gentle technique where the force and amplitude can be controlled depending on response of tissue and severity of condition been treated. Passive movement of the vertebral column is used commonly in the management of spinal dysfunction<sup>6,7</sup>.

High blood pressure is the major risk factor for coronary artery disease. That's why it is so important to control prehypertension and make awareness of the risk of prehypertension and hypertension. Therefore this study is design to provide the importance of health life and will create awareness about the risk of prehypertension<sup>8</sup>.

The purpose to select this study is to find out the effect of posterior anterior vertebral mobilization on blood pressure and heart rate, and how does it help in reducing it. To find out better treatment regime with low cost, absence of side effects, and additional cardiovascular benefits, make the use of mobilization to lower BP appealing. Result of this will help in formation of a better and different treatment idea in the form of manual therapy protocol for hypertensive subject.

The aim of the study was to compare the effect of cervical and thoracic mobilization on blood pressure in prehypertension subjects. Mobilization treatment regime with low cost, absence of side effects, and will be able to lower BP with additional cardiovascular benefits.

## Methodology

Dependent variables of this experimental study were SBP, DBP, HR. Independent variables of this experimental study were thoracic mobilization and cervical mobilization.

### Inclusion criteria

- Age group between 20 to 30 years.
- No drug history.
- Hemodynamically stable.
- Male subject with prehypertensive group 120 to 139mmhg and with DBP 80 to 89 mmhg monitored continuous for three days.

### Exclusion criteria

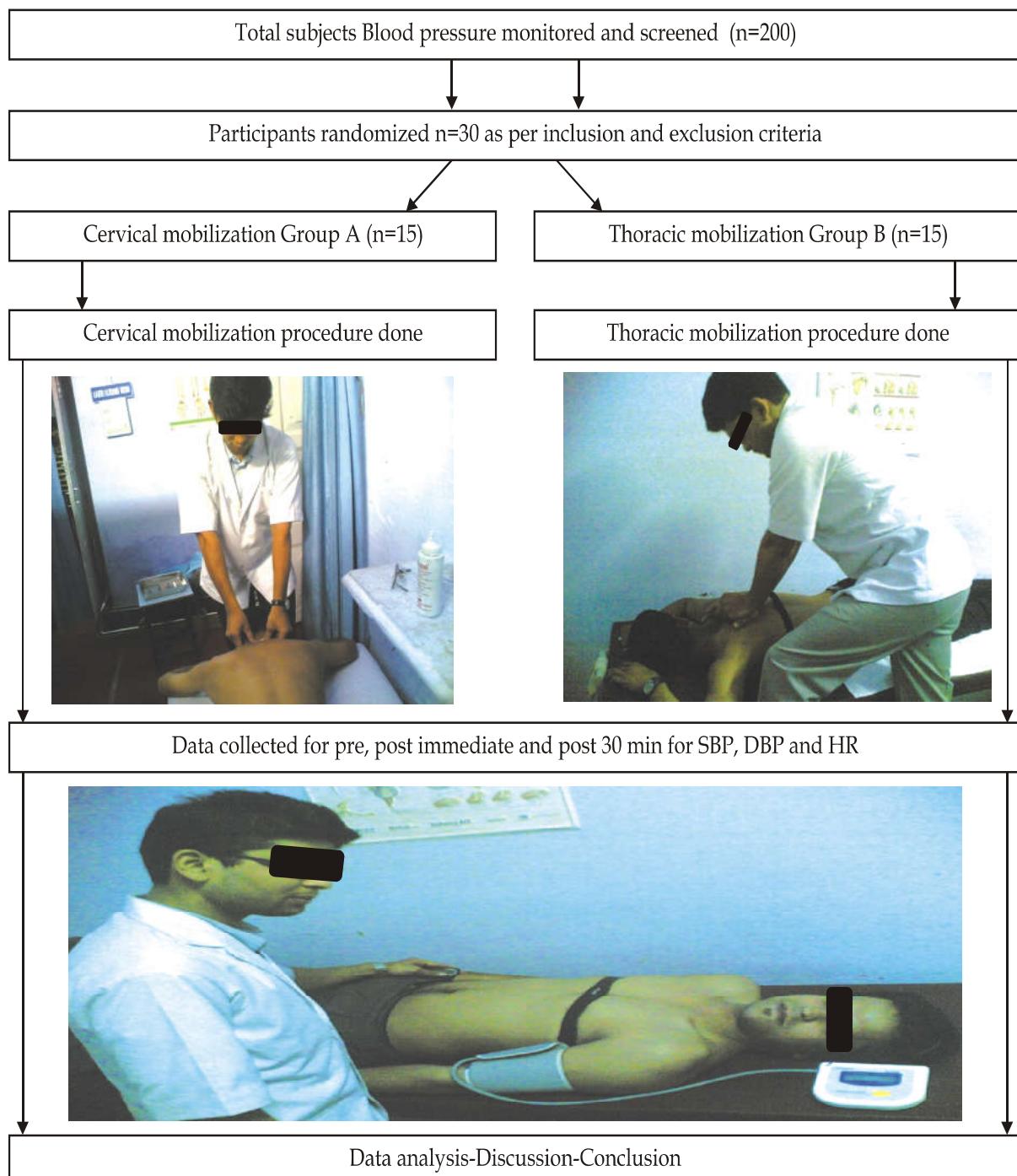
Male subject with hypertensive group SBP >140 and DBP > 90 Subject with any musculoskeletal disorder, dizziness on mobilization, individual performing regular exercise, subject who is not co-operative, Subject having pain at spinal level or general body were not included.



### Equipments used

Polar heart rate monitor, Model-T 31<sup>9</sup>  
Sphygmomanometer, citizen, Accuracy-pressure +/- 3mmhg, Pulse =/-5% of reading.




### Procedure

Total 30 subjects as per inclusion criteria out of 200 subjects screened were included for this

experimental study .All subject were divided in to 2 groups, 15 subjects in the Cervical mobilization group A and 15 subjects in the Thoracic mobilization group B. Grade III posterior anterior vertebral mobilization, single sitting was given for both the group for 60 sec at each level of spinous process from  $C_2$ - $C_7$  and  $T_1$  to  $T_5$ . Blood pressure, and heart rate were recorded prior and after mobilization<sup>10</sup>.

### Data analysis

Data analysis is performed by the SPSS11. the significant level is set at p-value  $\leq 0.05$ .with confidence level 95%, t- test is used for inter group analysis. One way ANOVA is used for intra group analysis.



**Fig. 1:** Procedure Flow chart.

## Result

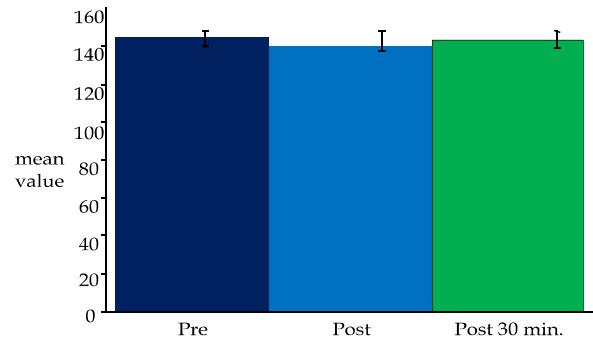
**Table 1:** Comparing of HR at pre mobilization, post immediate mobilization and post 30 minute mobilization of cervical group A.

| Heart Rate  | Cervical Group-A |      | F value | P value  |
|-------------|------------------|------|---------|----------|
|             | Mean             | SD   |         |          |
| Pre         | 81.26            | 4.94 |         |          |
| Post        | 83.73            | 5.22 | 1.083   | P > 0.05 |
| Post 30 min | 83.33            | 4.57 |         |          |

**Table 2:** Comparing of HR at pre mobilization, post immediate mobilization and post 30 minute mobilization of thoracic group B.

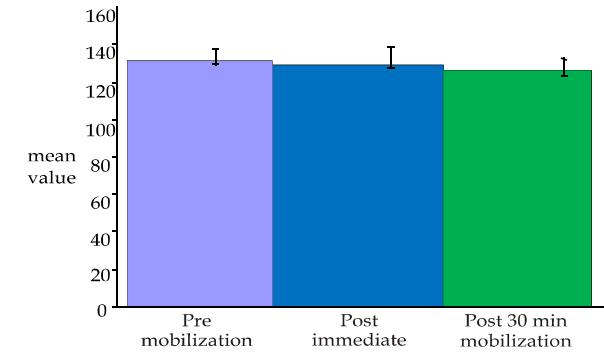
| Heart Rate  | Thoracic Group B |      | F value | P value  |
|-------------|------------------|------|---------|----------|
|             | Mean             | SD   |         |          |
| Pre         | 80.26            | 6.30 |         |          |
| Post        | 81.53            | 5.11 | 0.545   | P > 0.05 |
| Post 30 min | 79.46            | 4.88 |         |          |

**Table 3:** Comparing of DBP at pre mobilization, post immediate mobilization and post 30 minute mobilization of cervical group A.


| DBP         | Cervical Group |      | F value | P value  |
|-------------|----------------|------|---------|----------|
|             | Mean           | SD   |         |          |
| Pre         | 77.06          | 5.28 |         |          |
| Post        | 74.40          | 4.08 | 1.799   | P > 0.05 |
| Post 30 min | 78.33          | 7.49 |         |          |

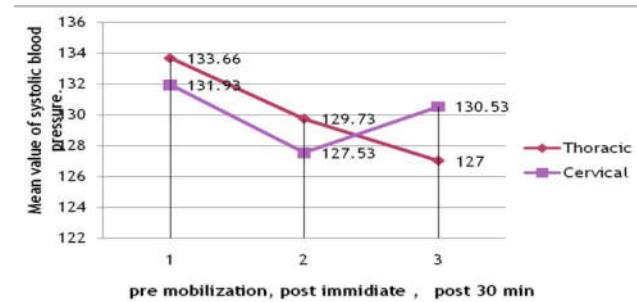
**Table 4:** Comparing of DBP at pre mobilization, post immediate mobilization and post 30 minute mobilization of thoracic group B.

| DBP          | Thoracic Group-B |      | F value | P value  |
|--------------|------------------|------|---------|----------|
|              | Mean             | SD   |         |          |
| Pre          | 80.80            | 4.95 |         |          |
| Post         | 82.86            | 4.70 | 2.116   | P > 0.05 |
| Post 30 min. | 79.46            | 3.96 |         |          |


**Table 5:** Comparing of SBP at pre mobilization, post immediate mobilization and post 30 minute mobilization of cervical group-A.

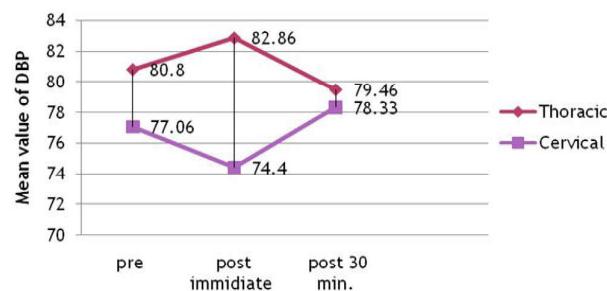
| SBP          | Cervical Group-A |      | F value | P value  |
|--------------|------------------|------|---------|----------|
|              | Mean             | SD   |         |          |
| Pre          | 131.93           | 3.63 |         |          |
| Post         | 127.53           | 5.18 | 4.090   | P > 0.05 |
| Post 30 min. | 130.53           | 3.94 |         |          |




**Table 6:** Comparing of SBP at pre mobilization, post immediate mobilization and post 30 minute mobilization of thoracic group B.

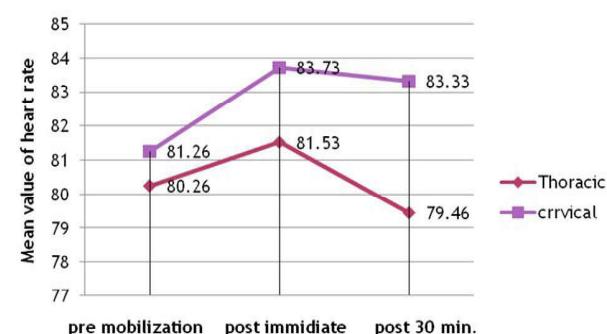
| SBP          | Cervical Group-A |      | F value | P value  |
|--------------|------------------|------|---------|----------|
|              | Mean             | SD   |         |          |
| Pre          | 133.66           | 6.21 |         |          |
| Post         | 129.73           | 5.52 | 5.186   | P > 0.05 |
| Post 30 min. | 127.00           | 5.31 |         |          |




**Table 7:** Comparing of SBP of thoracic and cervical group at pre mobilization, post immediate mobilization and post 30 min mobilization.

| SBP                      | Thoracic Group B |      | Cervical Group A |      | T value | P value  |
|--------------------------|------------------|------|------------------|------|---------|----------|
|                          | Mean             | SD   | Mean             | SD   |         |          |
| Pre mobilization         | 133.66           | 6.21 | 131.93           | 3.63 | 0.932   | P > 0.05 |
| Post immediate           | 129.73           | 5.52 | 127.53           | 5.18 | 1.125   | P > 0.05 |
| Post 30 min mobilization | 127.00           | 5.31 | 130.53           | 3.94 | -2.067  | P < 0.05 |




**Table 8:** Comparing of DBP of thoracic and cervical group at pre mobilization, post immediate mobilization and post 30 min mobilization.

| Heart Rate                  | Thoracic Group B |      | Cervical Group A |      | T value | P value  |
|-----------------------------|------------------|------|------------------|------|---------|----------|
|                             | Mean             | SD   | Mean             | SD   |         |          |
| Pre mobilization            | 80.26            | 6.30 | 81.26            | 4.94 | -0.483  | P > 0.05 |
| Post immediate mobilization | 81.53            | 5.11 | 83.73            | 5.22 | -1.165  | P > 0.05 |
| Post 30 min mobilization    | 79.46            | 4.88 | 83.33            | 4.57 | -2.238  | P < 0.05 |



**Table-9:** Comparing Mean and SD of HR of thoracic and cervical group at pre mobilization, post immediate mobilization and post 30 min mobilization.

| DBP                         | Thoracic Group B |      | Cervical Group A |      | T value | P value |
|-----------------------------|------------------|------|------------------|------|---------|---------|
|                             | Mean             | SD   | Mean             | SD   |         |         |
| Pre mobilization            | 80.80            | 4.95 | 77.06            | 5.28 | 1.995   | P>0.05  |
| Post immediate mobilization | 82.86            | 4.70 | 74.40            | 4.08 | 5.264   | P>0.05  |
| Post 30 min mobilization    | 79.46            | 3.96 | 78.33            | 7.49 | 0.518   | P<0.05  |



## Discussion

The first important finding of our study shows that vertebral mobilization on comparing the heart rate variability of thoracic mobilization and cervical mobilization didn't showed significant change although there were very slight changes on pre mobilization to post 30 min mobilization on short

term goal but not significant. McKnight ME et al. and Budgell Bet al. has reported in their study that asymptomatic subjects received mobilization to the cervical and thoracic showed no significant difference between group with respect to heart rate after the mobilization<sup>6,11</sup>.

Results of our study shows that the comparison of diastolic blood pressure showed not much change at initial state .There was little changes noted which went back to its previous state post 30 min mobilization. Therefore there were no significant changes noted in DBP both in cervical and thoracic mobilization groups. Reis MS et al. has explained in their study that mobilization of cervical, lumbar & thoracic level has its own effect but there was significant changes in thoracic level manipulation like difference in systolic blood pressure however diastolic blood pressure, pulse, heart rate and respiratory rate could not achieved significant value<sup>12</sup>.

Next important finding of our study is that thoracic and cervical mobilization found to be impressive in decreasing systolic blood pressure (SBP) with significant change. Fichera AP et al. have also demonstrated that manipulation of the cervical and thoracic vertebrae reduces moderate hypertension. McGee D. et al. Founded that in his case study of a 46-year-old woman's rapid decrease in blood pressure following initial chiropractic adjustment<sup>13,8</sup>.

Yates RG et al. has also founded that manipulation of the thoracic spine significantly reduces blood pressure in patients with elevated blood pressure. Both systolic and diastolic blood pressure decreased significantly in the adjusted group. No significant changes occurred in the placebo or control groups. Adjustments were delivered to segments T-1 to T-5<sup>14</sup>.

Results of our study demonstrated that thoracic mobilization is much more impressive in decreasing systolic blood pressure (SBP) with significant change as compare to cervical mobilization. Tran AT et al. conducted randomized controlled trial on asymptomatic subject for mobilization. There was difference between groups with respect to blood pressure or heart rate after the mobilization<sup>15</sup>.

Emmanuel Yung, PT et al. suggested that anterior Posterior spinal pressure caused a statistically significant physiologic response that resulted in a minor drop in vasodepressor and statistically significant reduction in systolic BP after the procedure<sup>7</sup>.

Michel Silva Reis et al. explained that autonomic

imbalance is dominated in prehypertensive subjects. The autonomic imbalance characterized by sympathetic hyperactivity at rest and an inability to appropriately respond to physiological stressors. The mobilization technique significantly reduces pain as well as it was able to improve SBP quantified by an increased vagal activity and cardiac autonomic modulation. One session of Maitland spine mobilization was able to acutely improved the blood pressure regulation and HRV<sup>16</sup>.

Results of our study concluded that when we compare the systolic blood pressure (SBP) variable for cervical group and thoracic mobilization showed the significant lowering effect. Diastolic blood pressure variable ,Heart rate variable did not achieve significant level of mean change between the both groups . McGuiness J et al. founded in their study that manipulation of the cervical and thoracic vertebrae reduces moderate systolic blood pressure<sup>17,18</sup>.

In summary our result suggested that thoracic mobilization is important strategy as compare to cervical mobilization for prevention and treatment of prehypertension. Cervical mobilization seems not to be doing any help in treatment strategy for prehypertension subjects.Thoracic mobilization found out to be better, positive and helpful result then cervical mobilization in normalizing prehypertension.

## Conclusion

Thoracic and cervical mobilization both reduces systolic blood pressure with significant value but not diastolic blood pressure; even heart rate not achieved significant level. Thoracic mobilization found to be impressive in decreasing SBP with significant change as compared to cervical mobilization.

Result of this study signifies a simple and easy treatment regime for individuals with prehypertension and will help them in preventing hypertension. This result of this study provide a informational for society about the new treatment for autonomic dysfunction correction in prehypertension. Result of this will create a awareness about the risks of high blood pressure and provide a base line indication to promote another's study in prehypertensive treatment field.

## Clinical Relevance

Prehypertension is common and has clinical and public health significance in sedentary life style population. Treatment strategies emphasized

nonpharmacological lifestyle interventions in all patients. Our study showed significant changes in blood pressure with cervical and thoracic mobilization. Mobilization will help in prevention of prehypertension to hypertension by effectively lower BP and expected to reduce CVD morbidity and mortality.

## Future study

Spinal mobilization appears to be effective in producing a temporary reduction in blood pressure immediately after treatment. The effect of such treatment in reducing blood pressure over a period of days or weeks is unknown and warrant further investigation.This research in future can be extended by taking large sample size and long term treatment goal. The age and gender group can be change to find out effectiveness of the sample protocol normal subjects with precaution.

**Conflict of interest:** There is no conflict of interest related to this clinical research among all authors.

**Acknowledgement:** Authors expressing deeply gratefulness to the entire participant subjects specially Dr Rohit. They are also thankful to ethical committee for the research approval.

## References

1. Logan, Carolynn M.; Rice, M. Katherine (1987). Logan's Medical and Scientific Abbreviations. J. B. Lippincott and Company. p. 58. ISBN 0-397-54589-4.
2. Chobanian AV, Bakris GL, Black HR, et al. (May 2003). "The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report". JAMA. 289 (19): 2560-72.
3. Crawford JP, Hickson GS, Wiles MR .The management of hypertensive disease: a review of spinal manipulation and the efficacy of conservative therapeusis. JMPT 1986; 9:27-32.
4. Laura P. Svetkey et al. management of prehypertension, Journal of Hypertension 2005;45 Issue 6,1056-1061.
5. Mootz RD Top Clin Chiro et al.. Chiropractic management of patients with mild hypertension., JMPT, 1995; 2:37-44.
6. McKnight ME, DeBoer KF, Preliminary study of blood pressure changes in normotensive subjects undergoing chiropractic care, Journal of Manipulative and Physiological Therapeutics. 1988, 11(4):261-266.
7. Yung E, Wong M, Williams H, Mache K. Blood

pressure and heart rate response to posteriorly directed pressure applied to the cervical spine in young, pain free individuals: a randomized, repeated measures, double blind, placebo controlled study. *Journal of Orthopaedic & Sports Physical Therapy*. 2014; 44(8): 622-626.

8. McGee D. Chiropractic ,Hypertension: a case study, *J of Chiropractic Research and clinical Investigation*. 1992, Vol.7. No.4.

9. Braam, Richard L. Accuracy of the automatic blood pressure measuring device according to a modified British Hypertension Society protocol. *Devices and Technology Blood Pressure Monitoring*. 2002,7(3):185-189..

10. S. Snodgrass, D. Rivet, V. Robertson. Manual Forces Applied During Posterior-to-Anterior Spinal Mobilization: A Review of the Evidence. *Journal of Manipulative and Physiological Therapeutics*, Volume 29, Issue 4, Pages 316 - 329.

11. Budgell B, Polus B. The Effects of Thoracic Manipulation on Heart Rate Variability: A Controlled Crossover Trial. *J Manipulative Physiol Ther*. 2006 ;29 603-610.

12. Reis MS, Durigan JLQ, Arena R, Rossi BRO, Mendes RG, Borghi Silva A. Effects of Posteroanterior Thoracic Mobilization on Heart Rate Variability and Pain in Women with Fibromyalgia. *Rehabilitation research and practice*. 2014; ID 898763, 6 pages.

13. Fichera AP; Celander DR. Effect of osteopathic manipulative therapy on autonomic tone as evidenced by blood pressure changes and activity of the fibrinolytic system, *J Am Osteopath Assoc*, 1969; 68(10): 1036-8.

14. Yates RG, Lampert DL, Abram NL, Wright C. Effects of chiropractic treatment on blood pressure and anxiety. *JMPT* 1988; 11:484-8.

15. Tran AT, Kirby JD. *J Am. The effects of upper cervical adjustment upon the normal physiology of the heart*. Chiropractic Association, 1977; 11/S: 58-62.

16. Michel Silva Reis et al. Effects of Posteroanterior Thoracic Mobilization on Heart Rate Variability and Pain in Women with Fibromyalgia, *Rehabil Res Pract*. 2014; 2014: 898763.

17. McGuiness J, Vicenzino B, Wright A. Influence of a cervical mobilization technique on respiratory and cardiovascular function. *Manual Therapy*. 1997; 2: 216-20.

18. Ward J, Coats J, Tyer K, Weigand S, Williams G. Immediate effects of anterior upper thoracic spine manipulation on cardiovascular response. *Journal of manipulative and physiological therapeutics*. 2013; 36: 101-10.



# REDKART.NET

(A product of RF Library Services (P) Limited)

(Publications available for purchase: Journals, Books, Articles and Single issues)

(Date range: 1967 to till date)

The Red Kart is an e-commerce and is a product of RF Library Services (P) Ltd. It covers a broad range of journals, Books, Articles, Single issues (print & Online-PDF) in English and Hindi languages. All these publications are in stock for immediate shipping and online access in case of online.

#### **Benefits of shopping online are better than conventional way of buying.**

1. Convenience.
2. Better prices.
3. More variety.
4. Fewer expenses.
5. No crowds.
6. Less compulsive shopping.
7. Buying old or unused items at lower prices.
8. Discreet purchases are easier.

URL: [www.redkart.net](http://www.redkart.net)

## Effects of Impairment Based Manual Physical Therapy on Range of Motion and Function in Diabetic Frozen Shoulder: Part 2 of A Randomized Clinical Trial

Mohd Javed Iqbal<sup>1</sup>, Senthil P Kumar<sup>2</sup>

### How to cite this article:

Mohd Javed Iqbal, Senthil P Kumar. Effects of Impairment-Based Manual Physical Therapy on Range of Motion and Function in Diabetic Frozen Shoulder - Part-2 of A Randomized Clinical Trial. Physiotherapy and Occupational Therapy Journal. 2020;13(1):87-95.

### Abstract

**Purpose:** To assess the efficacy of impairment-based manual physical therapy compared to sham conservative treatment for painful stiff shoulder in diabetic subjects.

**Relevance:** Adhesive capsulitis or painful stiff shoulder is a common condition among diabetes mellitus (DM) subjects. Effects of manual therapy techniques have been widely studied in the literature but not as integrated impairment-based manual therapy techniques.

**Participants:** Ninety patients of age ( $54.14 \pm 12.85$  years), both gender (41 male, 49 female) were selected on convenient sampling. Subjects were selected based on following: Physician diagnosed type-II DM of at-least two years duration; complaint of shoulder pain and stiffness ( $> 3$  months duration); ability to understand and co-operate for instructions of tester.

**Methods:** The subjects then were randomized to receive either of two interventions- sham intervention + standard care and experimental intervention + standard care. The sham control group received drugs for glycemic control, analgesics for shoulder pain, active mobilization exercises to shoulder girdle and shoulder joint. The experimental group received in addition, impairment-based manual therapy comprising of joint mobilization, neurodynamic mobilization, myofascial release and trigger point therapy. The treatment session was of 45 min duration on five sessions (one session per week) for total study duration of five weeks. Patients were instructed to perform home programme once daily and were given patient log to ensure compliance. Data was collected twice- pre and post intervention by an independent blinded observer.

**Analysis:** The two outcome measures (range of motion- ROM, shoulder functional tests battery- SFTB) were analyzed using students' t-test at 95% confidence interval by SPSS 11.5 for Windows.

**Results:** The experimental group showed statistically significant improvements post treatment in all the four outcomes. The pre-post mean differences for shoulder abduction ROM ( $26.64 \pm 7.36$  degrees), shoulder external rotation ROM ( $15.11 \pm 3.75$  degrees), SFTB score ( $2.35 \pm 1.41$  points), was significant ( $p < .05$ ) in favor of experimental group.

**Conclusions:** Impairment-based manual physical therapy in addition to standard physical therapy care was better than standard physical therapy care combined with sham intervention to improve range of motion and shoulder function in type-2 diabetes mellitus patients with painful stiff shoulders.

**Keywords :** Shoulder dysfunction, rehabilitation, physical therapy

**Author Affiliation:** <sup>1</sup>Assistant Professor, Department of Physiotherapy, Faculty of Allied Health Sciences, Integral University, Lucknow 226026 India. <sup>2</sup>Chief Instructor, Academy of Orthopedic Manual Physical Therapists, Bangalore, India.

**Corresponding Author:** Senthil P Kumar, Chief Instructor, Academy of Orthopedic Manual Physical Therapists, Bangalore, 560058 India.

**Email:** Prof.senthil.p.kumar@gmail.com

### Introduction

Shoulder pain is the third most common complaint for a visit to a physical therapist, next only to back pain and neck pain<sup>1</sup>. The estimated prevalence of shoulder pain in general population ranges from 1% to 4% and from 31% to 48% among patients with musculoskeletal complaints<sup>2</sup>. Shoulder pain was present in 25.7% of diabetic patients compared with 5.0% of general medical patients. 7% of

patients with shoulder pain report complaints of both pain and stiffness<sup>3</sup> which necessitates clinical nomenclature of "painful stiff shoulder" as put forward by Bunker<sup>4</sup> instead of terms such as adhesive capsulitis or frozen shoulder<sup>5,6</sup>.

Manual therapy was shown to be effective in earlier studies when used as technique-based research and not as impairment-based. Impairment-based manual physical therapy would then be very effective in such situations but not yet studied in this population of painful stiff shoulder. The aim of our study was to observe the efficacy of impairment-based manual physical therapy intervention for painful stiff shoulder condition in type-II diabetes mellitus subjects. We hypothesized that impairment-based manual physical therapy when added to standard physical therapy would be better to relieve pain, improve range of motion and improve shoulder function than standard physical therapy care with sham intervention in these patients.

### **Materials and methods**

#### **Study design and ethical approval**

Observer-blinded randomized sham-controlled clinical trial. The study conduct was approved by Institutional Ethics Committee and was registered at Clinical Trials Registry-India under UTRN 022104848-130120101648203.

#### **Subjects**

Medically diagnosed stable type-2 diabetes mellitus patients of either gender of age group 18-65 years were recruited by convenient sampling from two locations- outpatient treatment unit of physiotherapy department of multispecialty teaching hospital (screened by a physician experienced for 20 years) and a primary healthcare hospital (screened by a physician experienced for 25 years) between July 2008 and December 2009. All patients were required to give written informed consent and consented patients were then screened for their suitability in participating in the study by inclusion and exclusion criteria.

#### **Inclusion criteria**

symptoms of unilateral or bilateral shoulder pain and restriction of motion for atleast 6 months duration; ability to understand written and spoken English and fill the SPADI questionnaire; and, stage-1 or stage-2 adhesive capsulitis as described by Kelley et al<sup>55</sup>.

Patients with atleast five of the eight following Delphi Consensus Criteria<sup>56</sup> reported by Walmsley et al for adhesive capsulitis; (1) night pain, (2) increase in pain with rapid/ unguarded movements, (3) uncomfortable to lie on affected side, (4) pain aggravated by movement, (5) onset age greater than 35 years, (6) global loss of active and passive ROM on examination, (7) end-of-range pain in all directions, and (8) global loss of passive glenohumeral joint movement and; (9) Minimum total score 3 with atleast score of 1 per item for the three items- hand behind neck(0-4), hand to opposite scapula backwards(0-4), hand to opposite scapula forwards(0-3) on Shoulder Function-related Tests Battery (SFTB) studied by Yang and Lin<sup>57</sup>.

#### **Exclusion criteria**

History of trauma, surgery or systemic disorders and diseases, received any form of treatment for shoulder complaints within the past 6 months and patient's voluntary disapproval or withdrawal from participation in the study.

Demographic information (age, sex, involved side) of all patients was collected, as well as duration of diabetes and shoulder symptoms.

#### **Outcome measures**

Two outcome measures were assessed before and after the treatment duration. They are; Standard universal goniometer, for measuring shoulder active range of motion in degrees with patient in standing position. The movements assessed were abduction, flexion, external rotation and internal rotation.

Shoulder functional tests battery<sup>57</sup> consisting of three functional movements (hand to neck, hand to opposite scapula, hand to scapula) scored on a grading of 0-4 with a maximum score of 11 for maximum limitation of shoulder function. Shoulder functional tests battery (SFTB) includes three function-related tests:

1. Hand to neck- shoulder flexion and external rotation;
2. Hand to scapula- shoulder extension and internal rotation; and,
3. Hand to opposite scapula- shoulder horizontal adduction.

Total score of SFTB ranges from 0-11. A score of zero indicates normal and minimum abnormal score is a total score of 3. The scale had excellent reliability (kappa = .83-.90) for use in clinical practice<sup>73</sup>.

### ***Manual therapy evaluation of impairment***

Examination was based on a multistructural approach and the detailed description based upon articular, myofascial and neural impairment was given in part-1 of this study.

### ***Treatment allocation***

The procedure using consolidated Standards of Reporting Trials consort 2010 flowchart<sup>90</sup> is outlined in Part-1 of this study.

#### ***Standard physical therapy care + sham-control group***

Standard physical therapy care as described by Kelley et al<sup>55</sup> is provided in part-1 of this study.

#### ***Standard physical therapy care + impairment-based manual physical therapy group***

The experimental group received standard physical therapy intervention following which impairment-based manual physical therapy was given which comprised of articular, myofascial and neural techniques as described in Part-1 of this study.

**Data collection:** Outcome assessment was explained in part-1 of this study.

**Data analysis:** As provided in part-1 of this study.

### **Results**

Of the 147 patients screened, the flow of participants is provided in part-1 of this study.

The overall sample characteristics are provided in table-1 and baseline comparisons for heterogeneity was provided in table-2 both are available in part-1 of this study.

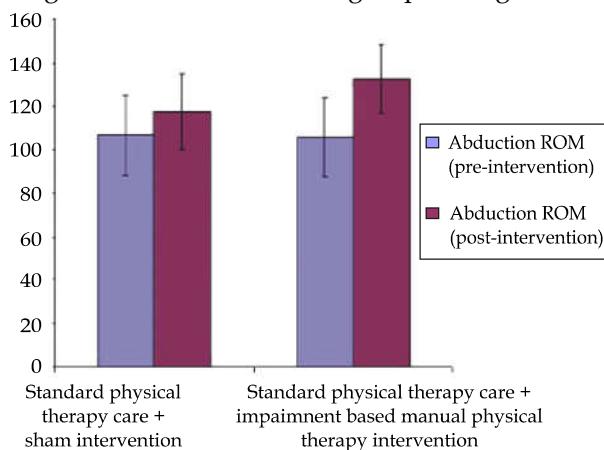
#### ***Between-group analysis of pre-post change in outcome measures***

Detailed results for all outcome measures are shown in table-3.

**Table-3:** Between-group comparison for measured changes in outcome measures.

| Group Outcomes        | Control group | Experimental group | P value |
|-----------------------|---------------|--------------------|---------|
| Abduction ROM         | 10.61 ± 3.63  | 26.64 ± 7.36       | .00*    |
| Flexion ROM           | 9.61 ± 4.4    | 24.11 ± 9.90       | .00*    |
| External rotation ROM | 9.44 ± 3.53   | 15.11 ± 3.75       | .00*    |
| Internal rotation ROM | 11.61 ± 10.34 | 19.47 ± 8.69       | .02*    |
| SFTB                  | 1.38 ± 1.09   | 2.35 ± 1.41        | .03*    |

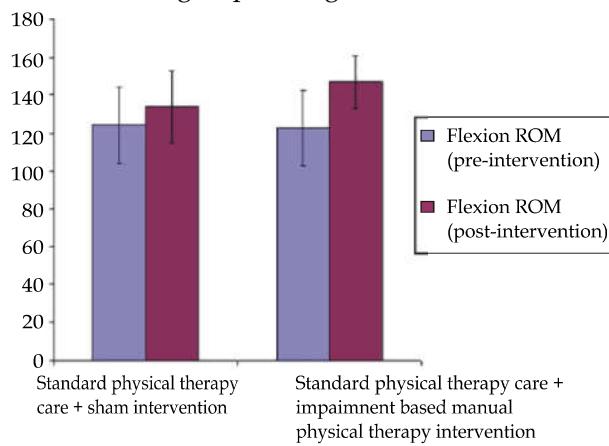
\*- statistically significant at p<.05


All comparisons done using independent t-test.

Key terms: OM- range of motion (in degrees); SFTB- shoulder functional tests battery.

### ***Shoulder active range of motion***

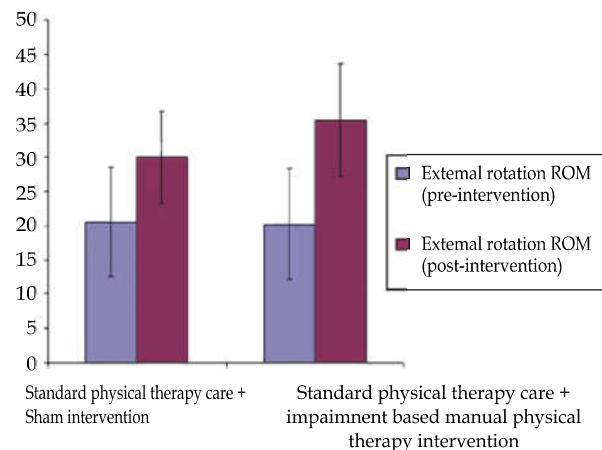
#### ***Abduction***


The experimental group had a statistically significant (p<.05) change of 26.64 ± 7.36 degrees increase in shoulder abduction active range of motion compared to the change of 10.61 ± 3.63 degrees in the sham-control group. See fig. 3.



**Fig. 3:** Between-group comparison of shoulder abduction active range of motion pre-post intervention.

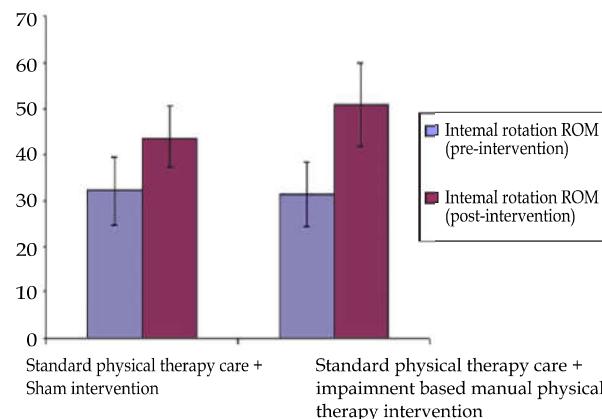
#### ***Flexion***


The experimental group had a statistically significant (p<.05) change of 24.11 ± 9.90 degrees increase in shoulder flexion active range of motion compared to the change of 9.61 ± 4.4 degrees in the sham-control group. See figure-4.



**Fig. 4:** Between-group comparison of shoulder flexion active range of motion pre-post intervention.

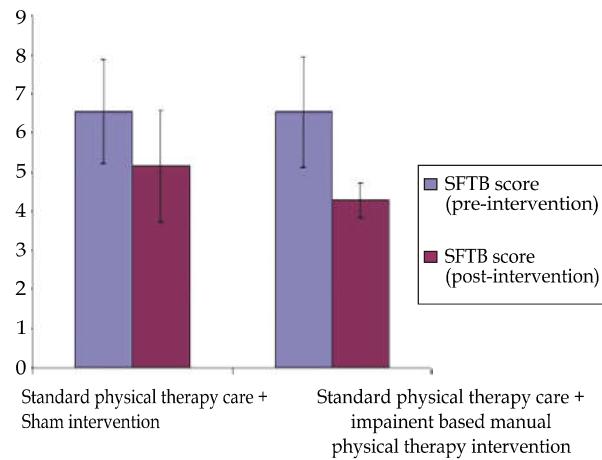
### External rotation


The experimental group had a statistically significant ( $p<.05$ ) change of  $15.11 \pm 3.75$  degrees increase in shoulder external rotation active range of motion compared to the change of  $9.44 \pm 3.53$  degrees in the sham-control group. See figure-5.



**Fig. 5:** Between-group comparison of shoulder external rotation active range of motion pre-post intervention.

### Internal rotation


The experimental group had a statistically significant ( $p<.05$ ) change of  $19.47 \pm 8.69$  degrees increase in shoulder internal rotation active range of motion compared to the change of  $11.61 \pm 10.34$  degrees in the sham-control group. See figure-6.



**Fig. 6:** Between-group comparison of shoulder internal rotation active range of motion pre-post intervention.

### SFTB

The experimental group had a statistically significant ( $p<.05$ ) change of  $2.35 \pm 1.41$  points increase in shoulder abduction active range of motion compared to the change of  $1.38 \pm 1.09$  degrees in the sham-control group. See figure-8.



**Fig. 8:** Between-group comparison of shoulder abduction functional tests battery (SFTB) scores pre-post intervention.

## Discussion

### Similar studies

Our study results were similar to studies of Bergman et al<sup>113</sup> and Bergman et al.<sup>114</sup> The first study<sup>113</sup> compared manual therapy to usual care in shoulder pain and dysfunction population while the second,<sup>114</sup> between manual therapy and usual medical care in shoulder pain patients. The earlier authors found improvements in shoulder pain and function after 12 weeks. Our study is the first of its kind reporting significant treatment effects in five weeks.

### Limitations of our study

Our study sample though statistically acceptable, a total of 90 participants, were studied from a single geographical location, which may limit external applicability of its findings. Larger population-based multi-center trials are necessary before drawing definitive conclusions based on our findings.

### Significance of our study

Using factorial analysis of physical examination findings, they<sup>114</sup> reported improvements in shoulder pain and shoulder mobility in their patients following the use of manual therapy. In our study, we explored the effects on SPADI and SFTB in addition to pain and mobility measures.

Further validation of this study's findings could be warranted in the future with large multi-center trials to derive clinical prediction rules for this subgroup of patients who are likely to benefit from manual therapy techniques.

## Conclusion

Impairment-based manual physical therapy in addition to standard physical therapy care was better than standard physical therapy care combined with sham intervention for improving range of motion and shoulder function in type-2 diabetes mellitus patients with painful stiff shoulders.

## References

Clinical Journal of

1. van der Windt DA, Koes BW, Deville W, Boeke AJ, De Jong BA, Bouter LM. Effectiveness of corticosteroid injections versus physiotherapy for treatment of painful stiff shoulder in primary care: randomized trial. *The British Medical Journal* 1998; 317(7168): 1292-1296.
2. Buchbinder R, Green S, Youd JM. Corticosteroid injections for shoulder pain. *Cochrane Database of Systematic Reviews* 2003, Issue 1. Art. No.: CD004016.
3. Gaspar PD, Willis FB. Adhesive capsulitis and dynamic splinting: a controlled, cohort study. *BMC Musculoskeletal Disorders* 2009; 10: 111.
4. Dundar U, Toktas H, Cakir T, Evcik D, Kavuncu V. Continuous passive motion provides good pain control in patients with adhesive capsulitis. *International Journal of Rehabilitation Research* 2009; 32(3): 193-198.
5. Wadsworth CT. Frozen shoulder. *Physical Therapy* 1986; 66(12): 1878-1883.
6. Griggs SM, Ahn A, Green A. Idiopathic adhesive capsulitis: a prospective functional outcome study of nonoperative treatment. *Journal of Bone and Joint Surgery (American)* 2000; 82-A(10): 1398-1407.
7. Pajareya K, Chadchavalpanichaya N, Painmanakit S, Kaidwan C, Puttaruksa P, Wongsaranuchit Y. Effectiveness of physical therapy for patients with adhesive capsulitis: a randomized controlled trial. *Journal of Medical Association Thailand* 2004; 87(5): 473-480.
8. Sheridan MA, Hannafin JA. Upper extremity: Emphasis on frozen shoulder. *Orthopaedic Clinics of North America* 2006; 37: 531-539.
9. Green S, Buchbinder R, Hetrick SE. Acupuncture for shoulder pain. *Cochrane Database of Systematic Reviews* 2005, Issue 2. Art. No.: CD005319.
10. Van der Heijden GJ, van der Windt DA, de Winter AF. Physiotherapy for patients with soft tissue shoulder disorders: a systematic review of randomized controlled trials. *British Medical Journal* 1997; 315(7099): 141-149.
11. Desmeules F, Cote CH, Fremont P. Therapeutic exercise and orthopedic manual therapy for impingement syndrome: a systematic review.
12. Green S, Buchbinder R, Hetrick S. Physiotherapy interventions for shoulder pain. *Cochrane Database of Systematic Reviews* 2003; (2): CD004258.
13. Ejnisman B, Andreoli CV, Soares BG, Fallopia F, Peccin MS, Abdalla RJ, et al. Interventions for tears of the rotator cuff in adults. *Cochrane Database Systematic Reviews* 2004. CD002758.
14. Grant HJ, Arthur A, Pichora DR. Evaluation of interventions for rotator cuff pathology: a systematic review. *Journal of Hand Therapy* 2004; 17: 274-99. Faber E, Kuiper JL, Burdorf A, Miedema HS, Verhaar JA. Treatment of impingement syndrome: a systematic review of the effects on functional limitations and return to work. *Journal of Occupational Rehabilitation* 2006; 16: 7-25.
15. Trampas A, Kitsios A. Exercise and manual therapy for the treatment of impingement syndrome of the shoulder: a systematic review. *Physical Therapy Reviews*. 2006;11:125-142.
16. Stergioulas A. Low-power laser treatment in patients with frozen shoulder: preliminary results. *Photomedicine Laser and Surgery* 2008; 26(2): 99-105.
17. Cheing L, So EM, Chao CY. Effectiveness of electroacupuncture and interferential electrotherapy in the management of frozen shoulder. *Journal of Rehabilitation Medicine* 2008; 40(3): 166-170.
18. Hamer J, Kirk JA. Physiotherapy and the frozen shoulder: a comparative trial of ice and ultrasonic therapy. *New Zealand Medical Journal* 1976; 83(560): 191-192.
19. Leung MS, Cheing GL. Effects of deep and superficial heating in the management of frozen shoulder. *Journal of Rehabilitation Medicine* 2008; 40(2): 145- 150.
20. Ainsworth R, Dziedzic K, Hiller L, Daniels J, Bruton A, Broadfield J. A prospective double-blind placebo-controlled randomized trial of ultrasound in the physiotherapy treatment of shoulder pain. *Rheumatology* 2007; 46(5): 815-820.
21. Walther M, Werner A, Stahlschmidt T, Woelfel R, Gohlke F. *Journal of Shoulder and Elbow Surgery* 2004; 13(4): 417-423.
22. Thelen MD, Dauber JA, Stoneman PD. The clinical efficacy of kinesio-tape for shoulder pain: a randomized, double-blinded, clinical trial. *Journal of Orthopaedics and Sports Physical Therapy* 2008; 38(7): 389-395.
23. Selkowitz DM, Chaney C, Stuckey SJ, Vlad G. The effects of scapular taping on the surface electromyographic signal amplitude of shoulder girdle muscles during upper

extremity elevation in individuals with suspected shoulder impingement syndrome. *Journal of Orthopaedics and Sports Physical Therapy* 2007; 37(11): 694-702.

24. Van den Dolder PA, Roberts DL. A trial into the effectiveness of soft tissue massage in the treatment of shoulder pain. *Australian Journal of Physiotherapy* 2003; 49: 183-8.

25. Donatelli RA, Greenfield B. Case study: rehabilitation of a stiff and painful shoulder: a biomechanical approach. *Journal of Orthopaedics and Sports Physical Therapy* 1987; 9(3): 118-126.

26. Bronfort G, Haas M, Evans R, Leininger B, Triano J. Effectiveness of manual therapies: the UK evidence report. *Chiropractic and Osteopathy* 2010;18:3.

27. Bang MD, Deyle GD. Comparison of supervised exercise with and without manual physical therapy for patients with shoulder impingement syndrome. *Journal of Orthopaedics and Sports Physical Therapy* 2000; 30(3): 126-137.

28. Senbursa G, BaltaciG, Atay A. Comparison of conservative treatment with and without manual physical therapy for patients with shoulder impingement syndrome: a prospective randomized clinical trial. *Knee Surgery, Sports Traumatology and Arthroscopy* 2007; 15(7): 915-921.

29. Camarinos J, Marinko L. Effectiveness of Manual Physical Therapy for Painful Shoulder Conditions: A Systematic Review. *The Journal of Manual & Manipulative Therapy* 2009; 17(4): 206-215.

30. Kromer TO, Tautenhahn UG, de Bie RA, Staal JB, Bastiaenen CH. Effects of physiotherapy in patients with shoulder impingement syndrome: a systematic review of the literature. *Journal of Rehabilitation Medicine* 2009; 41(11): 870-880.

31. Bergman GJD, Winters JC, Groenier KH, Pool JJM, Jong M, Postema K, van der Heijden GJMG. Manipulative therapy in addition to usual medical care for patients with shoulder dysfunction and pain- a randomized controlled trial. *Annals of Internal Medicine* 2004; 141(6): 432-439.

32. Young B, Walker MJ, Strunce J, Boyles R. A combined treatment approach emphasizing impairment-based manual physical therapy for plantar heel pain: a case-series. *Journal of Orthopaedics and Sports Physical Therapy* 2004; 34(11): 725- 733.

33. Cleland JA, Abbott JH, Kidd MO, Stockwell S, Cheney S, Gerrard DF, Flynn TW. Manual physical therapy and exercise versus electrophysical agents and exercise in the management of plantar heel pain: a multicenter randomized clinical trial. *Journal of Orthopaedic and Sports Physical Therapy* 2009;39(8):573-585.

34. Kelley MJ, McClure PW, Leggin BG. Frozen shoulder: evidence and a proposed model guiding rehabilitation. *Journal of Orthopaedics and Sports Physical Therapy* 2009; 39(2): 135-148.

35. Walmsley S, Rivett DA, Osmotherly PC. Adhesive capsulitis: establishing consensus on clinical identifiers for stage-1 using the Delphi technique. *Physical Therapy* 2009; 89: 906-917.

36. Yang JJ, Lin JJ. Reliability of function-related tests in patients with shoulder pathologies. *Journal of Orthopaedics and Sports Physical Therapy* 2006; 36(8): 572-576.

37. Jensen MP, Turner JA, Romano JM, Fisher LD. Comparative reliability and validity of chronic pain intensity measures. *Pain*. 1999;83:157-162.

38. Lentz TA, Barabas JA, Day T, Bishop MD, George SZ. The relationship of pain intensity, physical impairment and pain-related fear to function in patients with shoulder pathology. *Journal of Orthopaedics and Sports Physical Therapy* 2009;39:270-277.

39. Bird SB, Dickson EW. Clinically significant changes in pain along the visual analogue scale. *Ann Emerg Med*. 2001;38:639-643.

40. Fosnocht DE, Swanson ER, Davis J, Bossart P: Percent change in VAS that is clinically significant for pain relief. *Acad Emerg Med* 2002, 9(5):407.

41. Tveita EK, Ekeberg OM, Juel NG, Bautz-Holter E. Range of shoulder motion in patients with adhesive capsulitis; Intra-tester reproducibility is acceptable for group comparisons. *BMC Musculoskeletal Disorders* 2008a; 9: 49. This article is available from: <http://www.biomedcentral.com/1471-2474/9/49>

42. Riddle DL, Rothstein JM, Lamb RL. Goniometric reliability in clinical setting-shoulder measurements. *Physical Therapy* 1987; 67(5): 668-673.

43. Hayes K, Walton JR, Szomor ZL and Murrell GAC. Reliability of five methods for assessing shoulder range of motion. *Australian Journal of Physiotherapy* 2001; 47: 289-294.

44. Rundquist PJ, Ludewig PM. Correlation of 3-dimensional shoulder kinematics to function in subjects with idiopathic loss of shoulder range of motion. *Physical therapy* 2005; 85(7): 636-647.

45. Roach KE, Budiman-Mak E, Songsiridej N, Lertratanakul Y. Development of a shoulder pain and disability index. *Arthritis Care and Research* 1991; 4(4): 143-149.

46. Roddey TS, Olson SL, Cook KF, Gartsman GM, Hanten W. Comparison of the university

of California-Los Angeles shoulder scale and simple shoulder test with the shoulder pain and disability index: single-administration reliability and validity. *Physical Therapy* 2000; 80(8): 759-768.

47. Tveita EK, Ekeberg OM, Juel NG, Bautz-Holter E. Responsiveness of the shoulder pain and disability index in patients with adhesive capsulitis. *BMC Musculoskeletal Disorders* 2008; 9: 161.

48. Heald SL, Riddle DL, Lamb RL. The shoulder pain and disability index: the construct validity and responsiveness of a region-specific disability measure. *Physical Therapy* 1997; 77(10): 1079-1089.

49. MacDermid JC, Solomon P, Prkachin K. The shoulder pain and disability index demonstrates factor, construct and longitudinal validity. *BMC Musculoskeletal Disorders* 2006; 7:12.

50. Williams JW, Holleman DR Jr, Simel DL. Measuring shoulder function with the shoulder pain and disability index. *Journal of Rheumatology* 1995; 22(4): 727-732.

51. Tveita EK, Sandvik L, Ekeberg OM, Juel NG, Bautz-Holter E. Factor structure of the Shoulder Pain and Disability Index in patients with adhesive capsulitis. *BMC Musculoskeletal Disorders* 2008; 9: 103.

52. Sole G. A multi-structural approach to treatment of a patient with sub-acromial impingement: a case report. *The Journal of Manual & Manipulative Therapy* 2003; 11(1): 49-55.

53. Cyriax J. Diagnosis at the shoulder. *South African Medical Journal* 1958; 32: 62-68.

54. Magarey ME, Jones MA. Clinical evaluation, diagnosis and passive management of the shoulder complex. *NZ J Physiother* 2004;32:55-66.

55. Stevenson JR, Vaughn DW. Four cardinal principles of joint mobilization and joint play assessment. *The Journal of Manual & Manipulative Therapy* 2003; 11(3): 146-152.

56. Van Duijn AJ, Jewen RH. Reliability of inferior glide mobility testing of the glenohumeral joint. *The Journal of Manual & Manipulative Therapy* 2001; 9(2): 109-114.

57. Myburgh C, Larsen AH, Hartvigsen J. A systematic, critical review of manual palpation for identifying myofascial trigger points: evidence and clinical significance. *Arch Phys Med Rehabil* 2008;89:1169-76.

58. Rabin A, Irrgang JJ, Fitzgerald GK, Eubanks A. Inter-tester reliability of the scapular assistance test. *Journal of Orthopaedics and Sports Physical Therapy* 2006; 36(9): 653-660.

59. Magarey ME, Jones MA. Dynamic evaluation and early management of altered motor control around the shoulder complex. *Manual Therapy* 2003; 8(4): 195-206.

60. Magarey ME, Jones MA. Specific evaluation of the function of force couples relevant for stabilization of the glenohumeral joint. *Manual Therapy* 2003b; 8(4) : 247-253.

61. Butler DS. Adverse mechanical tension in the nervous system: a model for assessment and treatment. *The Australian Journal of Physiotherapy* 1989; 35(4): 227-238.

62. Butler DS. *The sensitive nervous system*. Unley: Noigroup Publications; 2000.

63. Shacklock MO. *Neurodynamics*. *Physiotherapy* 1995; 81(1): 9-16.

64. Shacklock MO. *Clinical neurodynamics: a new system of musculoskeletal treatment*. Edinburgh, New York: Elsevier Butterworth-Heinemann; 2005.

65. Shacklock MO. Improving application of neurodynamic (neural tension) testing and treatments: A message to researchers and clinicians- Editorial. *Manual Therapy* 2005; 10: 175-179.

66. Coppieters MW, Butler DS. Do 'sliders' slide and 'tensioners' tension? An analysis of neurodynamic techniques and considerations regarding their application. *Manual Therapy* 2008; 13(3): 213-221.

67. Coppieters MW, Stappaerts KH, Staes FF, Everaert DG. Shoulder girdle elevation during neurodynamic testing: an assessable sign? *Manual Therapy* 2001;6:88-96.

68. Coppieters MW, Stappaerts KH, Everaert DG, Staes FF. A qualitative assessment of shoulder girdle elevation during the upper limb tension test-1. *Man Ther* 1999;4:33-38.

69. Kumar SP. Sorting out lemons and oranges: towards a better quality of reporting clinical trials in journal of physical therapy- the CONSORT 2010 statement. *Journal of Physical Therapy* 2010;1:1-10.

70. Hancock MJ, Maher CG, Latimer J, McAuley JH. Selecting an appropriate placebo for a trial of spinal manipulative therapy. *Aus J Physiother* 2006;52:135-138.

71. Beneciuk JM, Bishop MD, George SZ. Effects of upper extremity neural mobilization on thermal pain sensitivity: a sham-controlled study in asymptomatic participants. *J Orthop Sports Phys Ther* 2009;39:428-438.

72. Bialosky JE, Bishop MD, Price DD, Robinson ME, Vincent KR, George SZ. A randomized sham-controlled trial of a neurodynamic technique in the treatment of carpal tunnel syndrome. *J Orthop Sports Phys Ther*

2009;39:709-723.

73. Mulligan B. The Painful Dysfunctional Shoulder. A new treatment approach using 'mobilisation with movement'. *New Zealand Journal of Physiotherapy* 2003;31:140-142.

74. Elvey R, Hall T. Neural tissue evaluation and treatment. In: Donatelli R (ed.) *Physical Therapy of the Shoulder*, 3rd ed. Churchill Livingstone, New York, 1997. pp 131-152.

75. McClure P, Balaicuis J, Heiland D, Broersma ME, Thorndike CK, Wood A. A randomized controlled comparison of stretching procedures for posterior shoulder tightness. *Journal of Orthopaedics and Sports Physical Therapy* 2007; 37(3): 108- 114.

76. Ruiz JO. Positional stretching of the coracohumeral ligament on a patient with adhesive capsulitis: a case report. *The Journal of Manual & Manipulative Therapy* 2009; 17(1): 58-63.

77. Maitland GD. *Peripheral manipulation*. Butterworth-Heinemann, London, 1991.

78. Strunce JB, Walker MJ, Boyles RE, Young BA. The immediate effects of thoracic spine and rib manipulation on subjects with primary complaints of shoulder pain. *The Journal of Manual & Manipulative Therapy* 2009;17:230-236.

79. Jones MA. Clinical reasoning in manual therapy. *Physical Therapy* 1992;72:875-884.

80. Manheim CJ. *The myofascial release manual*. Slack publishers Inc, 1998.

81. Hains G. Chiropractic management of shoulder pain and dysfunction of myofascial origin using ischemic compression techniques. *J Can Chiropr Assoc* 2002;46:192-200.

82. Roy JS, Moffet H, Hebert LJ, Lurette R. Effect of motor control and strengthening exercises on shoulder function in persons with impingement syndrome: a single-subject study design. *Manual therapy* 2009; 14: 180-188.

83. Jam B. New paradigms in rotator cuff retraining. Advanced physical therapy education institute, Canada. Available at: [www.aptei.com/articles/pdf/Rotator\\_Cuff.pdf](http://www.aptei.com/articles/pdf/Rotator_Cuff.pdf) Accessed: 19th June 2010.

84. Butler DS. *Mobilization of the nervous system*. Churchill-Livingstone.

85. Coppieters MW, Butler DS. Do 'sliders' slide and 'tensioners' tension? An analysis of neurodynamic techniques and considerations regarding their application. *Manual Therapy* 2008; 13: 213-221.

86. Sherifali D, Nerenberg K, Pullenayegum E, Cheng JE, Gerstein HC. The Effect of Oral Antidiabetic Agents on Glycated Hemoglobin Levels: A Systematic Review and Meta-Analysis. *Diabetes Care*. (published ahead of print May 18, 2010) doi:10.2337/dc09-1727.

87. Yeh GY, Eisenberg DM, Kachuk TJ, Phillips RS. Systematic review of herbs and dietary supplements for glycemic control in diabetes. *Diabetes Care* 2003;26:1277-1294.

88. Pigman HT, Gan DX, Krousel-Wood MA. Role of exercise for type-2 diabetic patient management. *Southern Medical Journal* 2002; 95(1): 72-77.

89. Peyrot M, Rubin RR. Behavioral and psychosocial interventions in diabetes. *Diabetes Care* 2007;30:2433-2440.

90. Jeon CY, Lokken RP, Hu FB, van Dam RM. Physical activity of moderate intensity and risk of type-2 diabetes- a systematic review. *Diabetes Care* 2007;30:744-752.

91. Chen JF, Ginn KA, Herbert RD. Passive mobilization of the shoulder region joints plus advice and exercise alone does not reduce pain and disability more than advice and exercise alone: a randomized trial. *Aus J Physiother* 2009;55:17-23.

92. Bergman GJD, Winters JC, Groenier KH, Pool JJM, Meyboom-de Jong B, Postema K, et al. Manipulative therapy in addition to usual medical care for patients with shoulder pain and dysfunction. A randomized, controlled trial. *Ann Intern Med* 2004;141:432-9.

93. Bergman GJD, Winters JC, Groenier KH, Meyboom-de Jong B, Postema K, van der Heijden. Manipulative therapy in addition to usual care for patients with shoulder complaints: results of physical examination outcomes in a randomized controlled trial. *J Manipulative Physiol Ther* 2010;33:96-101.

94. Jewell DV, Riddle DL, Thacker LR. Interventions associated with an increased or decreased likelihood of pain reduction and improved function in patients with adhesive capsulitis: a retrospective cohort study. *Phys Ther*. 2009;89:419-429.

95. Miller FG, Kaptchuk TJ. Sham procedures and the ethics of clinical trials. *J R Soc Med* 2004;97:576-578.

96. Brandt C, Sole G, Karuse MW, Nel M. An evidence-based review on the validity of the Kaltenborn rule as applied to the glenohumeral joint. *Man Ther* 2007;12:3-11.

97. Cleland J, Selleck B, Stowell T, Browne L, Alberini S, Cyr HS, Caron T. Short-term effects of thoracic manipulation on lower trapezius muscle strength. *The Journal of Manual & Manipulative Therapy* 2004; 12(2): 82-90.

98. Odom CJ, Taylor AB, Hurd CE, Denegar CR. Measurement of scapular asymmetry and

assessment of shoulder dysfunction using the Lateral Scapular Slide Test: a reliability and validity study. *Physical Therapy* 2001; 81: 799-809.

99. Koslow PA, Prosser LA, Strony GA, Schecki SL, Mattingly GE. Specificity of the lateral scapular slide test in asymptomatic competitive athletes. *Journal of Orthopaedics and Sports Physical Therapy* 2003; 33(6): 331-336.

100. Miller P, Osmotherly P. Does scapular taping facilitate recovery for shoulder impingement symptoms? A pilot randomized controlled trial. *The Journal of Manual and Manipulative Therapy* 2009; 17(1): E6-E13.

101. Vanderweeën L, Oostendorp RAB, Vaes P, Duquet W. Pressure algometry in manual therapy. *Man Ther* 1996;1:258-265.

102. Walsh J, Hall T. Reliability, validity and diagnostic accuracy of palpation of the sciatic, tibial and common peroneal nerves in the examination of low back related leg pain. *Man Ther* 2009;14:623-629.

103. Hough AD, Moore AP, Jones MP. Measuring longitudinal nerve motion using ultrasonography. *Man Ther* 2000;5:173-180.

104. Rauoof MA, Lone NA, Bhat BA, Habib S. Etiological factors and clinical profile of adhesive capsulitis in patients seen at the rheumatology clinic of a tertiary care hospital in India. *Saudi Medical Journal* 2004; 25(3): 359-362.

105. Conte AL, Marques AP, Casaratto RA, Amado-Joao SM. Handedness influences passive shoulder range of motion on non-athlete adult women. *Journal of Manipulative and Physiological Therapeutics* 2009; 32(2): 149-153.

106. Oostendorp RAB. Manual physical therapy in the Netherlands: reflecting on the past and planning for the future in an international perspective. *The Journal of Manual and Manipulative Therapy* 2007; 15(3): 133-141.

107. Speed C. Shoulder pain. *BMJ Clin Evid* 2008;1:1107.

108. Schellinghout JM, Verhagen AP, Thomas S, Koes BW. Lack of uniformity in diagnostic labeling of shoulder pain: time for a different approach. *Manual Therapy* 2008; 13: 478-483.

109. Caldwell C, Sahrmann S, Dillen LV. Use of a movement system impairment diagnosis for physical therapy in the management of a patient with shoulder pain. *Journal of Orthopaedics and Sports Physical Therapy* 2007; 37(9): 551-563.

110. Unthoff HK, Boileau P. Primary frozen shoulder: global capsular stiffness versus localized contracture. *Clinical Orthopaedics and Related Research* 2007; 456: 79-84.



## Physiotherapy and Occupational Therapy Journal

### **Library Recommendation Form**

If you would like to recommend this journal to your library, simply complete the form given below and return it to us. Please type or print the information clearly. We will forward a sample copy to your library, along with this recommendation card.

#### **Please send a sample copy to:**

Name of Librarian

Name of Library

Address of Library

#### **Recommended by:**

Your Name/ Title

Department

Address

#### **Dear Librarian,**

I would like to recommend that your library subscribe to the Physiotherapy and Occupational Therapy Journal. I believe the major future uses of the journal for your library would provide:

1. Useful information for members of my specialty.
2. An excellent research aid.
3. An invaluable student resource.

**I have a personal subscription and understand and appreciate the value an institutional subscription would mean to our staff.**

Should the journal you're reading right now be a part of your University or institution's library? To have a free sample sent to your librarian, simply fill out and mail this today!

#### **Stock Manager**

Red Flower Publication Pvt. Ltd.

48/41-42, DSIDC, Pocket-II

Mayur Vihar Phase-I

Delhi - 110 091(India)

Phone: 91-11-79695648, 22754205, 22756995, Cell: +91-9821671871

E-mail: sales@rfppl.co.in

## Guidelines for Authors

Manuscripts must be prepared in accordance with "Uniform requirements for Manuscripts submitted to Biomedical Journal" developed by international committee of medical Journal Editors

### Types of Manuscripts and Limits

Original articles: Up to 3000 words excluding references and abstract and up to 10 references.

Review articles: Up to 2500 words excluding references and abstract and up to 10 references.

Case reports: Up to 1000 words excluding references and abstract and up to 10 references.

### Online Submission of the Manuscripts

Articles can also be submitted online from [http://rfppl.co.in/customer\\_index.php](http://rfppl.co.in/customer_index.php).

I) First Page File: Prepare the title page, covering letter, acknowledgement, etc. using a word processor program. All information which can reveal your identity should be here. use text/rtf/doc/PDF files. Do not zip the files.

2) Article file: The main text of the article, beginning from Abstract till References (including tables) should be in this file. Do not include any information (such as acknowledgement, your name in page headers, etc.) in this file. Use text/rtf/doc/PDF files. Do not zip the files. Limit the file size to 400 Kb. Do not incorporate images in the file. If file size is large, graphs can be submitted as images separately without incorporating them in the article file to reduce the size of the file.

3) Images: Submit good quality color images. Each image should be less than 100 Kb in size. Size of the image can be reduced by decreasing the actual height and width of the images (keep up to 400 pixels or 3 inches). All image formats (jpeg, tiff, gif, bmp, png, eps etc.) are acceptable; jpeg is most suitable.

Legends: Legends for the figures/images should be included at the end of the article file.

If the manuscript is submitted online, the contributors' form and copyright transfer form has to be submitted in original with the signatures of all the contributors within two weeks from submission. Hard copies of the images (3 sets), for articles submitted online, should be sent to the journal office at the time of submission of a revised manuscript. Editorial office: Red Flower Publication Pvt. Ltd., 48/41-42, DSIDC, Pocket-II, Mayur Vihar Phase-I, Delhi - 110 091, India, Phone: 91-11-22754205, 45796900, 22756995. E-mail: [author@rfppl.co.in](mailto:author@rfppl.co.in). Submission page: [http://rfppl.co.in/article\\_submission\\_system.php?mid=5](http://rfppl.co.in/article_submission_system.php?mid=5).

### Preparation of the Manuscript

The text of observational and experimental articles should be divided into sections with the headings: Introduction, Methods, Results, Discussion, References, Tables, Figures, Figure legends, and Acknowledgment. Do not make subheadings in these sections.

### Title Page

The title page should carry

- 1) Type of manuscript (e.g. Original article, Review article, Case Report)
- 2) The title of the article should be concise and informative;
- 3) Running title or short title not more than 50 characters;
- 4) The name by which each contributor is known (Last name, First name and initials of middle name), with his or her highest academic degree(s) and institutional affiliation;
- 5) The name of the department(s) and institution(s) to which the work should be attributed;
- 6) The name, address, phone numbers, facsimile numbers and e-mail address of the contributor responsible for correspondence about the manuscript; should be mentioned.
- 7) The total number of pages, total number of photographs and word counts separately for abstract and for the text (excluding the references and abstract);
- 8) Source(s) of support in the form of grants, equipment, drugs, or all of these;
- 9) Acknowledgement, if any; and
- 10) If the manuscript was presented as part at a meeting, the organization, place, and exact date on which it was read.

### Abstract Page

The second page should carry the full title of the manuscript and an abstract (of no more than 150 words for case reports, brief reports and 250 words for original articles). The abstract should be structured and state the Context (Background), Aims, Settings and Design, Methods and Materials, Statistical analysis used, Results and Conclusions. Below the abstract should provide 3 to 10 keywords.

## Guidelines for Authors

### Introduction

State the background of the study and purpose of the study and summarize the rationale for the study or observation.

### Methods

The methods section should include only information that was available at the time the plan or protocol for the study was written such as study approach, design, type of sample, sample size, sampling technique, setting of the study, description of data collection tools and methods; all information obtained during the conduct of the study belongs in the Results section.

Reports of randomized clinical trials should be based on the CONSORT Statement (<http://www.consort-statement.org>). When reporting experiments on human subjects, indicate whether the procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional or regional) and with the Helsinki Declaration of 1975, as revised in 2000 (available at [http://www.wma.net/e/policy/17-c\\_e.html](http://www.wma.net/e/policy/17-c_e.html)).

### Results

Present your results in logical sequence in the text, tables, and illustrations, giving the main or most important findings first. Do not repeat in the text all the data in the tables or illustrations; emphasize or summarize only important observations. Extra or supplementary materials and technical details can be placed in an appendix where it will be accessible but will not interrupt the flow of the text; alternatively, it can be published only in the electronic version of the journal.

### Discussion

Include summary of key findings (primary outcome measures, secondary outcome measures, results as they relate to a prior hypothesis); Strengths and limitations of the study (study question, study design, data collection, analysis and interpretation); Interpretation and implications in the context of the totality of evidence (is there a systematic review to refer to, if not, could one be reasonably done here and now?, What this study adds to the available evidence, effects on patient care and health policy, possible mechanisms)? Controversies raised by this study; and Future research directions (for this particular research collaboration, underlying mechanisms, clinical

research). Do not repeat in detail data or other material given in the Introduction or the Results section.

### References

List references in alphabetical order. Each listed reference should be cited in text (not in alphabetic order), and each text citation should be listed in the References section. Identify references in text, tables, and legends by Arabic numerals in square bracket (e.g. [10]). Please refer to ICMJE Guidelines (<http://www.nlm.nih.gov/bsd/uniform-requirements.html>) for more examples.

### Standard journal article

[1] Flink H, Tegelberg Å, Thörn M, Lagerlöf F. Effect of oral iron supplementation on unstimulated salivary flow rate: A randomized, double-blind, placebo-controlled trial. *J Oral Pathol Med* 2006; 35: 540-7.

[2] Twetman S, Axelsson S, Dahlgren H, Holm AK, Kälestål C, Lagerlöf F, et al. Caries-preventive effect of fluoride toothpaste: A systematic review. *Acta Odontol Scand* 2003; 61: 347-55.

### Article in supplement or special issue

[3] Fleischer W, Reimer K. Povidone-iodine antisepsis. State of the art. *Dermatology* 1997; 195 Suppl 2: 3-9.

### Corporate (collective) author

[4] American Academy of Periodontology. Sonic and ultrasonic scalers in periodontics. *J Periodontol* 2000; 71: 1792-801.

### Unpublished article

[5] Garoushi S, Lassila LV, Tezvergil A, Vallittu PK. Static and fatigue compression test for particulate filler composite resin with fiber-reinforced composite substructure. *Dent Mater* 2006.

### Personal author(s)

[6] Hosmer D, Lemeshow S. *Applied logistic regression*, 2nd edn. New York: Wiley-Interscience; 2000.

### Chapter in book

[7] Nauntofte B, Tenovuo J, Lagerlöf F. Secretion and composition of saliva. In: Fejerskov O,

## Guidelines for Authors

Kidd EAM, editors. Dental caries: The disease and its clinical management. Oxford: Blackwell Munksgaard; 2003. pp 7-27.

### No author given

[8] World Health Organization. Oral health surveys - basic methods, 4<sup>th</sup> edn. Geneva: World Health Organization; 1997.

### Reference from electronic media

[9] National Statistics Online—Trends in suicide by method in England and Wales, 1979–2001. [www.statistics.gov.uk/downloads/theme\\_health/HSQ20.pdf](http://www.statistics.gov.uk/downloads/theme_health/HSQ20.pdf) (accessed Jan 24, 2005): 7-18. Only verified references against the original documents should be cited. Authors are responsible for the accuracy and completeness of their references and for correct text citation. The number of reference should be kept limited to 20 in case of major communications and 10 for short communications.

More information about other reference types is available at [www.nlm.nih.gov/bsd/uniform\\_requirements.html](http://www.nlm.nih.gov/bsd/uniform_requirements.html), but observes some minor deviations (no full stop after journal title, no issue or date after volume, etc.).

### Tables

Tables should be self-explanatory and should not duplicate textual material.

Tables with more than 10 columns and 25 rows are not acceptable.

Table numbers should be in Arabic numerals, consecutively in the order of their first citation in the text and supply a brief title for each.

Explain in footnotes all non-standard abbreviations that are used in each table.

For footnotes use the following symbols, in this sequence: \*, ¶, †, ‡.

### Illustrations (Figures)

Graphics files are welcome if supplied as Tiff, EPS, or PowerPoint files of minimum 1200x1600 pixel size. The minimum line weight for line art is 0.5 point for optimal printing.

When possible, please place symbol legends below the figure instead of the side.

Original color figures can be printed in color at the editor's and publisher's discretion provided the author agrees to pay.

Type or print out legends (maximum 40 words, excluding the credit line) for illustrations using double spacing, with Arabic numerals corresponding to the illustrations.

### Sending a revised manuscript

While submitting a revised manuscript, contributors are requested to include, along with single copy of the final revised manuscript, a photocopy of the revised manuscript with the changes underlined in red and copy of the comments with the point-to-point clarification to each comment. The manuscript number should be written on each of these documents. If the manuscript is submitted online, the contributors' form and copyright transfer form has to be submitted in original with the signatures of all the contributors within two weeks of submission. Hard copies of images should be sent to the office of the journal. There is no need to send printed manuscript for articles submitted online.

### Reprints

Journal provides no free printed, reprints, however a author copy is sent to the main author and additional copies are available on payment (ask to the journal office).

### Copyrights

The whole of the literary matter in the journal is copyright and cannot be reproduced without the written permission.

### Declaration

A declaration should be submitted stating that the manuscript represents valid work and that neither this manuscript nor one with substantially similar content under the present authorship has been published or is being considered for publication elsewhere and the authorship of this article will not be contested by any one whose name(s) is/are not listed here, and that the order of authorship as placed in the manuscript is final and accepted by the co-authors. Declarations should be signed by all the authors in the order in which they are mentioned in the original manuscript. Matters appearing in the Journal are covered by copyright but no objection will be made to their reproduction provided permission is obtained from the Editor prior to publication and due acknowledgment of the source is made.

## Guidelines for Authors

### Approval of Ethics Committee

We need the Ethics committee approval letter from an Institutional ethical committee (IEC) or an institutional review board (IRB) to publish your Research article or author should submit a statement that the study does not require ethics approval along with evidence. The evidence could either be consent from patients is available and there are no ethics issues in the paper or a letter from an IRB stating that the study in question does not require ethics approval.

### Abbreviations

Standard abbreviations should be used and be spelt out when first used in the text. Abbreviations should not be used in the title or abstract.

### Checklist

- Manuscript Title
- Covering letter: Signed by all contributors
- Previous publication/ presentations mentioned, Source of funding mentioned
- Conflicts of interest disclosed

### Authors

- Middle name initials provided.
- Author for correspondence, with e-mail address provided.
- Number of contributors restricted as per the instructions.
- Identity not revealed in paper except title page (e.g. name of the institute in Methods, citing previous study as 'our study')

### Presentation and Format

- Double spacing
- Margins 2.5 cm from all four sides
- Title page contains all the desired information. Running title provided (not more than 50 characters)
- Abstract page contains the full title of the manuscript
- Abstract provided: Structured abstract provided for an original article.
- Keywords provided (three or more)
- Introduction of 75-100 words

- Headings in title case (not ALL CAPITALS). References cited in square brackets
- References according to the journal's instructions

### Language and grammar

- Uniformly American English
- Abbreviations spelt out in full for the first time. Numerals from 1 to 10 spelt out
- Numerals at the beginning of the sentence spelt out

### Tables and figures

- No repetition of data in tables and graphs and in text.
- Actual numbers from which graphs drawn, provided.
- Figures necessary and of good quality (color)
- Table and figure numbers in Arabic letters (not Roman).
- Labels pasted on back of the photographs (no names written)
- Figure legends provided (not more than 40 words)
- Patients' privacy maintained, (if not permission taken)
- Credit note for borrowed figures/tables provided
- Manuscript provided on a CDROM (with double spacing)

### Submitting the Manuscript

- Is the journal editor's contact information current?
- Is the cover letter included with the manuscript? Does the letter:
  1. Include the author's postal address, e-mail address, telephone number, and fax number for future correspondence?
  2. State that the manuscript is original, not previously published, and not under concurrent consideration elsewhere?
  3. Inform the journal editor of the existence of any similar published manuscripts written by the author?
  4. Mention any supplemental material you are submitting for the online version of your article. Contributors' Form (to be modified as applicable and one signed copy attached with the manuscript)