
Call for Editorial Board Members

As you are well aware that we are a medical and health sciences publishers; publishing peer-reviewed journals and books since 2004.

We are always looking for dedicated editorial board members for our journals. If you completed your master's degree and must have at least five years experience in teaching and having good publication records in journals and books.

If you are interested to be an editorial board member of the journal; please provide your complete resume and affiliation through e-mail (i.e. info@rfppl.co.in) or visit our website (i.e. www.rfppl.co.in) to register yourself online.

Call for Publication of Conference Papers/Abstracts

We publish pre-conference or post-conference papers and abstracts in our journals, and deliver hard copy and giving online access in a timely fashion to the authors.

For more information, please contact:

For more information, please contact:

A Lal

Publication-in-charge

Red Flower Publication Pvt. Ltd.

48/41-42, DSIDC, Pocket-II

Mayur Vihar Phase-I

Delhi - 110 091 (India)

Phone: 91-011-79695648

E-mail: info@rfppl.co.in

Free Announcements of your Conferences/Workshops/CMEs

This privilege to all Indian and other countries conferences organizing committee members to publish free announcements of your conferences/ workshops. If you are interested, please send your matter in word formats and images or pictures in JPG/JPEG/Tiff formats through e-mail attachments to sales@rfppl.co.in.

Terms & Conditions to publish free announcements:

1. Only conference organizers are eligible up to one full black and white page, but not applicable for the front, inside front, inside back and back cover, however, these pages are paid.
2. Only five pages in every issue are available for free announcements for different conferences.
3. This announcement will come in the next coming issue and no priority will be given.
4. All legal disputes subject to Delhi jurisdiction only.
5. The executive committee of the Red Flower Publication reserve the right to cancel, revise or modify terms and conditions any time without prior notice.

For more information, please contact:

A Lal
Publication-in-charge
Red Flower Publication Pvt. Ltd.
48/41-42, DSIDC, Pocket-II
Mayur Vihar Phase-I
Delhi - 110 091 (India)
Phone: 91-011-79695648
E-mail: info@rfppl.co.in

Win Free Institutional Subscription!

Simply fill out this form and return scanned copy through e-mail or by post to us.

Name of the Institution_____

Name of the Principal/Chairman_____

Management (Trust/Society/Govt./Company)_____

Address 1_____

Address 2_____

Address 3_____

City_____

Country_____

PIN Code_____

Mobile_____

Email_____

We are regular subscriber of Red Flower Publication journals.

Year of first subscription_____

List of ordered journals (if you subscriberd more than 5 titles, please attach separate sheet)

Ordered through

Name of the Vendor	Subscription Year	Direct/subs Yr

Name of the journal for which you wish to be free winner

Terms & Conditions to win free institutional subscription

1. Only institutions can participate in this scheme
2. In group institutions only one institution would be winner
3. Only five institutions will be winner for each journal
4. An institution will be winner only for one journal
5. The free subscription will be valid for one year only (i.e. 1 Jan – 31 Dec)
6. This free subscription is not renewable, however, can be renewed with payment
7. Any institution can again participate after five years
8. All legal disputes subject to Delhi jurisdiction only
9. This scheme will be available to participate throughout year, but draw will be held in last week of August every year
10. The executive committee of the Red Flower Publication reserve the right to cancel, revise or modify terms and conditions any time without prior notice.

I confirm and certify that the above information is true and correct to the best of my knowledge and belief.

Place:

Signature with Seal

Date:

Revised Rates for 2023 (Institutional)					
Title of the Journal	Frequency	India(INR) Print Only	India(INR) Online Only	Outside India(USD) Print Only	Outside India(USD) Online Only
Community and Public Health Nursing	Triannual	6500	6000	507.81	468.75
Indian Journal of Agriculture Business	Semiannual	6500	6000	507.81	468.75
Indian Journal of Anatomy	Quarterly	9500	9000	742.19	703.13
Indian Journal of Ancient Medicine and Yoga	Quarterly	9000	8500	703.13	664.06
Indian Journal of Anesthesia and Analgesia	Bi-monthly	8500	8000	664.06	625
Indian Journal of Biology	Semiannual	6500	6000	507.81	468.75
Indian Journal of Cancer Education and Research	Semiannual	10000	9500	781.25	742.19
Indian Journal of Communicable Diseases	Semiannual	9500	9000	742.19	703.13
Indian Journal of Dental Education	Quarterly	6500	6000	507.81	468.75
Indian Journal of Diabetes and Endocrinology	Semiannual	9000	8500	703.13	664.06
Indian Journal of Emergency Medicine	Quarterly	13500	13000	1054.69	1015.63
Indian Journal of Forensic Medicine and Pathology	Quarterly	17000	16500	1328.13	1289.06
Indian Journal of Forensic Odontology	Semiannual	6500	6000	507.81	468.75
Indian Journal of Genetics and Molecular Research	Semiannual	8000	7500	625	585.94
Indian Journal of Law and Human Behavior	Semiannual	7000	6500	546.88	507.81
Indian Journal of Legal Medicine	Semiannual	9500	9000	742.19	703.13
Indian Journal of Library and Information Science	Triannual	10500	10000	820.31	781.25
Indian Journal of Maternal-Fetal & Neonatal Medicine	Semiannual	10500	10000	820.31	781.25
Indian Journal of Medical and Health Sciences	Semiannual	8000	7500	625	585.94
Indian Journal of Obstetrics and Gynecology	Quarterly	10500	10000	820.31	781.25
Indian Journal of Pathology: Research and Practice	Triannual	13000	12500	1015.63	976.56
Indian Journal of Plant and Soil	Semiannual	7500	7000	585.94	546.88
Indian Journal of Preventive Medicine	Semiannual	8000	7500	625	585.94
Indian Journal of Research in Anthropology	Semiannual	13500	13000	1054.69	1015.63
Indian Journal of Surgical Nursing	Triannual	6500	6000	507.81	468.75
Indian Journal of Trauma and Emergency Pediatrics	Quarterly	10500	10000	820.31	781.25
Indian Journal of Waste Management	Semiannual	10500	10000	820.31	781.25
International Journal of Food, Nutrition & Dietetics	Triannual	6500	6000	507.81	468.75
International Journal of Forensic Science	Semiannual	11000	10500	859.38	820.31
International Journal of Neurology and Neurosurgery	Quarterly	11500	11000	898.44	859.68
International Journal of Pediatric Nursing	Triannual	6500	6000	507.81	468.75
International Journal of Political Science	Semiannual	7000	6500	546.88	507.81
International Journal of Practical Nursing	Triannual	6500	6000	507.81	468.75
International Physiology	Triannual	8500	8000	664.06	625
Journal of Aeronautical Dentistry	Quarterly	8000	7500	625	585.94
Journal of Animal Feed Science and Technology	Semiannual	9000	8500	703.13	664.06
Journal of Cardiovascular Medicine and Surgery	Quarterly	11000	10500	859.38	820.31
Journal of Emergency and Trauma Nursing	Semiannual	6500	6000	507.81	468.75
Journal of Food Additives and Contaminants	Semiannual	6500	6000	507.81	468.75
Journal of Food Technology and Engineering	Semiannual	6000	5500	468.75	429.69
Journal of Forensic Chemistry and Toxicology	Semiannual	10500	10000	820.31	781.25
Journal of Global Medical Education and Research	Semiannual	7000	6500	546.88	507.81
Journal of Global Public Health	Semiannual	13000	12500	1015.63	976.56
Journal of Microbiology and Related Research	Semiannual	9500	9000	742.19	703.13
Journal of Nurse Midwifery and Maternal Health	Triannual	6500	6000	507.81	468.75
Journal of Orthopedic Education	Triannual	6500	6000	507.81	468.75
Journal of Pharmaceutical and Medicinal Chemistry	Semiannual	17500	17000	1367.19	1328.13
Journal of Plastic Surgery and Transplantation	Semiannual	27500	27000	2148.44	2109.38
Journal of Psychiatric Nursing	Triannual	6500	6000	507.81	468.75
Journal of Radiology	Semiannual	9000	8500	703.13	664.06
Journal of Social Welfare and Management	Quarterly	8500	8000	664.06	625
New Indian Journal of Surgery	Quarterly	9000	8500	703.13	664.06
Ophthalmology and Allied Sciences	Triannual	7000	6500	546.88	507.81
Pediatrics Education and Research	Quarterly	8500	8000	664.06	625
Physiotherapy and Occupational Therapy Journal	Quarterly	10000	9500	781.25	742.19
RFP Gastroenterology International	Semiannual	7000	6500	546.88	507.81
RFP Indian Journal of Hospital Infection	Semiannual	13500	13000	1054.69	1015.63
RFP Indian Journal of Medical Psychiatry	Semiannual	9000	8500	703.13	664.06
RFP Journal of Biochemistry and Biophysics	Semiannual	8000	7500	625	585.94
RFP Journal of Dermatology	Semiannual	6500	6000	507.81	468.75
RFP Journal of ENT and Allied Sciences	Semiannual	6500	6000	507.81	468.75
RFP Journal of Gerontology and Geriatric Nursing	Semiannual	6500	6000	507.81	468.75
RFP Journal of Hospital Administration	Semiannual	8000	7500	625	585.94
Urology, Nephrology and Andrology International	Semiannual	8500	8000	664.06	625

Terms of Supply:

1. Agency discount 12.5%. Issues will be sent directly to the end user, otherwise foreign rates will be charged.
2. All back volumes of all journals are available at current rates.
3. All journals are available free online with print order within the subscription period.
4. All legal disputes subject to Delhi jurisdiction.
5. Cancellations are not accepted orders once processed.
6. Demand draft/cheque should be issued in favour of "Red Flower Publication Pvt. Ltd." payable at Delhi.
7. Full pre-payment is required. It can be done through online (<http://rfppl.co.in/subscribe.php?mid=7>).
8. No claims will be entertained if not reported within 6 months of the publishing date.
9. Orders and payments are to be sent to our office address as given below.
10. Postage & Handling is included in the subscription rates.
11. Subscription period is accepted on calendar year basis (i.e. Jan to Dec). However orders may be placed any time throughout the year.

Order from

Red Flower Publication Pvt. Ltd., 48/41-42, DSIDC, Pocket-II, Mayur Vihar Phase-I, Delhi - 110 091 (India)
Mobile: 8130750089, Phone: 91-11-79695648 E-mail: sales@rfppl.co.in, Website: www.rfppl.co.in

Editor-in-Chief

Niraj Kumar

Institute of Medical & Health Science, Uttrakhand

Former Editor-in-Chief

Narasimman S, Mangalore

Meenakshi Singh, Delhi

National Editorial Board Member

Ravinder Narwal, Dehradun

Sanjai Kumar, Meerut

Mohammed Aslam, Uttaranchal

Dipali P. Rana, Gujarat

Parthkumar Devmurari, Gujarat

Senthil P Kumar, Karnataka

Sumit Raghav, Uttar pradesh

Purnima Singh, Karnataka

Neha Gupta, Noida

Neeraj Kumar, Maharashtra

Priyanka Chugh, New Delhi

Hina Gupta, Moradabad

Tanya Gujral, New Delhi

Jaspreet Kaur Kang, Gandhinagar

Chaya Garg, Noida

Monika Moitra, Ambala Cantt

Chirag Solanki, Rajkot

Dharam Pani Pandey, Delhi

Charu Chopra, New Delhi

Chandan Kumar, Uttar Pradesh

International Editorial Board Member

Subashini Jayawardana, Colombo University of Colombo, Sri Lanka

Krunal Vishwas Desai, Physical Medicine & Rehabilitation Hospital, Kuwait

Md. Abu Shaphe, Jazan University, Saudi Arabia

Managing Editor

A. Lal

Publication Editor

Dinesh Kr. Kashyap

Indexing information: Index Copernicus, Poland; NLM catalogue & locator plus, USA; JournalSeek; World Cat; Gaudeamus Academia; Science Library Index; The International Committee of Medical Journal Editors (ICMJE).

© 2023 Red Flower Publication Pvt. Ltd. All rights reserved.

The views and opinions expressed are of the authors and not of the **Physiotherapy and Occupational Therapy Journal**. Physiotherapy and Occupational Therapy Journal does not guarantee directly or indirectly the quality or efficacy of any product or service featured in the advertisement in the journal, which are purely commercial.

Corresponding address

Red Flower Publication Pvt. Ltd.

48/41-42, DSIDC, Pocket-II, Mayur Vihar, Phase-I
Delhi - 110 091 (India), Phone: 91-11-79695648
E-mail: info@rfppl.co.in, Website: www.rfppl.co.in

The Physiotherapy and Occupational Therapy Journal (pISSN: 0974-5777, eISSN: 2455-8362, Registered with Registrar of Newspapers for India: DELENG/2007/22242) on topics pertaining to physical therapy and rehabilitation. Coverage includes geriatric therapy, pain management techniques, cardiac, orthopaedic and pulmonary rehabilitation, working with stroke patients, occupational therapy techniques and much more. The editorial contents comprise research papers, treatment notes and clinical observations, case histories, professional opinion and memoirs and comments on professional issues. The Editorial Board's mission is to publish significant research which has important implications for physiotherapy and occupational therapy. Our vision is for the journal to be the pre-eminent international publication of the science and practice of physiotherapy and occupational therapy.

Readership: Physiotherapist, Occupational therapists, Medical engineers, Epidemiologists, Family physicians, Occupational health nurses etc.

Subscription Information

Individual (1 year): Contact us

Institutional (1 year): INR 10000/USD 781.25

Payment methods

Bank draft / cashier s order / check / cheque / demand draft / money order should be in the name of **Red Flower Publication Pvt. Ltd.** payable at **Delhi**.

International Bank transfer / bank wire / electronic funds transfer / money remittance / money wire / telegraphic transfer / telex

1. **Complete Bank Account No.** 604320110000467
2. **Beneficiary Name (As per Bank Pass Book):** Red Flower Publication Pvt. Ltd.
3. **Address:** 41/48, DSIDC, Pocket-II, Mayur Vihar Phase-I, Delhi – 110 091(India)
4. **Bank & Branch Name:** Bank of India; Mayur Vihar
5. **Bank Address & Phone Number:** 13/14, Sri Balaji Shop, Pocket II, Mayur Vihar Phase- I, New Delhi - 110091 (India); Tel: 22750372, 22753401. Email: mayurvihar.newdelhi@bankofindia.co.in
6. **MICR Code:** 110013045
7. **Branch Code:** 6043
8. **IFSC Code:** BKID0006043 (used for RTGS and NEFT transactions)
9. **Swift Code:** BKIDINBBDS
10. **Beneficiary Contact No. & E-mail ID:** 91-11-79695648, E-mail: info@rfppl.co.in

Online You can now renew online using our RFPPL renewal website. Visit <http://rfppl.co.in/subscribe.php?mid=7> and enter the required information and than you will be able to pay online.

Send all Orders to:

Subscription and Marketing Manager, Red Flower Publication Pvt. Ltd.,
48/41-42, DSIDC, Pocket-II, Mayur Vihar Phase-I, Delhi - 110 091(India),
Mobile: 8130750089, Phone: 91-11-79695648. E-mail: sales@rfppl.co.in.

Contents

ORIGINAL ARTICLES

Efficacy of Motor Imagery with Conventional Therapy in Gait Training of Stroke Patient Mohammed Aslam	111
Relationship between Trunk Leg Ratio and Peak Flow Rate in Young Girls Shakshi Naithani, Manmeet Kaur, Tripti Pandey, Ashish Dobhal	125
Effectiveness of Muscle Energy Technique on Pain, Range of Motion, Proprioception, Muscle strength & QOL in Diabetic Frozen Shoulder Conditions Niraj Kumar, Navneet Badoni, Sharda Sharma, Tabussum	139

REVIEW ARTICLE

Recent Advances in Management of Lymphedema Amrutha J S, Ravi Kumar Chittoria	153
<i>Guidelines for Authors</i>	159

Red Flower Publication (P) Ltd.
Presents its Book Publications for sale

21. Recent Advances in Neonatology (2020)

INR 845/USD66

Dr. T.M. Ananda Kesavam

INR347/USD45

Dr. D. Amutha

INR659/USD51

INR1195/USD75

Dr. D.R. Singh

INR299/USD23

Dr. D.R. Singh

INR1195/USD75

Dr. Lalit Gupta

INR 498/USD 38

Dr. Ravi Kumar Chittora & Dr. Saurabh Gupta

INR 599/USD 46

Satyajit Tripathy, Barsha Dassarma, Motilalpula Gilbert Matsabisa

INR 325/USD26

SatyaJit Tripathy

Secretion of Toad (Bufo melanostictus)(2021)

Dr. Thirupathi Koila & Dr. Venkatah Yanamala

INR 325/USD26

Dr. Thirupathi Koila & Dr. Venkatah Yanamala

INR 325/USD26

Dr. Peesari Laxman,Ch. Sammaital

INR 999/USD79

Ritika Roqie

INR 325/USD26

Dr. C.N. Hari Prasath, Dr. A. Balasubramanian, Dr. M. Sivaprasakash,

INR 1325/USD104

V. Manimaran, Dr. G. Sivathiga

INR 399/USD 49

Sachin C. Narundya, Dr. Irfana Begum

INR 545/USD 42

Dr. Tridibesh Tripathy

INR 399/USD49

Dr. Dondeeti Uday Kumar & Dr. R. B. Uppin

INR 399/USD44

Dr. Rupinder Kaur Kaiche, Dr. Vidhyadhar Modak, Dr. Shilpa Sannakki

INR 1325/USD104

Dr. Vivek Gupta

INR 399/USD 49

Dr. Jyoti Ratan Ghosh,Dr. Rangya Cachua

INR 399/USD 49

Dr. Pramod Kumar

INR 399/USD 49

Dr. Vivekanshu Verma, Dr. Shiv Rattan Kochhar, Dr. Devendra Richharia

INR299/USD23

Mayur Vihar Phase-I, Delhi - 110 091(India), Mobile: 8130750089,

Phone: 91-11-79695648, E-mail: info@rfppi.co.in, Website: www.rfppi.co.in

1. Beyond Medicine: A to E for Medical Professionals (2020)

Kalidais Chann

INR390/USD31

Dr. D. Amutha

INR659/USD51

INR1195/USD75

Dr. D.R. Singh

INR299/USD23

Dr. D.R. Singh

INR1195/USD75

Dr. Lalit Gupta

INR 498/USD 38

Prof Ravi Kumar Chittora & Dr. Saurabh Gupta

INR 599/USD 46

Satyajit Tripathy, Barsha Dassarma, Motilalpula Gilbert Matsabisa

INR 325/USD26

SatyaJit Tripathy

Secretion of Toad (Bufo melanostictus)(2021)

Dr. Thirupathi Koila & Dr. Venkatah Yanamala

INR 325/USD26

Dr. Peesari Laxman,Ch. Sammaital

INR 999/USD79

Ritika Roqie

INR 325/USD26

Dr. C.N. Hari Prasath, Dr. A. Balasubramanian, Dr. M. Sivaprasakash,

INR 1325/USD104

V. Manimaran, Dr. G. Sivathiga

INR 399/USD 49

Sachin C. Narundya, Dr. Irfana Begum

INR 545/USD 42

Dr. Tridibesh Tripathy

INR 399/USD49

Dr. Dondeeti Uday Kumar & Dr. R. B. Uppin

INR 399/USD44

Dr. Rupinder Kaur Kaiche, Dr. Vidhyadhar Modak, Dr. Shilpa Sannakki

INR 1325/USD104

Dr. Vivek Gupta

INR 399/USD 49

Dr. Pramod Kumar

INR 399/USD 49

Dr. Vivekanshu Verma

INR299/USD23

Mayur Vihar Phase-I, Delhi - 110 091(India), Mobile: 8130750089,

Phone: 91-11-79695648, E-mail: info@rfppi.co.in, Website: www.rfppi.co.in

Dr. Akhilesh K. Pathak

Efficacy of Motor Imagery with Conventional Therapy in Gait Training of Stroke Patient

Mohammed Aslam

How to cite this article:

Mohammed Aslam/Efficency of Motor Imagery with Conventional therapy in gait training of Stroke Patient/Physiotherapy and Occupational Therapy Journal. 2023;16(3): 111-121.

ABSTRACT

Total 30 participants including both male and female who were previously diagnosed by neurologist as having was recruited for the study. Subjects will be selected as per convenient sampling and assigned into two groups *i.e.* group-A (Experimental group) and Group-B (Control Group). In Group-A subjects were given motor imagery and conventional therapy both; in group-B subjects were given conventional therapy alone. Group A got 13 subjects with (mean age = 65.46 ± 7.55) and Group-B got 13 subjects with (mean age = 65.69 ± 5.58). Both programs were concluded in the respective participants home and hospital environment. None of the subjects attended physiotherapy for lower limb anywhere else during the study. Baseline measurements was taken at the start of treatment program, using gait variables as outcome measures *i.e.* stride length, step length, Gait velocity & Cadence. Results of post reading in both groups (for stride length ($p=0.928$) and post stride ($p=0.592$), for pre step length ($p=0.777$) and post step length ($p=0.631$), for pre gait velocity ($p=0.4590$ and post gait velocity ($p=0.959$), for pre cadence ($p=0.986$) and post cadence ($p=0.844$) show significance improvement, but improvement in Group-A was more than in Group-B. As per the results of the present study, Motor imagery program is found to be effective when given with conventional therapy in improving gait in stroke subjects. Moveover it can be done easily by the patient as it takes effort and motivates the subject for performing the desired task. It also does not fatigue the patient. Thus, it is a feasible method and can be applied in conjunction with conventional therapy while treating stroke patients with gait issue.

Keywords: Motor imagery; Gait velocity; Cadence; Stroke.

Author Affiliation: Professor and H.O.D, Department of Physiotherapy in Neurology, Uttaranchal PG College of Bio-medical Sciences, Sewla Khurd, Dehradun 248001, Uttarakhand, India.

Corresponding Author: Mohammed Aslam, Professor and H.O.D, Department of Physiotherapy in Neurology, Uttaranchal PG College of Bio-medical Sciences, Sewla Khurd, Dehradun 248001, Uttarakhand, India.

E-mail: aslamahmed5477@gmail.com

Received on 24.05.2023

Accepted on 30.06.2023

INTRODUCTION

Stroke is an acute onset of neurological dysfunction due to abnormality in cerebral circulation with resultant sign and symptoms that correspond the focal area of brain. This can be due to ischemic caused by thrombosis caused by thrombosis or embolism or due to a hemorrhage.¹ Stroke can result in many different disabilities, ranging from motor control and urinary incontinence to depression and

memory loss. Stroke usually occurs on only one side of the brain, so decreased motor control (the ability to move muscles in a co-ordinated manner) usually develops on only one side of the body. In fact, one side of the body may be paralyzed (hemiplegia), or muscles on the affected side may be weakened (hemiparesis). Because of the weakness of paralysis in large muscle groups, injuries from fall are common complications of motor control disturbances.² There is alternation in tone after stroke. Flaccidity (hypotonicity) is present just after stroke and is due primarily to the cerebral shock. It is generally short lived, lasting a few days and weeks. Spasticity (hyper tonicity) emerges in about 90% of the cases and occurs on the side of the body opposite the lesion. Spasticity in upper motor syndrome occurs predominately in the antigravity muscles. In the lower extremity spasticity is often strong in the pelvic retractors, hip adductors and internal rotators, hip and knee extensors, plantar flexors and supinators and toe flexors. Spasticity results in tight (stiff) muscles that restrict volitional movement. Posturing of the limb (eg, a tight fisted hand with the elbow bent and held tightly against the chest or a stiff extended knee with a plantar flexed foot) is common with moderate to severe spasticity. Reflexes are altered and also vary according to stage of recovery. There is initially hypo reflexia with flaccidity, then hyper reflexia with spasticity.³ Gait is altered following stroke owing to a number of factors. Common problem associated with hemiplegia gait according to phase are: in stance phase; weak hip extensors, flexors contracture at trunk/pelvis, Trendelenburg limp (weak abductors), scissoring (spastic adductors) at hip, flexion contractures, weak hip and knee extensors poor proprioception, ankle dorsiflexion range past neutral at knee, equinus gait (spasticity or contracture of gastrocnemius/soleus), varus foot (hyper active or spastic tibialis anterior, post tibialis, toe flexors and soleus), unequal step length at ankle/foot. In swing phase; weak abdominal muscles, weakness of flexors muscles at trunk/pelvis, weak hip flexors, poor proprioception, spastic quadriceps, abdominal weakness (hip hikers) at hip, in adequate knee flexors (spastic quadriceps), weak knee extensors (spastic hamstrings) at knee, plantar flexors contracture or spasticity, weak dorsiflexors, delayed contraction of dorsiflexion, toe drag during midswing at ankle/foot.³ Walking after stroke is often impaired and restricted to short distances. The average walking speed of people with hemiparesis is lower than that of people without known pathology or impairment, with values ranging from 0.23 to 0.73 m/s, depending

on severity of the hemiparesis. Characteristically for these individuals, stride length and cadence are lower than normal and a greater proportion of the gait cycle is occupied by double support and same phase duration of both lower extremities (particularly of the unaffected lower extremity), as compared with people without hemiparesis.⁴ Mental imagery is using our "minds eye" to picture situation without actually being there. When we look forward to a particular events we use imagery. Sometimes we visualize the expected outcome of an upcoming event, and this affects our motivation. Picturing pleasant consequences can lead to excitement, even an emotional high, but imagining negative outcome can evoke fear. An individual can imagine themselves performing desired behaviors, the greater the beneficial impact of this technique on actual performance. Motor imagery is a dynamic state during which an action is mentally stimulated without any body movement.¹⁰ It is the active process of reliving sensation with or without external stimuli.¹³ This is facilitated by the use of images brought about by combination of different modalities, *i.e* visual, auditory, tactile, kinesthetic, gustatory. When movement of an action of a person or objects is imaged, this is called movement imagery. Specifically when it is human body that is imaged by the internal reactivation of action within working memory without overt motor output it is called motor imagery.⁵ This shows that the rehearsal of a physical activity in absence of gross muscular movement through motor imagery improve motor performance.⁵ Thus patients can continue motor imagery training even when they are already physically exhausted or when supervised therapy sessions have finished.⁵ Motor imagery has its origin in the sports psychology and behavior psychology.⁶ The "Psycho neuromuscular theory" by Jacobson in early 1930s shows that there is myoelectrical changes related to imagined movement.⁶ A large number of functional neuro-imaging studies have demonstrated that motor imagery is associated with the specific activation of the neuronal circuit (The supplementary motor area, the primary motor cortex, the inferior parietal cortex, the basal ganglia, and the cerebellum) involved in the early stage of motor control (*i.e* motor programming). Such physiological data gives support about common neural mechanisms of imagery and motor preparation. Motor imagery activates motor pathway. Functional brain imaging studies have indicated that several cortical and subcortical areas activation during actual motor performance are also active during imagination or mental rehearsal of movement.⁹ In the absence of the movement, there

is detectable EMG activity during motor imagery, this shows there is an cortical excitability with no changes in spinal excitability.⁷ Motor imagery is a high level process which however manifests itself in the activation of those same cortical circuit that are normal involved in the movement execution.⁸ Reports have described the contribution of motor imagery practice for improving upper extremity functions in patients with hemiparesis following stroke.⁹ Previous case reports also suggests motor imagery is useful for the enhancement of walking ability in patients following stroke. And also imagery training can be considered as a useful option for restoration of ambulation for individuals with chronic hemiparetic stroke who are unable to participate in physical gait training.¹¹ Imagery practice should focus on its specific impairment during gait in order to affect the performance of the paretic lower extremity with conventional therapy.⁴⁻¹⁰

METHODOLOGY

Sample: Total 30 participants including both male and female who were previously diagnosed by neurologist as having was recruited for the study.

Subjects were taken from different hospitals of Delhi, Haryana and Dehradun.

Study Design: Experimental study.

Method of Selecting and Assigning Subjects

Subjects will be selected as per convenient sampling and assigned into two groups i.e. Group-A (Experimental group) and Group-B (Control Group). In group-A subjects were given motor imagery and conventional therapy both; in Group-B subjects were given conventional therapy alone.

Inclusion Criteria

- Ambulatory stroke patient can ambulate 16 m (with or without assistive device).
- Stroke of at least 3 month duration.
- No serious unstable medical condition.
- Not receiving any other form of physiotherapy for lower limb.
- Mini mental state examination (>23).
- Movement Imagery Questionnaire – Revised second (MIQ-RS0): (score of 98 is

good, score of 14 is worse).

Exclusive Criteria

- Spinal deformity
- History of spinal trauma or head injury
- Any other neurological disease
- Unhealed fractures
- Peripheral arterial occlusive disease
- Orthopaedic disorders involving any joint of lower limbs
- History of neurological disease other than the chronic stroke

Instrumentation

- Plinth or couch (Performing motor imagery)
- Stopwatch (For evaluation of gait velocity)
- Plain surface for walk test (at least 16 m)
- Chart paper (6+6 m per subject)
- White board marker (for heel strike mark)
- Adhesive tape & double tape (For attachment of marker with shoe)
- Inch/Measuring tape (measurement of space and chart)
- Scale (measurement of step length and stride length)

Outcome Measure

- **Stride length Measurement:** (the average of middle stride) cm
- Step length measurement (the average of the middle three steps) cm
- **Gait Velocity Measurement:** (6m x 60 sec ÷ time for walk in sec) m/min.
- **Cadence Measurement:** (# marks x 60 ÷ time for walk in sec) step/min.

Fig. 1: Stop watch

Fig. 2: Measuring tape, measuring scale, white board marker and adhesive tape

PROTOCOL

This study consisted of two groups: Experimental group (A) and Control group (B) subjects were chosen as per the inclusion and exclusion criteria, and informed consent was obtained from all subjects after the procedure was explained to them.

The 4 weeks intervention was given to the subjects of both groups alternately, 3 days a week for Group A and 3 days a week for Group B. 45-50 minutes protocol for Group A and 30-40 minutes protocol for Group B.

Group A Protocol^{1,4,12}

This group received Motor imagery (10-15 minutes) & Conventional therapy (30-40 minutes) both and it was given in single session of 40-50 minutes. The program was conducted for 3 times per week. Total duration of both programs was for 4 weeks.

Motor Imagery Techniques used

The internal as well as external imagery scenes were applied in this intervention protocol.

The 2 main goals were

1. To facilitate movement and posture of the affected lower extremity during gait by focusing on specific impairments.
2. To enhance functional walking within subjects own environment.

Conventional therapy Technique used

The conventional therapy for gait training in the group was given as per the protocol of Group B.

Group-B Protocol

In this group Intervention of conventional therapy alone was given for 30-40 minute. In conventional gait training, patients practiced functional (1) Task specific locomotor skill walking forward and side stepping (5 minutes)^{1,16} (2) Elevation activities (e.g. step-up/step-down, lateral step-up, stair climbing) (3) Community activities (walking on ramps, curves and over and around obstacles), and (4) Quadriceps strengthening.¹⁵

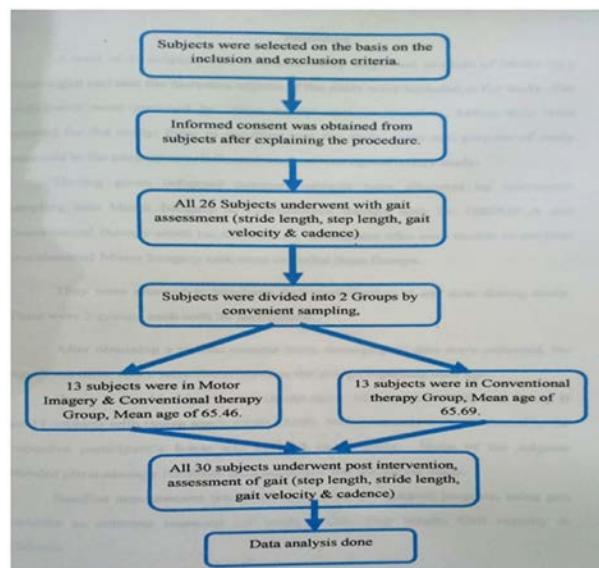


Fig. 3: Flow chart according to Protocol.

Procedure

A total of 26 subjects who were previously diagnosed as cases of strokes by a neurologist and met the inclusive criteria of the study were included in the study. The participants were screened by mini mental state examination, before they were selected for the study. Prior to enrolling into the study, need and purpose of study were told the participants. Informed consent was signed before study.

Having given informed consent, subjects were allocated by convenient sampling into Motor Imagery & Conventional therapy both *i.e.* Group-A and Conventional therapy alone *i.e.* Group-B. Participants who were unable to perform or understand Motor Imagery task were excluded from Groups.

They were allowed to terminate their participants at any time during study. They were 2 groups with 26 participants.

After obtaining a written consent from, demographic data were collected. No significance differences were found between the groups regarding their age.

Group-A got 13 subjects with (mean age = 65.46 \pm 7.55) and Group-B got 13 subjects with (mean age = 65.69 \pm 5.58). Both programs were concluded in the respective participants home and hospital environment. None of the subjects attended physiotherapy for lower limb anywhere else during the study.

Baseline measurements was taken at the start of treatment program, using gait variables as outcome measures *i.e.* stride length, step length, Gait velocity & Cadence.

GAIT ASSESSMENT

The procedure requires only a stop watch, two felt tip marking pens with washable ink, and a 16 m (53 feet) walkway. That is premeasured and marked with masking tape at four points. A halfway, an outside cement area at a clinic, or patients home as well as a portion of a clinic floor can be used for the walkway. The walkway is marked to show a center area 6m long and two 5 m areas on each end. Measurement are made within the 6 m area only; the two 5 m areas allow for warming up to "normal" velocity before measurement and slowing down after measurement. Using these extension of the measurement area of the walkway is intended to eliminate measurement errors.

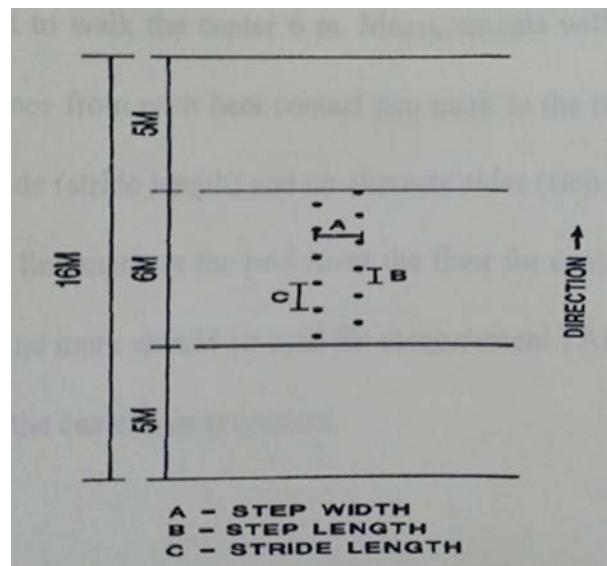


Fig. 4: Shows pattern of steps.

Felt tip marking pens are taped to the back of patients shoes so that the tip just reaches the floor when he is standing. Before the procedure, the patient should take a few steps at the side of walkway to ensure that the markers are correctly positioned to indicate heel contact.

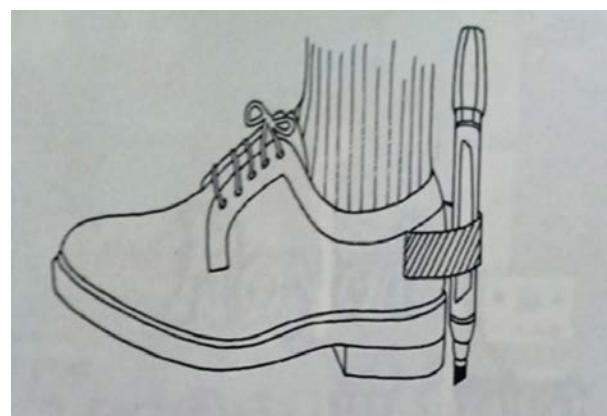


Fig. 5: Shows attachment of marker to the shoe with adhesive tape.

The patient is instructed to walk at his usual walking speed from one end of the 16 m walkway to the other end. The therapist, using a stopwatch, record the time taken for the patient to walk the center 6 m. Measurements within the 6 m area are then made of distance from each heel contact pen mark to the next heel contact pen mark on the same side (stride length) and on alternate sides (step length). (Sometimes the marker leaves a line mark as the heel nears the floor for contact. The point at the termination of the line mark should be used for measurement). Also, the total number of contacts marks in the center 6 m is counted.

Motor Imagery Technique:

For training gait by motor imagery therapist/myself was in front of subjects who was sitting on the chair with arm rest or lying on the bed as per the comfort of subjects. Initially subjects were introduced with Motor Imagery technique. They were well explained about it.

Then imagery gait was practiced in the living room, emphasizing imagery experience, using all sensory modalities. For example give instruction to subjects to imagine the scene of the pictures on the wall as if you are watching it in reality. Timing, sequencing, and spacing of the Mental Imagery practice activities were based on established principals taken from the motor learning discipline and on report of the application of these principles to stroke rehabilitation. If subjects was not able to do or was doing in wrong way, therapist/myself guided how to imagine things/activity with relaxed and calm manner. Then the, subjects were told for another task for example try to use your imagery ability to hear the sound of your footsteps on the floor. Individuals engaged in such imagery tasks are consciously aware of it and able to report the content of the imagined acts or scenes.

Specific impairments chosen as targets for intervention were (1) Fore foot initial contact (2) Deficient push-off during stance, (3) Reduced knee flexion during swing. Concomitantly, imagery practice was directed towards improving (1) Gait speed and symmetry, (2) Towards negotiating walking routes indoors and outdoors (e.g. public buildings, uneven terrains). Additionally, the gait was practiced under variable circumstances with only intermittent or minimum oral feedback presented during practice.

Each Practice Session was Composed of: (1) the provision of explicit information on task characteristics and environmental circumstances (1-2 minutes), (2) imaging of walking activity from an external perspective (3-8 minutes), (3) imaging of walking activity from an internal perspective (3-8 minutes),¹⁴ and (4) refocusing of attention on the immediate surroundings and on genuine body position (1 minute).

Time Schedule and Major tasks that were Practiced are:

First week: Familiarization with motor imagery practice. Practice imagery gait in the living room, emphasizing imagery experience, using all sensory modalities.

Example: "Try to imagine the scene of the

pictures on the wall as if you are watching it in reality. "Try to use your imagery ability to hear the sound of your foot steps on the floor."

Second Week: Practice of missing components (impairment) in gait performance of the paralytic lower extremity, focusing on the knee flexion during swing, on heel contact during stances, and on the timed application of propulsive force during push-off.

Examples; "Try to see your left knee flex as high as your knee." "Try to feel your left knee flex as high as your right knee." "During each step, prior to lifting your leg, try to feel that your foot is strongly pushing backward towards your floor."

Third Week: Practice continued as in second week, with additional emphasis on loading of the affected side during stance and on increasing gait speed.

Example: 'In each step, feel that you some what extended the time you stand on your unaffected leg future ahead.' "Imagine that you are walking faster than your current tempo." "Feel that you move each of your feet father ahead.

Fourth Week: Further gait practice focused on integrating the prior practice component into the step cycle and on increasing symmetry and gait velocity.

Examples: "Try to 'see' both of your legs making the same movement." "Feel each foot going up the same height as the other." "In each step, feel forefoot is strongly pushing against the floor prior to 'take off.'

Reinforcement was applied through imagery of feeling of confidence in gait performance and of successful accomplishment of the practiced tasks. That is, the trainer encouragement feeling of safety, calmness and satisfaction as well as after completion of the imagery gait.

Conventional Therapy for Gait

Task-Specific Locomotor skill walking:

Subjects standing with hip in correct alignment, subjects practices stepping forward then backward with intact leg, making sure he/she extends his/her affected hip as he/she steps forward. I stand on either in front or on affected side and encourage the subjects to take weight through affected leg. Like wise instruct to subjects for forward walking. Subjects was instructed for side walking by hip abduction and takes long step at one side and follow by the other step.

Elevation Activities:

Subjects was instructed to take a step-up on stairs by flexing hip and knee, with giving load on the forward limb and elevate his/her body to climb the one stair up. Then subjects was instructed for step-down the stair by hip extension of one limb and hip flexion and knee flexion of others. Assistance was required where subjects is not able to perform the activity due to fear of falling. Likewise subjects was instructed stair climbing.

Community Activities:

Subjects perform walking on ramps, curves and uneven terrains as this increase the gait speed by increasing endurance. The over and around obstacles task was also given to the subjects by placing a stick in front of subjects and instructed for walk over the stick.

Quadriceps Strengthening:

Resistive strength training was given to subjects by trying weight cuff to the foot, and performance extension of knee.

RESULT

26 Subjects with stroke who met the inclusion criteria participated and completed the study. No significance differences were found in the base line values of age and height among groups.

The mean and standard deviation of age, height and weight was calculated for the 30 subjects as follows age - 65.45 ± 7.55 , height - 169.233 ± 6.55 .

Students T-test was done to compare the data of pre stride length between the groups ($p=0.928$).

Paired t-test was done to compare the data of the stride length with in the groups for stried length both the groups showed significant difference

[Group-A ($P=0.0023$) and Group-B ($P=0.000$)].

Students T-test was done to compare the data of post stride length between the groups ($p=0.592$).

Students T-test was done to compare the data of pre step length between the groups ($p=0.777$).

Paired t-test was done to compare the data of step length within the groups. For step length both the groups showed significant difference [Group A ($p=0.024$) and Group B ($p=0.002$)].

Students T-test was done to compare the data of post length between the groups ($p=0.0631$).

Students T-test was done to compare the data of pre Gait velocity between the groups ($p=0.459$).

Paired t-test was done to compare the data of velocity within the groups. For Gait velocity both the groups showed significance difference [Group A ($p=0.015$) and Group B ($p=0.000$)].

Students T-test was done to compare the data of post Gait velocity between the groups ($p= 0.959$).

Students T-test was done to compare the data of pre cadence between the groups ($p=0.986$).

Paired T-test was done to compare the data of Cadence within the groups. For Cadence both the groups showed significance difference [Group-A ($P=0.024$) and Group-B($p= 0.002$)].

Students T-test was done to compare the data of the post cadence between the groups ($p= 0.844$).

- From the above results we can say that both treatment were effective for both groups.
- From the above results, we can say that Group A showed significant improvement as compared to Group B in step length, stride length, Gait velocity and cadence.
- Gait assessment of Group A showed significant improvement at post intervention compared to Group B.
- From these results we can conclude that the Groups A is better than Group B.

Table 1: Shows Mean d and SD of Pre-Step length & Post-Step length (STL) for Group-A and Group-B

Group-A					Group-B			
STL				STL				
Pre	SD	Pre	SD	Pre	SD	Post	SD	
Mean		Mean		Mean		Mean		
31.42				31.13				
t=2.59	7.7	38.17	12.09	t=3.825	7.17	36.07	9.2	
P=0.024				P=0.002				

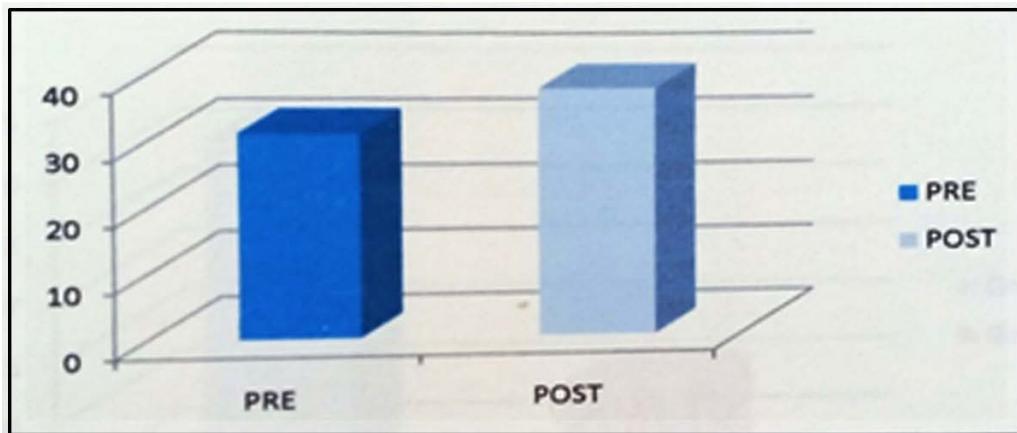


Fig. 6: Shows improvement in Post-Step length than Pre-Step length in Group-A

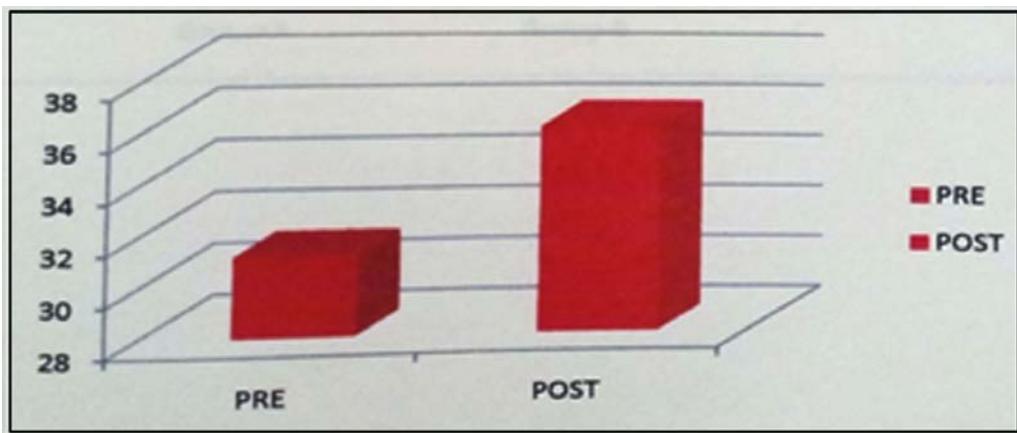


Fig. 7: Shows improvement in Post-Step length than Pre-Step length in Group-B

DISCUSSION

Our study aimed to improve walking. Walking is basic mobility and enhances independence to any one. The ability to walk independently is a life enriching activity and the most efficiently way of getting from one place to another in the course of our daily lives.

The temporospatial gait characteristics indicate that cadence is especially adversely affected by stroke and that the improvement in gait speed is mainly due to an increase in stride length and, to a lesser extent, to an increase cadence. There significance improvement in post interventional reading of (for stride length $p=0.023$, for step length $p=0.024$, for gait velocity $p=0.015$ and for cadence $p=0.024$) Group-A, because as per previous studies conventional therap with motor imagery with conventional therapy is effective in the time difference to perform the task from pre to

post-intervention.²⁴ S.A. Zimmermann *et.al* says that evidence suggests Motor imagery provides additional benefits to conventional physiotherapy or occupational therapy.¹⁰ Some author says that locomotor imagery training can be considered as a useful option for restortation of ambulation for individuals with chronic hemiparesis stroke who are unable to participate in physical gait training.¹¹ Ehrsson *et.al* showed an activation of specific limb area in the primary motor cortex.¹³ Motor Imagery is a dynamic state during which the representation of a specific motor action is internally activated without any motor output. In other words motor imagery requires the conscious activation of brain region that are also involved in movement prepration and execution, accompanied by a voluntary inhibition of the actual movement. Some autor reported that the activation of the pre-supplementary motor area and the primary motor cortex during imagery of locomotion movements. Researchers hypothesized that movement execution; motor imagery and action observation S are all driven by the same basic

mechanism. Motor imagery and action observation are conceived as "offline" operation of the motor areas in the brain. Researchers also reported that better equilibrium characteristics in elderly women as measured by walking balance and foot placement measures as a result of a combined treatment of motor imagery and physical therapy.¹⁷ As Motor Imagery intervention did not sufficiently modify the asymmetry that is an inherent feature of hemiparesis so it should be given with conventional therapy.⁴ Some researchers say that Imagery, in association with therapy, appears to be a non invasive, efficacious complement to traditional therapy that substantially reduces impairment and improves outcomes.¹³ On other side there is significant improvement in post-reading of (for stride length $p=0.000$, for step length $p=0.002$, for gait velocity $p=0.000$ and for cadence $p=0.002$) Group-B also because as per the previous research results, conventional therapy for stroke is effective for getting ambulation and improvement in gait. Researchers say that Task specific activities with strength training are effective therapeutic intervention for post stroke. Possible mechanisms associated with response to therapy were related to improve motor unit activation associated with increased strength in key muscles used in gait.¹⁸ Author present an intriguing hypothesis that overground gait training such as walking while forward, sideways, may be better suited in educating patients regarding safety, while encouraging participation in therapeutic exercises to improve strength cardiovascular fitness, movement efficiency and agility." Overground gait training improves locomotor function and is a major goal of rehabilitation, and if patient want to improve walking they need to practice walking. Overground gait training represents the most task specific approach in improving gait for individuals with hemiparesis after stroke.¹⁹ It was also hypothesized that strengthening and physical conditioning are to reduce impairment and disability in chronic stroke survivors.²⁰ Stroke rehabilitation provides a targeted and organized plan to relearn functional lost in the shortest period of time possible. Some studies suggest that successful and meaningful recovery is most likely to be accomplished if you are dedicated and keep a high level of motivation during your rehabilitation process.²¹ It is recognized that participation by patients in active physical therapeutic programs probably provides direct influence on the process of functional reorganization in the brain and enhances neurological recovery. A key aspect of neural plasticity that has important implication

for rehabilitation is the fact that the modification in neuronal networks are use dependent. Clinical trials have shown that forced use and functional training contributes to improve function.²² Standardized community based rehabilitation therapy also help stroke patients to improve their neurological function.²³ Clinical studies demonstrated that training or inpatient rehabilitation increases cortical representation with subsequent functional recovery, whereas a lack of rehabilitation or training decreases cortical representation and delayed recovery.²³ Results of post reading in both groups (for stride length ($p=0.928$) and post stride ($p=0.592$), for pre step length ($p=0.777$) and post step length ($p=0.631$), for pre gait velocity ($p=0.4590$ and post gait velocity ($p=0.959$), for pre cadence ($p=0.986$) and post cadence ($p=0.844$) show significance improvement, but improvement in Group-A was more than in Group-B. In past two studies it was seen that Motor imagery provided additional benefits to conventional physiotherapy when given for upper limb functioning.¹⁰ This can for the post Intervention results of the present study where the mean value of experimental group showed better results than the mean value of control group. Researchers determined that embedded MI (Motor Imagery with conventional therapy) is superior to added MI (conventional therapy separately). Brain areas activated during MI and real movement show a strong congruity for single arm movement as well as complex whole body movement in stroke patients.⁶

These studies and researchers give evidence that the Motor Imagery with conventional therapy is beneficial in gait rehabilitation. Motor Imagery takes less effort and gives motivation to subjects for performing hence easy to apply.

Limitation of the Study:

- Small number of subjects were recruited for the study.
- Stroke subjects were less than or equal to 3 years only.

Future Research:

- The study can be repeated using a large sample size.
- The study can be repeated using subjects with duration of stroke more than 3 years.
- The follow up of the present study can be done.
- Same study can be done on different

population where gait is affected, e.g. Parkinsonism.

CONCLUSION

As per the results of the present study, Motor imagery program is found to be effective when given with conventional therapy in improving gait in stroke subjects. Moreover it can be done easily by the patient as it takes effort and motivates the subject for performing the desired task. It also does not fatigue the patient. Thus, it is a feasible method and can be applied in conjunction with conventional therapy while treating stroke patients with gait issue.

Clinical Relevance

Motor imagery program can be given together with conventional therapy to improve gait in stroke subjects and it can be done easily as it takes less effort and gives motivation to the subjects for performing tasks. Thus it does not fatigue the patients.

Ethical Clarence: It is a bonafied work done by me and I have not taken any part of thesis from anywhere.

REFERENCES

1. J. Donald Easton, Jeffrey L. Saver Gregory W. Albers, Mark J. Albers, Semant Chaturvedi, Edward Feldmann, *et.al* Definition and Evaluation of Transient Ischemic Attack, *Journal of the Americans heart association*, 2009 May; 40: 2276-2293.
2. Christian Weimar, Tobias Kurth, Klaus Kaywinkel, Markus Wagner, Otto Busse, Roman LudwieHabert, *et.al*, assessment of functioning and disability after ischemic stroke, *journal of American heart association*, 2002 May: 33: 2053-2059.
3. O' Sullivan SB, SchnitzT J, *Physical Rehabilitation*, 5th ed. New Delhi (India): Jaypee Brothers; 2007:705-722.
4. Ruth Dickstein, Ayelet Dunsky, Emanuel Marcovitz, Motor Imagery for Gait Rehabilitation in Post-Stroke Hemiparesis, *Physical Therapy*, 2004 Dec:84(24):1167-1177.
5. Lidmina Svetlana, M. Calayan,, J Margarita, R.Dizon, Asystemic review on the effective of mental practice with motor imagery in the neurologic rehabilitation of stroke patients, *The internet Journal of Applied Health Sciences and Practices*, 2009:7(2) :1-11.
6. S. corina, B jenny, A. Brian, K.Udo, E. Thierry, comparsion of embedded and added motor imagery training in patients afyer stroke: study protocol of randomized controlled pilot trial using a moxed methods approach, *Trails journal*, 2009: 10(97):1186-1745.
7. Yahagi S, Shimura K, Kasai T, An increase incortical excitability with no change inspinal excitability during motor imagery, *Hiroshima Shudo Universiry Japan*, 1996 Aug:83(1) :288-90.
8. F. Luciano, B. Giovanni, C Laila, F. Leonardo, G.vittorio, P.Giovanni, corticospinal excitability is apecifically modulated by motor imagery: a magnetic stimulation study, *sciences Direct*, 1999Jan; 37(2) :147-158.
9. H C Dijkerman, Mletswaart, M Johnston, R S Mac Walter, does motor imagery training improve hand function in chronic stroke patients? A pilot study, *Clinical Rehabilitation*, 2004:18(5) :538-549.
10. Zimmermann-Schlatter A, Schuster C, Puhan MA, Siekierka E, Steurer J, efficacy of motor imagery in post-stroke rehabilitation :a systematic review, *journal Neuroengineering Rehabilitation*, 2008 Mar:14:5:8.
11. Sujin Hwang, Hye-SeonJeon, H Y Chung, Oh-yun Kwon, Sang-hyun Cho, Sung-hyun You, locomotor imagery training improves gait performance in people with chronic hemiparetic stroke: a controlled clinical trial, *Department of physical Therapy, College of Health Sciences, Yonsei University*, 2010 June (6):514-522.
12. Kay Cerny, A Clinical Method of Quantitative Gait Analysis, *Physical Therapy*, 1983:1123-1126.
13. Stephen J Page, Peter Levine, Sue Ann Sisto and Mark v Johnston, A randomized efficacy and feasibility study of imagery in acute stroke, *KMRREC*, 2001: 15; 233-230.
14. Craig R.Hall, Wendy M. Rodgers and Kathryn A. B arr, The Use of Imagery By Athleletes in Selected Sports, *Sports Psychology*, 1990:4: 1-1.0.
15. Susain L Morris, Karen J Dodd, Meg E Morris, outcomes of progressive resistance strengthening training following stroke: a systematic review, *clinical Rehabilitation*, 2004 Jan:18 (1):27-39.
16. Catherine M. Dean, Carol L. Richards, Francine Malouin, Task-Related Circuit Training Improves Performance of Lomotor Tasks in Chronic Stroke: A Randomized, Controlled Pilot Trail, *The American Academy of Physical Medicine and Rehabilitation*, 2000:81:409-417.
17. Th. Mulder, Motor imagery and action observation: cognitive tools for rehabilitation, *J*

Neural Transm, 2007 :114: 1265-1278.

18. Sullivan K, Klassen T, Mulory S, Combined task-specific training and strengthening effects on locomotor recovery post- stroke : a case study, *Journal of Physical Therapy*, 2006sep;30(3) :130-141.

19. Lewek, Mechael D. he Value of Overground Gait Taining for Improving Locomotion in Individuals with Chronic Stroke, *Journal of Neurologic Physical Therapy*, 2009Dec;33(4):187-188.

20. Teixeira-Salmela LF, Olney SJ, Nadeau SJ, Nadeau S, Brouwer B, Muscles strengthening and Physical conditioning to reduce impairment and disability in chronic stroke survivors *Arch Phys Med Rehabil.*, 1999 Oct; 80 (10) :1211-1218.

21. Joe Vaga, Stroke Rehabilitation is a Critical Part Stroke Recovery, 2009 Sept.

22. Auri Bruno-Petrina, motor recovery in stroke, *Physical therapy and rehabilitation*, 2010 Sept.

23. Jain Jun Yu, Yong Shan YU, Yi hu, Wen Hua Chen, YuLianzhu, Xiao Cui, *et.al*, the effects of community-based rehabilitation on stroke patients in china a single-blind randomized controlled multicenter trial, *clinical rehabilitation*, 2009 April;23(5): 408-417.

Physiotherapy and Occupational Therapy Journal

Library Recommendation Form

If you would like to recommend this journal to your library, simply complete the form given below and return it to us. Please type or print the information clearly. We will forward a sample copy to your library, along with this recommendation card.

Please send a sample copy to:

Name of Librarian

Name of Library

Address of Library

Recommended by:

Your Name/ Title

Department

Address

Dear Librarian,

I would like to recommend that your library subscribe to the Physiotherapy and Occupational Therapy Journal. I believe the major future uses of the journal for your library would provide:

1. Useful information for members of my specialty.
2. An excellent research aid.
3. An invaluable student resource.

I have a personal subscription and understand and appreciate the value an institutional subscription would mean to our staff.

Should the journal you're reading right now be a part of your University or institution's library? To have a free sample sent to your librarian, simply fill out and mail this today!

Stock Manager

Red Flower Publication Pvt. Ltd.

48/41-42, DSIDC, Pocket-II

Mayur Vihar Phase-I

Delhi - 110 091(India)

Phone: 91-11-79695648

Cell: +91-9821671871

E-mail: sales@rfppl.co.in

Instructions to Authors

Submission to the journal must comply with the Guidelines for Authors. Non-compliant submission will be returned to the author for correction.

To access the online submission system and for the most up-to-date version of the Guide for Authors please visit:

<http://www.rfppl.co.in>

Technical problems or general questions on publishing with **POTJ** are supported by Red Flower Publication Pvt. Ltd.'s Author Support team (http://rfppl.co.in/article_submission_system.php?mid=5#)

Alternatively, please contact the Journal's Editorial Office for further assistance.

Editorial Manager

Red Flower Publication Pvt. Ltd.

48/41-42, DSIDC, Pocket-II

Mayur Vihar Phase-I

Delhi - 110 091(India).

Mobile: 9821671871, Phone: 91-11-79695648

E-mail: author@rfppl.co.in

SUBSCRIPTION FORM

I want to renew/subscribe international class journal "**Physiotherapy and Occupational Therapy Journal**" of Red Flower Publication Pvt. Ltd.

Subscription Rates:

- Institutional: INR 10000 / USD 781.51

Name and complete address (in capitals): _____

Payment detail:

Online payment link: <http://rfppl.co.in/payment.php?mid=15>

Cheque/DD: Please send the US dollar check from outside India and INR check from India made payable to 'Red Flower Publication Private Limited'. Drawn on Delhi branch.

Wire transfer/NEFT/RTGS:

Complete Bank Account No. 604320110000467

Beneficiary Name: Red Flower Publication Pvt. Ltd.

Bank & Branch Name: Bank of India; Mayur Vihar

MICR Code: 110013045

Branch Code: 6043

IFSC Code: BKID0006043 (used for RTGS and NEFT transactions)

Swift Code: BKIDINBBDOS

Term and condition for supply of journals

1. Advance payment required by Demand Draft payable to **Red Flower Publication Pvt. Ltd.** payable at **Delhi**.
2. Cancellation not allowed except for duplicate payment.
3. Agents allowed 12.5% discount.
4. Claim must be made within six months from issue date.

BHIM BOI UPI QR

SCAN HERE TO PAY
WITH ANY BHIM UPI APP

RED FLOWER PUBLICATIONS PRIVATE LIMITED

boism-9718168299@boi

Mail all orders to

Subscription and Marketing Manager
Red Flower Publication Pvt. Ltd.
48/41-42, DSIDC, Pocket-II
Mayur Vihar Phase-I
Delhi - 110 091(India)
Phone: 91-11-79695648
Cell: +91-9821671871
E-mail: sales@rfppl.co.in

Relationship between Trunk Leg Ratio and Peak Flow Rate in Young Girls

Shakshi Naithani¹, Manmeet Kaur², Tripti Pandey³, Ashish Dobhal⁴

How to cite this article:

Shakshi Naithani, Manmeet Kaur, Tripti Pandey, et al./Relationship between Trunk leg ratio and peak flow rate in young girls/ Physiotherapy and Occupational Therapy Journal. 2023;16(3): 125-136.

ABSTRACT

Background & Objectives: Peak expiratory flow rate (PEFR) is an effort dependent. It remains at its peak for 10 sec. Peak expiratory flow rate may be affected by some factors affecting the normal function of the respiratory system. Such factors include the body constitution such as height, weight, sex, age etc. A study of peak expiratory flow rate and its relationship with trunk leg ratio. The trunk-leg ratio (TLR) was used in apparently healthy young females of age 10-15 years. A better understanding of the association between Trunk-leg ratio and PEFR may identify those with high chances of respiratory diseases.

Methods: A cross sectional study was conducted in which the peak flow rate of 80 school going girls, aged 10-15 years was measured with a peak flow meter. A peak flow meter and a measuring tape to scale height were used to measure the participants and written consent from their guardian was obtained before the start of procedure.

Results: There was no significant correlation between PEFR and trunk to leg ratio and trunk length and PEFR. A low correlation was found between leg length and trunk to leg ratio.

Interpretation & Conclusion: The study suggest that the trunk to leg ratio has no significance with young girls in this study.

Keywords: Peak expiratory flow; Young children; Height; Trunk to leg ratio.

Author Affiliation: ¹Associate Professor, Department of Physiotherapy, Uttarakhand (PG) College of Biomedical Sciences & Hospital, Dehradun, Uttarakhand 248001, India, ²Associate Professor, Department of Physiotherapy, Sai Institute of Paramedical Sciences, Dehradun, Uttarakhand 248002, India, ³Assistant Professor, ⁴Associate Professor, Hemwati Nandan Bahuguna Uttarakhand Medical Education University, Dehradun 248001, Uttarakhand, India.

Corresponding Author: Manmeet Kaur, Associate Professor, Department of Physiotherapy, Sai Institute of Paramedical Sciences, Dehradun, Uttarakhand 248002, India.

E-mail: manmeetkaur.pt@gmail.com

Received on 19.06.2023

Accepted on 31.07.2023

INTRODUCTION

Peak expiratory flow rate (PEFR) is the maximum flow rate that occurs when you exhale forcefully through the lungs. PEFR usually indicates a large airway flow and is dependent on the patient's effort and muscle strength. Peak expiratory flow is a simple and reliable test for diagnosing and monitoring the development of airflow limitation and evaluating response to treatment. Peak Expiratory Flow Rate (PEF), also known as Peak Expiratory Flow Rate (PEFR), is the maximum value

at which a person can breathe out as measured by the Peak Flow Meter, a small device used to monitor the person breathing. It measures airflow through the bronchi and how clogged or obstructed are airways. Peak expiratory flow measurement (peak flow) is a simple measure of the maximum flow during exhalation after a full inspiration. Patients can learn the procedure quickly, and the necessary equipment is inexpensive and widely available. Large organizations and advocacy groups have launched patient oriented websites with clear videos showing necessary procedures that can help doctors choose to initiate home testing for patients. Age, gender, height, weight, age difference and race are factors affecting PEFR. The PEFR among infants, children, and adults shows variation between different ethnic groups. PEFR readings are higher when the patient is healthy and lower when the airway is restricted.

Considered a good indicator of bronchial hypersensitivity and does not require saturation correction for temperature. PEFR maintenance can be performed correctly for most patients over 5 years of age. The PEFR measurement is mainly used for home monitoring of asthma, making it useful for short-term and long-term monitoring of patients. When properly performed and well defined, maximal assessment can provide patients and physicians with objective information about treatment decisions regarding the risk of death and has economic significance for individuals and health care systems.

Well known body measurements such as body mass index (BMI) and waist circumference (WC) are not reliable indicators of adipose tissue, but are universally accepted to be associated with heart disease. Therefore participants included in this were of normal BMI. There is association between height and PEFR, though there is no significance between trunk to leg length ratio. In this trunk to leg length was obtained to relate with peak expiratory flow rate. Trunk to leg length ratio can be a important for identifying elevated risk of respiratory diseases. From a public health perspective, a better understanding of the trunk to-leg ratio and other parameters may provide an opportunity to identify individuals at high risk of cardiopulmonary disease. The Trunk-to-Leg Ratio (TLR) or Leg-to-Body Ratio (LTR) is the ratio of leg length and trunk length, and a higher value of TLR indicates a higher leg length for a given height. Leg length is calculated as the difference between height and sitting height, TLR is the value obtained by dividing the leg length by the sitting height.³

Leg length is an indicator of the impact of obesity on the development of children of the prepubertal environment, because the increase in height to adulthood is primarily due to leg growth. Respiratory diseases are major diseases that affect children, especially in India are the leading cause of childhood morbidity and mortality.

There has been an increase of in children with respiratory diseases, especially due to factors such as environmental pollution. Therefore, pulmonary function tests are very important in the evaluation of children. PEFR is one of the lung tests that is useful in the evaluation of lung diseases, especially asthma. It also helps monitor disease progression and response to treatment.

Peak expiratory flow rate (PEFR) is a measure of the effort resulting from a large airways approximately 100-120 ms after the start of a forced exhalation. It is at the maximum for 10 ms.

The main influence on the PEFR is the diameter of the airways, which is regulated by bronchial tone. Other factors that affect PEFR are the strength of the muscles and the elastic tissue of the lungs. There is a positive correlation between height, weight, chest circumference and PEFR. PEFR is important for diagnosing and diagnosing lung function by predicting changes in air quality. Many studies have been done to determine the relationship between TLRs and cardiovascular risk, but few studies have been done on this topic. This study aimed to evaluate the relationship between body leg ratio and peak flow in healthy adolescent girls aged 10-15 years.

Finally, all children were voluntarily selected for this study. A total of 80 participants were included in this study. All participants were healthy preteen girls aged 10 to 15 years. All participants had a normal BMI.

BMI measure your height and weight, measure your height with a tape measure and take your weight with a scale. Use a tape measure to measure body length and leg length. All measurements are in centimeters. Body length is measured from the tip of the shoulders to the ilium.leg length is the distance from the iliac wing to the floor. All participants were asked to remove their shoes before measuring their leg length.

A peak flow meter was used as the measurement. An instrument was used throughout the course. There are markings and mouth piece in the graduated region of the device. Marks start between 60 L/min and 900 L/min. The disposable mouthpiece were used and mouthpiece was

washed and sterilized for each subject. No nose clips were used.

Before the procedure, the purpose and method of the assessment is explained to the participants. Before measuring, the participants took a short deep breath. All participants were tested standing up.

After the actual performance, the participants were asked to take a deep breath and then blow into the mouthpiece with their best effort. Read the results from the scale. Take at least 3 readings and save the best score. Data from all participants were analyzed and the mean value of trunk to leg length was evaluated with body length, leg length and peak expiratory flow.

Relationship of trunk to leg ratio with peak expiratory flow rate was evaluated. The trunk length and leg length were also correlated with peak expiratory flow rate. The aim of this study was to analyze the relationship between trunk to leg length ratio and peak flow rate in children to better understand the relationship between trunk to-leg length ratio and PEFR and possibly identify those at risk for respiratory diseases.

AIMS & OBJECTIVES

To study the relationship between trunk leg ratio and peak flow rate in young healthy girls, to help identify those with high chance of respiratory disease. And to find effectiveness of trunk leg ratio as an indicator or factor that effects peak flow rate or lung function.

Hypothesis

Experimental Hypothesis

There is relationship between trunk leg length ratio and peak expiratory flow rate in young healthy girls.

Null Hypothesis

There is no correlation between trunk leg length ratio and peak expiratory flow rate in young healthy girls.

REVIEW OF LITERATURE

Thakur Shailesh Kaumar Singh (2014) conducted a study to correlate age, height and weight with PEFR in study population. This study was conducted on 254 subjects of 10-14 years of age.

Height and weight were measured according to a standardized protocol. All the parents filled a self-administered questionnaire to obtain general information and disease history of the participant. PEFR was measured in all subjects. It included 152 boys and 102 girls. There was significant difference in height, weight and PEFR in all age groups. All parameters were higher in boys as compared to girls. Girls achieved earlier pubic hairs and breast development than males. The study concluded PEFR is indicator for respiratory diseases commonly seen in children. It is positively correlated with age, height and weight of subjects.

Bin Dong and Jun Ma (2016) conducted a study to check leg to trunk ratio and the risk of hypertension in children and adolescents. It was a population based study. A larger LTR was associated with decline levels of BP across the height and age spectrum in both sexes. The study concluded association of low LTR with elevated risk of high blood pressure in youths.

Tipnis NA Shah S. (2016) conducted a study to evaluate effect of body positions on peak expiratory flow rates in adult asthmatics. A cross sectional study was performed in 20 asthmatic subjects aged 18-50 years in whom correct instructions for PEF technique were given according to guidelines of National Institute of Health. The study concluded that there is a significant difference between PEFR values in standing, sitting with slump forward 100 and lying back 450 position. Standing position is the best option for adult asthmatics to measure their PEF values as it generated maximum PEF.

Jena et al. (2017), Studied Peak expiratory flow rate and its relation to body mass index in young adults. This was a comparative study in which healthy young adults were recruited as the subjects. Total 105 subjects were selected which included 56 male and 49 female. All subjects were between ages 18 and 24 years. This study concluded that PEFR declines with increase in BMI, and there is negative correlation between BMI and PEFR.

Harpreet Kaur et al. (2013), a study was conducted to assess variations in the Peak Expiratory Flow Rate with Various Factors in a Population of Healthy Women of the Malwa Region of Punjab. This study generated the preliminary values of PEFR for the women of the Malwa region of Punjab, India.

Jayapal J. (2016) studied postural variation in peak expiratory flow rates in healthy adult female subjects in South India. The study concluded that in postural changes, PEFR measurements significantly differ based on whether the measurements are

taken in the standing or in the lying posture in healthy participants. The effect of posture may be of importance in recording PEFR and changing to a better posture may be especially useful for those patients with weak expiration.

Adama et al. (2019), The Relationship between Trunk Leg Ratio and Peak Expiratory Flow Rate was studied. This study was an analytical cross-sectional design, involving 83 Level 200 MBBS/BDS students of Bayero University. The study founded Significant correlation between the TLR, which is an anthropometric parameter and the PEFR which is an important diagnostic tool in determination of some types of respiratory diseases. This relationship signifies that the taller the person, irrespective of the trunk length, the higher the PEF.

Gupta et al. (2013) Studied Peak expiratory flow rate in highlander children. The study suggests that besides anthropometric and socio-economic factors, altitude is an important determinant of lung function.

Jena SK, Mishra AK, (2017) Studied relation of peak expiratory flow rate to body mass index in young adults. In this study 56 male and 49 female were recruited. The study concluded that PEFR declines with increase in BMI, and there is negative correlation between BMI and PEFR.

Manjunath CB (2013), studied the PEFR in healthy rural school going children (5-16 years) of belluar region for construction of nomogram.

Wallace et al (2013) studied PEFR in bed. compared 3 positions. Healthy adults performed the PEF maneuver in random order, standing, lying back at and 45° angle on pillows, and sitting, slumped forward 10° with legs extended. PEF was recorded for 3 attempts in each of the 3 positions. The study concluded that clinicians should ensure that PEF is obtained with patients out of bed and in the standing position.

Dr H Marike Boezen (1999) studied effect of ambient air pollution on upper and lower respiratory symptoms and peak flow in children. Study concluded that there were no consistent positive or negative associations between increased air pollution and prevalence of respiratory symptoms or decrease in peak expiratory flow in the other three groups of children.

Brendan Morrow (2019) studied the utility of using peak expiratory flow and forced vital capacity to predict poor expiratory cough flow in children with neuromuscular disorders. The aim

of this study was to investigate the relationship between peak expiratory flow, forced vital capacity (FVC) and PCF in South African children with neuromuscular disorders. Study concluded that PEF and FVC may be surrogate measures of cough effectiveness in children with neuromuscular disorders.

David Kaminsky (2017), studied the fluctuation analysis of peak expiratory flow and its association with treatment failure in asthma. The study concluded that increased temporal self-similarity of more variable lung function (PEF) is associated with treatment failure, but the pattern of change in self-similarity leading up to treatment failure is variable across individuals.

Frischer et al (1993) conducted a study to assess relation between response to exercise and diurnal variability of peak expiratory flow in primary school children. The results showed that increased variability of PEF, as well as a response to exercise, was associated with respiratory symptoms, but only a response to exercise was closely associated with atopy (defined as a positive skin test to any of seven aero-allergens).

A.N. Aggarwal et al (2000) studied diurnal variation in peak flow rate in healthy young adults. The results concluded that there was no significant relationship between diurnal variation in peak flow rate of both sexes.

Mahmoud Zureik et al (2001) studied association between peak expiratory flow and the development of carotid atherosclerotic plaques. The study concluded that reduced lung function predicts the development of carotid atherosclerosis in elderly subjects. The nature of these associations remains largely unknown and merits further investigations. Nevertheless, assessment of lung function, which is simple and inexpensive, could help identify a population at high risk of atherosclerosis development and coronary heart disease.

M.B. Dikshit (2004) evaluated a set of regression equations for use for the Indian population.

Hegewald et al (1995) studied intra individual Peak Flow Variability. The study concluded that estimates of intra individual variability in healthy subjects are generally lower than those previously reported. Meter variability accounts for only a small part of total intraindividual variability. The 95th percentile data suggest that a fall in PEF of 6 to 8% in adults and 9 to 10% in youths would be statistically significant.

Ravi Vaswani (2005) evaluated factors affecting peak expiratory flow in healthy adults. The study concluded that position of the subject and application of nose clip has no significant impact on PEF measurement.

Reddel et al (2004) studied the personal best peak flow that can be determined for asthma action plans. The study showed that the personal best PEF is a useful concept for asthma self-management plans when determined as the highest PEF over the previous 2 weeks. With twice daily monitoring, personal best PEF reaches plateau levels after only a few weeks of corticosteroid treatment.

Chong et al (2000) studied peak expiratory flow rate and premenstrual symptoms in healthy non asthmatic women. The results showed intra subject and diurnal variability in PEFR are minimal in non asthmatic women; similarly, inter subject variability is relatively low. The menstrual cycle appears to have little effect on PEFR in healthy non asthmatic Asian women.

Debray et al (2008) conducted a comparative study of the peak expiratory flow rate of Indian and Nepalese young adults in a teaching institute. The analysis showed that height is the best predictor for PEFR in the present study.

A Bheekie (2001) analyzed Peak expiratory flow rate and symptom self monitoring of asthma initiated from community pharmacies. The result showed PEFR self monitoring proved to be a more useful asthma tool than symptom self monitoring. Patients applying symptom monitoring tend to under estimate the severity of their condition and use medication inappropriately. Active involvement of community pharmacists in facilitating and reinforcing out patient self monitoring would help to optimize asthma management.

Enright & McClelland (2001) conducted a study to correlate peak expiratory flow liability in elderly persons. It was concluded that PEF liability at home is highly successful in elderly persons. PEF liability $\geq 30\%$ is abnormal in the elderly and is associated with asthma.

Harirah et al (2005) studied effect of gestational age and position on peak expiratory flow rate. This was a longitudinal study. The concluded that PEFR measurements are affected by maternal position and advancing gestational age, especially in the supine position. Adjustment of patient's flow rate in relation to gestational age and maternal position is recommended, especially in pregnant women

with asthma.

MacCoy et al (2010) evaluated peak expiratory flow monitoring and compared sitting versus standing measurements. The results concluded that PEF measurements do not significantly differ based on sitting or standing measurements among healthy participants. Based on the results of this study it may not be necessary for the patient to stand while performing PEF measurements. Further study among patients with asthma is warranted.

Trevisan et al (2019) studied a cross-Sectional and longitudinal Associations between Peak Expiratory Flow and Frailty in Older Adults. The findings suggested that PEF is a marker of general robustness in older adults, and its reduction exceeding that expected by age is associated with frailty development.

Jéssica Perossi (2019) analyzed peak expiratory flow in obese subjects in different positions. The study suggested that the PEF of healthy obese are similar in the standing and seated positions. The PEF decreases in the lying positions, except for the LL, that could be used as an alternative for measurements.

Kimberly Shiu (2017) studied the trunk-to-leg ratio in regions of extreme stunting prevalence in the Western Highlands of Guatemala. The results showed a stunting prevalence increases in a population, the median trunk-to-leg ratio initially falls to the 0.82 range and stabilizes thereafter, but in isolated third degree stunting, the median trunk-to-leg ratio reaches 0.85. children.

S Venkateswara Babu (2019) studied the association of overweight and pefr among children. The study showed a significant difference in the PEFR rate between obese, overweight and normal groups where higher PEFR has been reported on obese than normal. Excess weight directly and positively affects the PEFR.

Sion Jo et al. (2019) studied change in peak expiratory flow rate after the head-tilt/chin-lift maneuver among young, healthy, and conscious volunteers. The study results showed that PEFR increased by 9.6% after the HT/CL maneuver in young conscious subjects, but some subjects showed decreased PEFR after the HT/CL maneuver.

Yun-Chul (2006) conducted a study to assess lung function decrement associated with metal components in particulate pollutants. This study demonstrated that particulate pollutants and metals such as manganese and lead in the particles

are associated with a decrement of PEFR.

Pallavi Chitnis (2018) conducted a correlative study of the different grades of BMI with PEFR in young adults. The result show there is increase in PEFR in overweight as compared to normal which means increased in BMI causes increase in muscle strength. In obese group PEFR is less as compared to normal group.

METHODOLOGY

Study Design

It is a cross sectional observational study to study relationship between trunk leg ratio and peak expiratory flow rate.

Study Setting

The study was conducted at Rajkiya Purva Madhyamik Vidyalaya, Rajpur Road, Dehradun; Eklavya coaching centre, turner road, Dehradun; Nari /kishori niketan Kendra, near doon university, Dehradun.

Study Duration

The study was performed over a period of two weeks.

Subjects

80 females between 10-15 years of age with BMI

(18.4-24.9 kg/m²) value were included.

Criteria for Inclusion and Exclusion

Inclusion Criteria:

Age 10-15 years

Females

BMI = 18.5-24.9kg/m²

Exclusion Criteria:

Volunteers with Cardiorespiratory disease (Asthma, Chronic Bronchitis, Cystic Fibrosis, Congenital Heart Disease).

Neurological disease (Cerebral Palsy, Muscular Dystrophy, Epilepsy, Encephalopathy) were excluded.

Volunteers whose BMI was 25.0-29.9 or above (overweight) and less than 18.4 (underweight) were excluded.

Materials used in the Studys

Pencil

Measuring Tape

Weight Machine

Chair

Peak Flow Meter.

PROCEDURE

Sampling and Data Collection

A total of Eighty (80) students were selected as per exclusion and inclusion criteria. The procedure was explained to the volunteering subjects and their wardens/guardians signed the consent form.

For calculation of BMI, NCBI calculator was used (BMI = weight in kg/height in m²). BMI was

measured to the nearest kg.

A measuring tape was used in measuring the Trunk length and Leg length and a mini peak flow meter was used in measuring Peak Expiratory Flow Rate.

Determination of Trunk-Leg Ratio

In this study, the trunk-leg ratio was determined as follows; the subject was asked to stand in an anatomical position and a measuring tape was used to measure the trunk-length which was measured from the shoulder to the summit of the iliac crest measurement was taken to the nearest cm. With the subject still in anatomical position, the leg length was measured which was gotten from the summit of the iliac crest down to the floor. The Trunk-leg ratio was obtained by dividing the trunk length with the leg length.

Determination of Peak Expiratory Flow Rate

PEFR (L/min) was evaluated with the brand

name device Mini Bell peak flow meter with a range of 60 to 900 L/min. The PEFR was obtained by a forced exhalation maneuver beginning with a maximum inhalation. Subjects were evaluated in a standing position. Prior to the evaluation, the device was described to the subjects. Afterwards, the assessment was carried out with the highest value recorded of the three attempts. The participants were asked to stand erect holding. Peak Expiratory Flow Meter with one hand and was asked to maximally breath in and then wrap the mouth around the mouth piece of the Peak Flow Meter then expire maximally into the Peak Flow Meter.

RESULTS

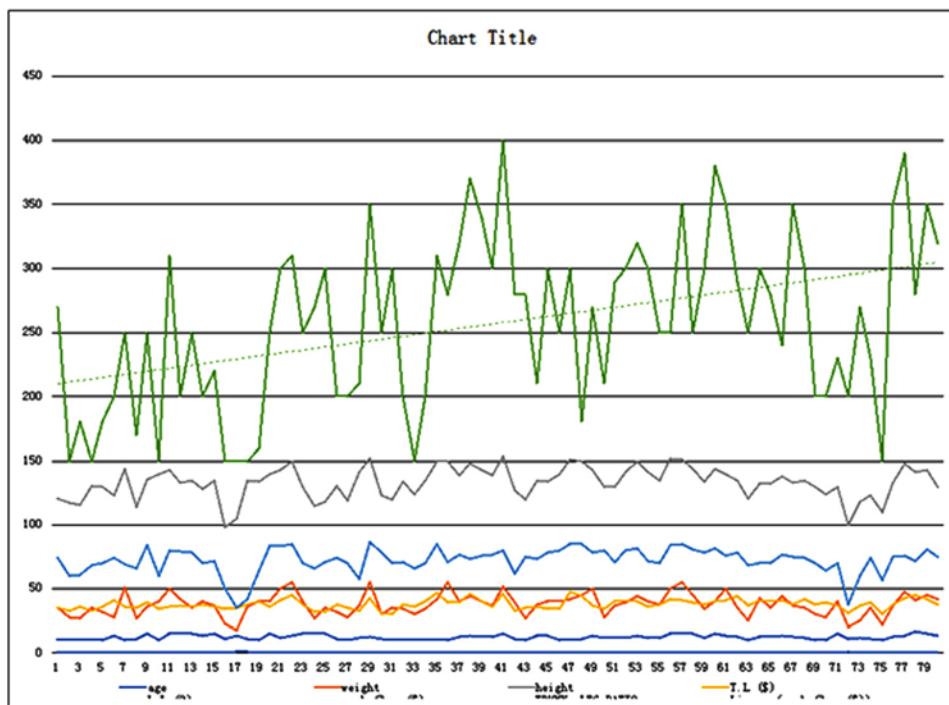

The study was analysed by Pearson's Moment of Correlation and independent sample t-test and the test results showed negative correlation between PEFR and trunk to leg length ratio (0.30). A moderate correlation was found between leg length and PEFR (0.58). Correlation between PEFR

Table 1: Mean value

Variables	Number (No.)	Mean \pm STD
PEFR (L/min)	80	257.5 \pm 65.61
Trunk length	80	337.975 \pm 3.99
Leg length	80	72.225 \pm 10.08
Trunk leg ratio	80	0.525 \pm 0.09

Table 2: R value and pearson correlation coefficient

Variable	No.	R-value
PEFR/Trunk leg ratio	80	-0.3083
PEFR/Trunk length	80	0.472479268
PEFR/Leg length	80	0.584613

Fig. 1: Line graph

Table 3: Master Table

S. No.	Age	Weight	Height	T.L (cm)	L.L (cm)	Peak flow (L/min)
1	10	35	121	35	74	270
2	10	28	117	33	60	150
3	10	27	116	36	61	180
4	10	35	131	33	68	150
5	10	32	130	36	70	180
6	14	28	123	41	74	200
7	10	51	144	36	69	250
8	11	27	114	35	66	170
9	15	36	136	39	84	250
10	10	40	140	34	60	150
11	15	50	143	36	80	310
12	15	42	133	37	79	200
13	15	35	135	36	78	250
14	14	40	128	38	70	200
15	15	37	135	36	72	220
16	11	23	98	34	50	150
17	14	18	105	35	35	150
18	11	36	135	38	42	150
19	10	40	134	40	64	160
20	15	40	140	36	83	250
21	12	50	143	41	83	300
22	14	55	150	45	85	310
23	15	40	130	38	70	250
24	15	27	115	32	66	270
25	15	35	118	32	71	300
26	11	32	131	38	74	200
27	10	28	119	35	70	200
28	12	37	141	33	58	210
29	13	55	152	43	87	350
30	11	30	123	30	78	250
31	10	35	120	30	70	300
32	10	34	134	38	71	200
33	10	30	124	36	66	150
34	10	34	135	40	70	200
35	10	42	150	47	85	310
36	10	55	150	39	71	280
37	13	40	139	39	77	320
38	14	44	148	46	73	370
39	13	40	143	40	76	340
40	13	37	139	36	77	300
41	15	52	154	46	80	400
42	11	39	127	33	62	280
43	10	27	120	35	75	280
44	14	38	135	36	73	210
45	14	40	134	34	78	300

Table cont...

46	10	40	140	34	80	250
47	10	42	151	48	85	300
48	11	45	150	44	85	180
49	14	50	143	37	78	270
50	12	28	130	34	80	210
51	12	37	130	40	71	290
52	12	39	141	40	80	300
53	14	44	150	40	82	320
54	12	40	141	36	72	300
55	12	38	135	38	70	250
56	15	50	152	42	84	250
57	15	55	151	41	85	350
58	15	45	144	39	81	250
59	12	34	134	38	78	300
60	15	40	144	40	82	380
61	14	50	140	41	76	350
62	13	35	135	44	78	290
63	10	25	121	37	68	250
64	13	43	132	41	70	300
65	13	35	132	40	70	280
66	14	44	138	41	77	240
67	13	37	133	38	75	350
68	12	35	135	42	74	300
69	10	30	130	38	70	200
70	10	28	124	39	64	200
71	15	40	130	37	70	230
72	11	20	100	31	38	200
73	12	25	118	37	60	270
74	11	35	123	39	74	230
75	10	22	110	30	57	150
76	13	37	133	38	75	350
77	14	48	148	43	76	390
78	17	41	141	45	72	280
79	15	45	143	42	81	350
80	14	42	130	38	75	320

and trunk length was very low (0.47).

Statistical Analysis

DISCUSSION

This study was conducted to find a relation between trunk to leg ratio and peak expiratory flow rate. The young girls between age 10-15 years were taken and their trunk length and leg length was measured and their ratios were obtained. A peak flow meter was used to asses the PEFR while standing erect. Peak flow rate was obtained in

Standing position, as it is the best option for as it generated maximum PEF.⁷ Peak expiratory flow rate (PEFR) is a convenient and reliable measurement in diagnosing and monitoring the progress of airflow limitation and evaluating the response to treatment. There is a relationship between height, weight, chest circumferences with PEFR. PEFR is an important diagnostic and prognostic tool of lung functions which predicts variations in airflow.⁸

In this study a relationship between TLR and PEFR was obtained and in this study a negative correlation was found between both PEFR and trunk to leg ratio, which does relates with the

findings of previous studies who found no significant relationship between Trunk-leg ratio and PEFR.³

JUN MA, *et al* study aimed to evaluate the association between ratio of height components, leg-to-trunk ratio (LTR) and high blood pressure (HBP) in Chinese children and adolescents aged 9-17. In this study, Larger LTR was associated with declined levels of BP across the height and age spectrum in both sexes. Low LTR was associated with elevated risk of HBP in youths. Their findings supported use of LTR to identify children and adolescents at elevated risk of hypertension in early life.

Peak expiratory flow rate (PEFR) is the maximum flow rate generated during a forceful exhalation, starting from full lung inflation. PEFR primarily reflects large airway flow and depends on the voluntary effort and muscular strength of the patient. PEFR is effort dependent and it and the normal range of the PEFR is related to factors such as age, height, weight, gender, race and the environmental conditions.¹⁴ A study showed the variations of the PEFR with the age, height, weight, Body Surface Area (BSA) and the Body Mass Index (BMI) in healthy women of the Malwa region of Punjab, who were living within similar socio-cultural environments and were engaged in similar forms of physical activities. Study showed that there was an increase in the PEFRs of the study subjects with an increase in their heights.² A study showed that PEFR declines with increase in BMI, there is evidence that obesity has a link to bronchial hyper responsiveness.¹⁰

The height plays a major role in peak flow rate and other spirometric values.¹³ Yanhonglu, *et al* predicted pef value for Chinese students, in this study height was the barometric variable with greatest correlation to PEF for both sexes.¹²

In this study trunk-leg ratio (TLR) was used for better understanding of the association between Trunk-leg ratio and PEFR to identify those with high chances of respiratory diseases. Thus, young children with increased BMI or living in polluted environment are at high chance of getting cardiorespiratory disease.

Limitations

1. The study consisted of a small number of subjects.
2. PEFR and more anthropometric parameters

should be considered in children.

3. Other components should also be measured eg. FEV1.

CONCLUSION

This study concluded that there is no correlation between trunk leg length ratio and peak flow rate in young girls. The results of this study revealed moderate correlation between leg length and PEFR among the normal BMI females, also revealed no relation between the trunk length and PEFR.

Future Study

The findings suggest that further studies should look into relationship between PEFR and more anthropometric parameters.

SUMMARY

Title of Study:

To Study Relationship between trunk Leg ration and Peak Flow Rate in young girls.

Background

Being an important physiological and clinical tool in assessing respiratory conditions, it is common knowledge that Peak expiratory flow rate (PEFR) may be affected by some factors affecting the normal function of the respiratory system. Such factors include the body constitution such as height, built, sex, age etc.; The trunk-leg ratio (TLR) was used in apparently normal young adults. A better understanding of the association between Trunk-leg ratio and PEFR may identify those with elevated risk of respiratory diseases.

Objectives:

To get a better understanding of the association between Trunk-leg ratio and PEFR that may help identify those with high chance of respiratory diseases.

Materials and Method:

A total of Eighty (80) students were selected as per exclusion and inclusion criteria. For calculation of BMI, height and weight was used (BMI = weight in kg/height in m²). A measuring tape was used in

measuring the Trunk length and Leg length and a peak flow meter was used in measuring Peak Expiratory Flow Rate.

Conclusions

There is negative correlation between PEFR and trunk to leg ratio in young girls with normal BMI.

REFERENCES

1. Singh TSK. Peak Expiratory Flow Rate in children.
2. Jena, et al.: Peak expiratory flow rate and its relation to body mass index in young adults.
3. Adama et al.; ARRB, 30(6): 1-6, 2018; Article no.ARRB.47410.
4. Ischander M, Zaldivar F Jr, Eliakim A, Nussbaum E, Dunton G, Leu SY, et al. Physical activity, growth, and inflammatory mediators in BMI-matched female adolescents. *Med Sci Sports Exerc.* 2007; 39:1131.
5. Devrieze BW, Giwaao, peak flow rate measurement (2019 march).ncbi.
6. Leg-to-trunk ratio and the risk of hypertension in children and adolescents: a population-based study, Bin Dong1,2, Zhiqiang Wang 1,2, Jun 2016.
7. Harpreet Kaur et al., Variations in the Peak Expiratory Flow Rate with Various Factors in a Population of Healthy Women of the Malwa.
8. Kart L Gulmez, pulmonary function parameters in healthy people.
9. Jayapal J. A study of postural variation in peak expiratory flow rates in healthy adult female subjects in South India. *Niger J Gen Pract* 2016;14:11-3.
10. Chinn S, Jarvis D, Burney P; European Community Respiratory Health Survey. Relation of bronchial responsiveness to body mass index in the ECRHS. *European Community Respiratory Health Survey. Thorax* 2002;57:1028-33.
11. Raju PS, Prasad KV, Ramana YV, Murthy KJ. Pulmonary functiontests in Indian girls - Prediction equations. *Indian J Pediatr* 2004;71:893-7.
12. Yanhonglu et al, Peak expiratory flow among healthy children aged 5-14 years in china 2018.
13. Vijay Krishna, PEFRi in normal school children and its correlation with height (sept 2014).
14. The effect of body weight on PEFR in adolescent school children from a rural area in south India (2018, aug).
15. Reddel HK, Am.j. Rspir. Crit. care med. 2009 jul 1.
16. Zannat MR et al, mymensingh Med J.2016.
17. JohnJ M. Paediatric PEFR normogram for Ernakulam district, India *J allergy asthma immunol* 2017.
18. Reddy UN, Khan MAU, Anjum S, Nasirmihiuddin M, Rao SP, Rao JN, Afreen S. Evaluation of mean peak expiratory flow rate (PEFR) of healthy children belonging to urban areas of Hyderabad. *Asian Pac J Health Sci*. 2012.

REDKART.NET

(A product of Red Flower Publication (P) Limited)

(Publications available for purchase: Journals, Books, Articles and Single issues)

(Date range: 1967 to till date)

The Red Kart is an e-commerce and is a product of Red Flower Publication (P) Limited. It covers a broad range of journals, Books, Articles, Single issues (print & Online-PDF) in English and Hindi languages. All these publications are in stock for immediate shipping and online access in case of online.

Benefits of shopping online are better than conventional way of buying.

1. Convenience.
2. Better prices.
3. More variety.
4. Fewer expenses.
5. No crowds.
6. Less compulsive shopping.
7. Buying old or unused items at lower prices.
8. Discreet purchases are easier.

URL: www.redkart.net

Red Flower Publication Pvt. Ltd.

CAPTURE YOUR MARKET

For advertising in this journal

Please contact:

International print and online display advertising sales

Advertisement Manager

Phone: 91-11-79695648, Cell: +91-9821671871

E-mail: info@rfppl.co.in

Recruitment and Classified Advertising

Advertisement Manager

Phone: 91-11-79695648, Cell: +91-9821671871

E-mail: info@rfppl.co.in

Effectiveness of Muscle Energy Technique on Pain, Range of Motion, Proprioception, Muscle Strength & QOL in Diabetic Frozen Shoulder Conditions

Niraj Kumar¹, Navneet Badoni², Sharda Sharma³, Tabussum⁴

How to cite this article:

Niraj Kumar, Navneet Badoni, Sharda Sharma, *et al.*/Effectiveness of Muscle Energy Technique on Pain, Range of Motion, Proprioception, Muscle strength & QOL in Diabetic Frozen Shoulder Conditions/Physiotherapy and Occupational Therapy Journal. 2023;16(3): 139-152.

ABSTRACT

Introduction: The term “frozen shoulder” was first introduced by Codman in 1934. He described a painful shoulder condition of insidious onset that was associated with stiffness and difficulty sleeping on the affected side. Codman also identified the marked reduction in forward elevation and external rotation that are the hallmarks of the disease (Richard Dias *et al*, 2005).

Aims and Objectives: To evaluate the effectiveness of Muscle Energy Techniques along with conventional Therapy on Pain, ROM, Muscle Strength, Proprioception, Disability, Anxiety & Depression, quality of life and Mindfulness in patients with diabetic frozen shoulder.

Methodology: 31 Patients were treated with Muscle Energy Technique (MET), Stabilization Exercise and Moist Heat Therapy. All the patients were selected after informed consent. These patients were interviewed by direct method. The patients were assessed in 0 (zero) week and reassessed in 4 (four) weeks and 8 (eight) weeks of treatment programme. Every 0 week 4 weeks and 8 weeks of treatment programme, pain, ROM, shoulder strength, shoulder Proprioception & disability were recorded. These treatment protocols will be given five days per week for eight weeks.

Conclusion: Our study concluded that Muscle Energy Technique (MET), Stabilization Exercise and Moist Heat Therapy (MHT) in Patients with Diabetic Frozen Shoulder showed significant improvement in pain, Range of motion muscular strength and joint position sense in 4th weeks & 8th weeks of treatment programme.

Keywords: Diabetic Frozen Shoulder; Muscle Energy Technique (MET); Stabilization Exercise; Moist Heat Therapy; Digital Inclinometer; Force Gauge & NPRS.

Author Affiliation: ^{1,2}Professor, ³Associate Professor, ⁴Assistant Professor, Department of Orthopedics, Shri Guru Ram Rai Institute of Medical & Health Sciences, Shri Guru Ram Rai University, Dehradun 248001, Uttarakhand, India.

Corresponding Author: **Navneet Badoni**, Professor, Department of Orthopedics, Shri Guru Ram Rai Institute of Medical & Health Sciences, Shri Guru Ram Rai University, Dehradun 248001, Uttarakhand, India.

E-mail: drnirajkumar25@gmail.com

Received on 19.07.2023

Accepted on 20.08.2023

INTRODUCTION

The term “frozen shoulder” was first introduced by Codman in 1934. He described a painful shoulder condition of insidious onset that was associated with stiffness and difficulty sleeping on the affected side. Codman also identified the marked reduction in forward elevation and external rotation that are the hallmarks of the disease. Long

before Codman, in 1872, the same condition had already been labelled "periarthritis" by Duplay. In 1945, Naviesar coined the term "adhesive capsulitis" (Richard Dias *et al.*, 2005).

Diabetic frozen shoulder is characterized by pain and severe limited active and passive range of motion of the glenohumeral joint, particularly external rotation. Diabetes is frozen shoulder is due

to the effects on collagen in the shoulder, which holds the bones together in a joint. Collagen gets triggered by the presence of high blood sugars. Interestingly, collagen gets sticky when sugar molecules become attached, leading to restricted movements and shoulder starting to stiffen (Cintia Garcilazo *et al.*, 2010) (Fig. 1).

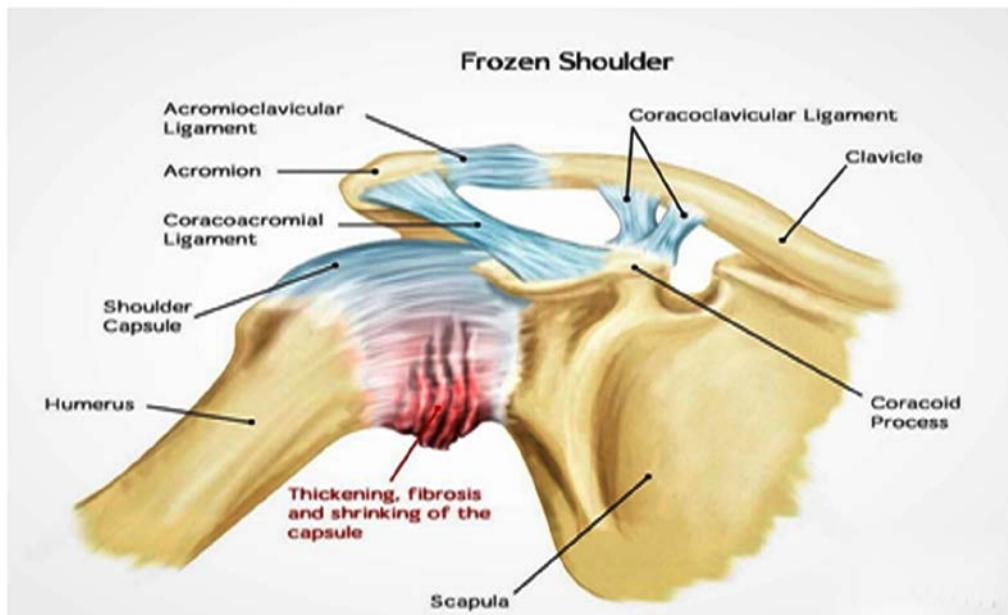


Fig. 1: Frozen Shoulder

The prevalence of adhesive capsulitis in patients with diabetes in India was reported to be 11%–29.61%, in Saudi Arabia 6.7%, in Iran 13.30%, in Finland 14%, in UK around 10.8%. Whereas other studies identified around 20% Australians, 38.6% Americans, 27% Indians and around 40% British reported diabetes in patients with adhesive capsulitis (Rita Rastogi, *et al.* 2014).

The etiology of periarthritis of the shoulder, however, is not clearly understood. Amongst the factors suggested are trauma, myocardial infarction, hemiplegia, pulmonary tuberculosis, thyrotoxicosis, cerebral tumor, and epilepsy. In this paper, an association of periarthritis of the shoulder with diabetes mellitus is described. The incidence of this condition in diabetic patients is compared with that in non-diabetic medical patients seen during the same period of time (G. C. Lloyd-Roberts, *et al.* 1959; J. F. Bridgman, *et al.* 1972).

The patho-physiology of idiopathic adhesive capsulitis is poorly understood. Most authors have reported various degrees of inflammatory changes in the synovial membrane. Adhesions between

the shoulder capsule and the humeral head have been noted by some, but not all, authors. The optimum management of adhesive capsulitis has been the subject of great debate, particularly since the condition tends to resolve spontaneously over months to years (Simon Carette, *et al.* 2003).

Dr. Fred Mitchell Sr. developed the muscle energy technique. It is a non-invasive treatment that can be used to extend or stretch stiff muscles and fascia. MET primarily targets soft tissues, but it also significantly contributes to joint mobilisation, which enhances extensibility of muscle and increases range of motion of joints through a mechanism known as "enhanced tolerance to stretch." (Geetha Mounika Rayudu *et al.* 2018).

The Numerical Pain Rating Scale (NPRS) is a subjective measure in which individuals rate their pain on an eleven point numerical scale. The scale is composed of 0 (no pain at all) to 10 (worst imaginable pain). It has been shown that a composite scoring system including best, worse, and current level of pain over the last 24 hours was sufficient to pick up changes in pain intensity with

maximal reliability (Jensen, *et al.* 1999).

Range of motion (or ROM), is the linear or angular distance that a moving object may normally travel while properly attached to another. It is also called range of travel (or ROT). Range of motion refers to the distance and direction a joint can move between the flexed position and the extended position. (Wikipedia Range of motion, 2021).

A digital force gauge is a load cell (this is often combined with software and a display). A load cell is an electronic device that is used to convert a force into an electrical signal. Through a mechanical arrangement, the force being sensed deforms a strain gauge. The strain gauge converts the deformation (strain) to electrical signals. The software and electronics of the force gauge convert the voltage of the load cell into a force value that is displayed on the instrument. Test units of force measurements are most commonly newtons or pounds (Wikipedia Force gauge, 2020).

AIMS AND OBJECTIVES

To evaluate the effectiveness of Muscle Energy Techniques along with conventional Therapy on Pain, ROM, Muscle Strength, Proprioception, Disability, Anxiety & Depression, quality of life and Mindfulness in patients with diabetic frozen shoulder.

Hypothesis

Alternate Hypothesis

There will be significant differences of Muscle Energy Techniques along with conventional on Pain, ROM, Proprioception and muscle strength in patients with diabetic frozen shoulder.

Null Hypothesis

There will be not significant differences of Muscle Energy Techniques along with conventional on Pain, ROM, Proprioception and muscle strength in patients with diabetic frozen shoulder.

METHODOLOGY

Approval from the Synopsis Approval Committee (SAC) of SGRR University and Institutional Ethics Committee of Shri Guru Ram Rai Institute of Medical & Health Sciences, Patel Nagar, Dehradun was sought. The confidence level-95% and confidence interval-5% used to calculate sample size. In this study, Dehradun census (Uttarakhand)

population (679,370 in 2018) was included (Census and Sample Survey, Dehradun 2018) (C. R. Kothari, 2004; Census and Sample Survey, Dehradun 2018).

In this study simple random sampling technique was used. These subjects were solicited from the Shri Mahant Indresh Hospital, Department of Physiotherapy, Patel Nagar, Dehradun (Uttarakhand) and selected according to inclusion and exclusion criteria.

Inclusion Criteria: Patients which were diagnosed to suffer from Diabetic Frozen Shoulder, Patients with limited Range of motion of shoulder abduction, external rotation and flexion, All the patients (both males and females) between ages 40 to 70 years, All the subjects must have frozen shoulder for at least last 15 days, Affected shoulder must have not more than 90 degrees of flexion & abduction and 50% decreased external rotation & internal rotation as compared to normal side/ normal ROM values.

Exclusion Criteria: Subjects with Rotator cuff tears and other shoulder ligament injuries, History of any arthritis related to shoulder, RA shoulder secondary to fracture, dislocation, Reflex sympathetic dystrophy and neurological disorder, Malignancy, All the patients having any cervical or thoracic problem. If present must be treated first before including in the study, All the objects having any intra articular injection in the glenohumeral joint during last three months, Patients with fractured scapula, Any history of surgery on that shoulder and patients with tendon calcification, Patients with cervical rib, Diagnosed severely osteoporotic, Diagnosed Rheumatoid Arthritis, Diagnosed Osteoarthritis, Prolonged immobilization and Neurological/Hemiplegics. Those patients were also excluded from the study whose ROM; Flexion was more than 90°, Abduction more than 90°, Lateral rotation and medial rotation more than 50%. Outcome Measures Numeric Pain Rating Scale (NPRS), Digital Inclinometer, Force Gauge and Proprioception Measurement. (Table 1)

Table 1: Outcome Measures

Variables	Measurements
Pain	Numeric pain rating scale
Range of motion	Insize digital inclinometer
Muscle strength	Lutron force gauge
Shoulder proprioception	Joint position sense measurement

PROCEDURE

All the patients were selected after informed

consent. These patients were interviewed by direct method. The patients were assessed in 0 (zero) week and reassessed in 4 (four) weeks and 8 (eight) weeks of treatment programme. Every 0 week 4 weeks and 8 weeks of treatment programme, pain, ROM, shoulder strength, shoulder Proprioception & disability were recorded. These treatment protocols will be given five days per week for eight weeks. 31 Patients were treated with Muscle Energy Technique (MET), Stabilization Exercise and Moist Heat Therapy.

Application Muscle Energy Techniques (MET) for Rotator cuff Muscle:

MET Treatment of Supraspinatus (Abduction 0 TO 15°):

Assessment for Shortness of Supraspinatus:

The therapist stands behind the seated patient, with one hand stabilizing the shoulder on the side to be assessed while the other hand reaches in front of the patient to support the flexed elbow and forearm. The patient's upper arm is adducted to its easy barrier and the patient then attempts to abduct the arm.

If pain is noted in the posterior shoulder region during this attempt this is diagnostic of supra spinatus dysfunction and, by implication because it is a postural muscle, of shortness.

Assessment for Supraspinatus Weakness

The patient sits or stands with arm abducted 15°, elbow extended. The therapist stabilizes the shoulder with one hand while the other hand offers a resistance contact which if forceful would adduct the arm. The patient attempts to resist this, and the degree of effort required to overcome the patient's resistance is graded as weak or strong.

The relative strength is judged and the method discussed by Norris (1999) should be used to increase strength (isotonic eccentric contraction performed slowly).

MET Treatment of Supraspinatus

The therapist stands behind the seated patient, with one hand stabilizing the shoulder on the side to be treated while the other hand reaches in front of the patient to support the flexed elbow and forearm. The patient's upper arm is adducted to its easy barrier and the patient then attempts to abduct the arm using 20% of strength against therapist resistance. During this procedure, the

patient inhales the air. After a 10 second isometric contraction, the patient exhales the air. The arm is taken gently towards its new resistance barrier into greater adduction, with the patient's assistance. Repeat several times, holding each painless stretch for not less than 20 seconds (Leon Chaitow, *et al.* 2006) (Fig. 2).



Fig. 2: MET treatment of supraspinatus

MET of Infraspinatus (External Rotator)

Infraspinatus Shortness test

1. The patient is asked to reach upwards, backwards and across to touch the upper border of the opposite scapula, so producing external rotation of the humeral head. If this effort is painful Infraspinatus shortness should be suspected.
2. The patient supine, upper arm at right angles to the trunk, elbow flexed so that lower arm is parallel with the trunk, pointing caudad with the palm downwards. This brings the arm into internal rotation and places Infraspinatus at stretch. The therapist ensures that the shoulder remains in contact with the table during this assessment by means of light compression.

If Infraspinatus is short, the lower arm will not be capable of resting parallel with the floor, obliging it to point somewhat towards the ceiling.

Assessment for Infraspinatus weakness

The patient is seated. The therapist stands

behind. The patient's arms are flexed at the elbows and held to the side, and the practitioner provides isometric resistance to external rotation of the lower arms (externally rotating them and also the humerus at the shoulder). If this effort is painful, an indication of probable Infraspinatus shortening exists. The relative strength is also judged. If weak, the method discussed by Norris (1999) (see Ch. 3) should be used to increase strength (isotonic eccentric contraction performed slowly). Force should always be built slowly and not suddenly.

MET Treatment of Infraspinatus:

The patient was positioned in supine lying on the examination table and shoulder abducted to 90 degree and elbow flexed to 90 degree respectively. The therapist will be passively internal rotated the shoulder until the first barrier of movement is reached. Then the patient will be asked to perform a 5 second isometric hold at 25% of his/ her maximal voluntary contraction in the direction of external rotation, against an opposing force provided by the examiner at the distal forearm. During this procedure, the patient inhales the air. After a 05 second isometric contraction, the patient exhales the air. Following the contraction the patient will be instructed to relax and the therapist took the shoulder to new internal rotation range and the stretch was applied for 30 seconds and the same method is performed again (Leon Chaitow, et al. 2006; Geetha Mounika Rayudu, et al. 2018; Stephanie D. Moore, et al. 2011) (Fig. 3).

Fig. 3: MET treatment of Infraspinatus

MET of Subscapularis (Internal Rotator & Adductors)

Subscapularis Shortness Test:

The patient was lying supine with the arm abducted to 90°, the elbow flexed to 90°, and the forearm in external rotation, palm upwards. The whole arm was resting at the restriction barrier, with gravity as its counter weight. If subscapularis is short the forearm was unable to rest easily parallel with the floor but was somewhat elevated.

Care is needed to prevent the anterior shoulder becoming elevated in this position (moving towards the ceiling) and so giving a false normal picture.

Assessment for Subscapularis weakness:

The patient was lying prone with humerus abducted to 90° and elbow flexed to 90°. The shoulder was in internal rotation so that the forearm is parallel with the trunk, palm towards ceiling. The therapist stabilized the scapula with one hand and with the other applies pressure to the patient's wrist and forearm as though taking the humerus towards external rotation, while the patient resists. The relative strength was judged and the method discussed by Norris (1999) should use to increase strength (isotonic eccentric contraction performed slowly).

MET Treatment of Subscapularis (Internal Rotation)

The patient was positioned supine on the treatment table with the shoulder and elbow, at 90 degree of abduction, flexion and the forearm in external rotation, palm upwards. The shoulder was stabilized at the acromion process with one hand, and the other hand will be used to passively move the arm into internal rotation until the first barrier of motion was reached. The patient was then instructed to perform a 7-10 second isometric contraction of approximately 25% maximal effort in the direction of external rotation, against an opposing force provided at the distal forearm. During this procedure, the patient inhales the air. After a 7-10 second isometric contraction, the patient exhales the air. Following the contraction, the patient will be instructed to internally rotate the arm toward the ground as a 30 second active assisted stretch will be applied. The patient was instructed to relax, and a new movement barrier was then engaged. This protocol was performed for a total of 3 repetitions. (Stephanie D. Moore et al 2011). This lengthens the external rotators thus

increasing the internal rotation range of motion (Leon Chaitow, *et al.* 2006; Sonakshi Sehgal, *et al.* 2016; Stephanie D. Moore, *et al.* 2011).

The MET to shoulder was given for 5 repetitions

per set for 3 sets and the treatment procedure performed 3 sessions in a week for 8 weeks (Leon Chaitow, *et al.* 2006; Geetha Mounika Rayudu *et al.* 2018) (Fig. 4).

Fig. 4: MET treatment of subscapularis (Internal Rotation)

SHOULDER STABILIZATION EXERCISE

After manual therapy intervention, the exercises were incorporated for the training of shoulder flexors, abductors and external and internal group muscle.

Shoulder Stabilization Exercise for Abductors (Supraspinatus and Middle Deltoid)

1. Shoulder Stabilization Exercise for Supraspinatus

Patient will be sitting position. The patient pushing out against the wall. Initially the manoeuvres are done with the shoulder in less than 0 to 10° of abduction (Fig. 5).

2. Shoulder Stabilization Exercise for Deltoid

Patient will be sitting position. The patient pushing out against the therapist hand. Initially the manoeuvres are done with the shoulder in above than 90° of abduction (S.B. Brotzman *et al.* 1996; T. M. S kirven, *et al.* 2011) (Fig. 6).

Fig. 5: Shoulder Stabilization Exercise for Supraspinatus

Fig. 6: Shoulder Stabilization Exercise for Supraspinatus and Deltoid (5 & 6).

3. Shoulder Stabilization Exercise for External Rotators (Infraspinatus, Teres Minor, Posterior Deltoid).

Patient will be stand with the involved side of his body against a wall or therapist hand. Bend your elbow to 90° and told the patient performed external rotation against the wall. The patient arm should not move (S.B. Brotzman *et al.* 1996; Shoulder Strengthening Exercises 2010).

4. Shoulder Stabilization Exercise for Internal Rotators (Subscapularis and anterior deltoid)

Patient will be stand with the involved side of his body against a wall. Bend your elbow to 90° and told the patient performed internal rotation against therapist hand. The patient arm should not move (S.B. Brotzman 1996; American Academy of Orthopaedic Surgeons 2017; T. M. S kirven, *et al.* 2011).

5. Shoulder Stabilization Exercise for scapular muscles.

❖ **Patient Position and Procedure:** standing with shoulder flexed 90° and hand supported against a wall. The patient is try to touch the wall by upper trunk.

Progression: have the patient quadruped position with both hands on a stable surface, so that one extremity bears the body weight and stabilizes

against the shifting load to increase Serratus activity and lower trapezius activity respectively.

- ❖ **Scapular Elevation/Depression:** Place your top hand superiorly and the other hand inferiorly around the scapula to provide manual resistance.
- **Scapular Protraction/Retraction:** Place your top hand along the medial border and the other around the coracoid process to provide resistance.
- **Scapular Upward and Downward Rotation:** Place one hand around inferior angle and the other hand around the acromian and coracoid process to provide resistance (C. Kisner, *et al.* 2018).

The exercise will be performed 8 to 15 repetitions for 3 sets only 5 times/week for 8 weeks. It is performed with 5 to 10 second hold in each repetition a break of 1 min after each set (S.B. Brotzman, *et al.* 1996; Ju-hyun Lee, *et al.* 2018).

Moist Hot Pack (MHT)

The subject will be asked to lie down in a supine position and the shoulder is placed in the neutral position. The hot pack (standard size which had been stored in a hydro collator tank of 74.5-80 °C). Moist heat pack will be wrapped in towel with three to four folds over the affected shoulder. The pack was left in place for 10 to 15 minutes (Dhara N. Panchal, *et al.* 2015; Kumar Neeraj, *et al.* 2016) (Fig. 7).

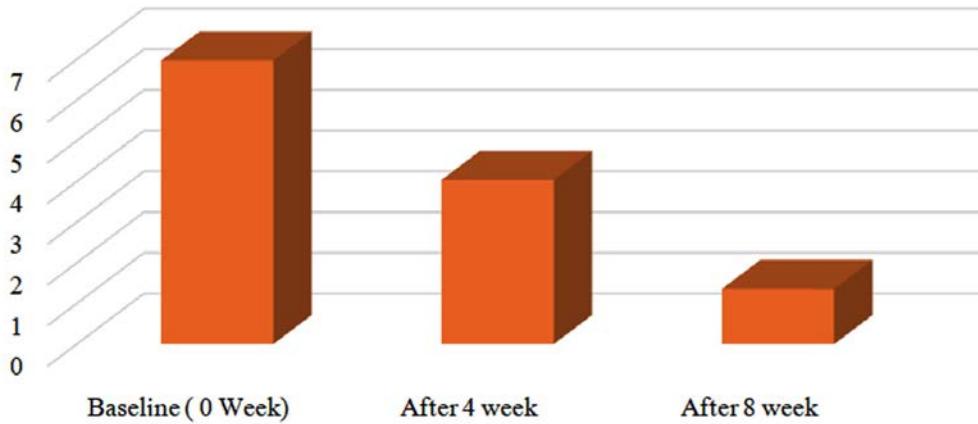
Fig. 7: Application of Moist Heat Therapy in Shoulder joint

RESULTS

Total 31 patients were included in the study by simple random sampling method. The data were analyzed using the statistical software SPSS 15 version. The result was analyzed by Repeated Measure ANOVA for within group in 0 week, 4 week & 8 week of treatment. Pain was measured by NPRS, Range of Motion was measured by Digital

Inclinometer, Shoulder Proprioception was also measured by Digital Inclinometer, Muscle strength was measured by Force Gauge and Quality of Life was measured by WHOQOL.

Measurement of Numeric Pain rating scale within the Group-A:


Analysis of the Numeric pain rating scale within groups was done using repeated measure ANOVA test. The differences in NPRS scores from Baseline

(0 Week), 4 week & 8 week for Group A showed highly significant reduction of pain (p-Value 0.001). (Table 2 & Graph 1).

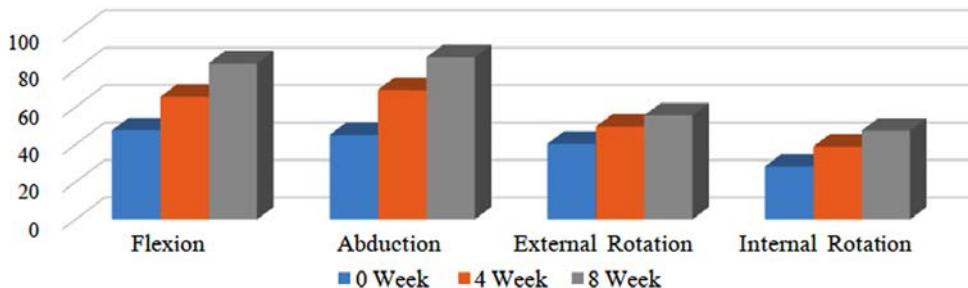
Table 2: Mean Comparison within Group A of NPRS using repeated measure ANOVA

Duration	Mean \pm SD	F-Value	p-Value
Baseline (0 Week)	6.9677 \pm 0.98265		
After 4 week	4.0323 \pm 1.13970	549.750	0.001
After 8 week	1.3548 \pm 0.75491		

Mean Comparison of NPRS within the group-A

Graph 1: Comparison of Mean NPRS Score within Group A by repeated measure ANOVA

Measurement of Range of Motion scale within the Group-A:


Analysis of the difference in the ROM within groups repeated measure ANOVA test was used.

The differences in Flexion, Abduction, External Rotation and Internal Rotation ROM at Baseline (0 Week), 4 week & 8 week for Group C showed highly significant improvement (p-Value 0.001) (Table 3 & Graph 2).

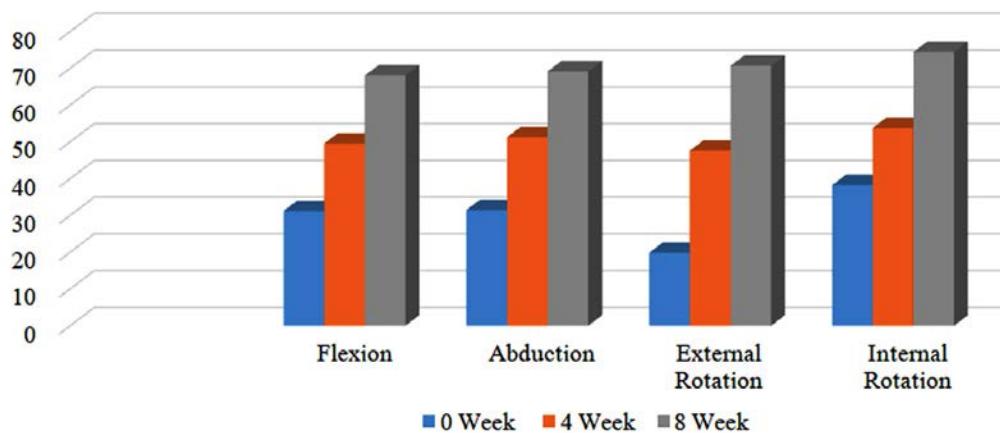
Table 3: Mean Comparison within Group A of ROM using repeated measure ANOVA

Range of Motion (ROM)	0 Week	4 Week	8 Week	F - Value	p-Value
	(Mean \pm SD)	(Mean \pm SD)	(Mean \pm SD)		
Flexion	47.4935 \pm 6.39244	65.4129 \pm 12.88854	83.3548 \pm 15.31533	156.075	0.001
Abduction	45.0613 \pm 9.10980	69.0968 \pm 12.32430	86.5323 \pm 13.36940	128.972	0.001
External Rotation	40.3161 \pm 3.95416	49.3935 \pm 5.72503	55.4032 \pm 5.06883	159.724	0.001
Internal Rotation	28.2097 \pm 3.73830	38.8484 \pm 3.41163	47.3806 \pm 3.45344	622.456	0.001

Mean Comparison of ROM within the group-A

Graph 2: Comparison of Mean ROM within Group A by repeated measure ANOVA

Measurement of Measurement of Shoulder Strength within the Group-A:


Analysis of the difference in the Shoulder Muscle Strength within groups repeated measure

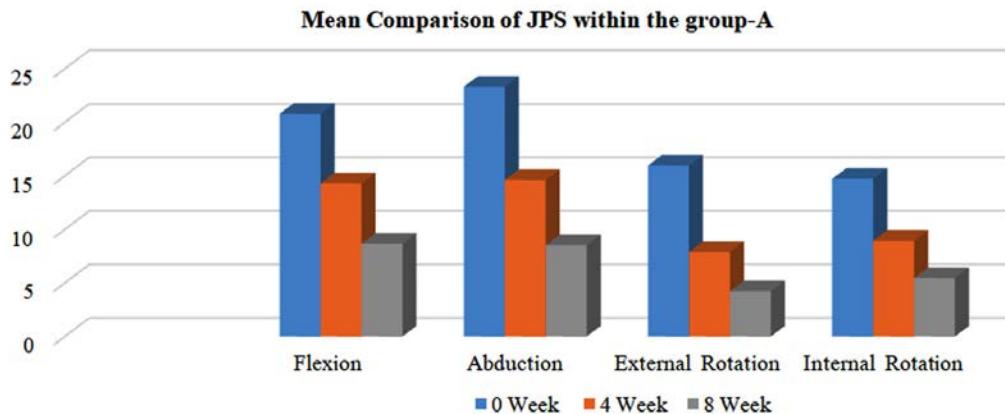
ANOVA test was used. The differences in Flexion, Abduction, External Rotation and Internal Rotation Muscle Strength at Baseline (0 Week), 4 week & 8 week for Group A showed highly significant improvement (p-Value 0.001) (Table 4 & Graph 3).

Table 4: Mean Comparison within Group A of Shoulder Muscle Strength using repeated measure ANOVA

Strength Measurement	0 Week	4 Week	8 Week	F - Value	p-Value
	(Mean \pm SD)	(Mean \pm SD)	(Mean \pm SD)		
Flexion	31.2077 \pm 10.69094	49.5223 \pm 7.31794	68.0210 \pm 8.95250	405.385	0.001
Abduction	31.4639 \pm 11.35258	51.2626 \pm 7.95710	69.1332 \pm 7.20782	319.822	0.001
External Rotation	19.8348 \pm 7.33526	47.5829 \pm 7.21948	70.6694 \pm 6.71968	958.858	0.001
Internal Rotation	38.1948 \pm 9.05161	53.7561 \pm 4.89439	74.4300 \pm 6.38854	337.739	0.001

Mean Comparison of Muscle strength Score within the group-A

Graph 3: Comparison of Mean Muscle strength Score within Group A by repeated measure ANOVA


Measurement of Joint Position Sense Score within the Group-A

To analyze the difference in the Shoulder JPS within groups repeated measure ANOVA test was used. The differences in Flexion, Abduction,

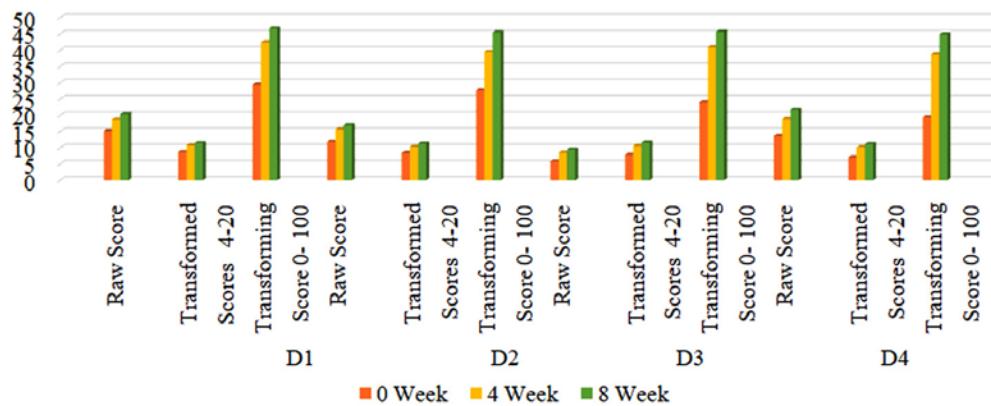
External Rotation and Internal Rotation JPS at Baseline (0 Week), 4 week & 8 week for Group A showed highly significant improvement of joint position sense and decrease error of shoulder joint (p-Value 0.001) (Table 5 & Graph 4).

Table 5: Mean Comparison within Group A of JPS using repeated measure ANOVA

Joint Position Sense	0 Week	4 Week	8 Week	F - Value	p-Value
	(Mean \pm SD)	(Mean \pm SD)	(Mean \pm SD)		
Flexion	20.8000 \pm 4.95775	14.3000 \pm 3.44564	8.6667 \pm 2.98656	156.723	0.001
Abduction	23.3226 \pm 3.53447	14.6129 \pm 3.90451	8.5161 \pm 3.07540	293.189	0.001
External Rotation	15.9677 \pm 2.94939	7.9032 \pm 2.21141	4.2258 \pm 1.96146	282.470	0.001
Internal Rotation	14.7097 \pm 3.23722	8.9355 \pm 2.64494	5.4516 \pm 2.32148	201.632	0.001

Graph 4: Comparison of Mean JPS Score within Group A by repeated measure ANOVA

Measurement of World Health Organization Quality of Life within the Group-A


Analysis of the difference in the WHOQOL scores within groups repeated measure ANOVA

test was used. The differences in D1, D2, D3 & D4 Raw Score, Transformed Scores (4-20) and Transformed Scores (0-100) at Baseline (0 Week), 4 week & 8 week for Group C showed highly significant improvement (p-Value 0.001) (Table 6 & Graph 5).

Table 6: Mean Comparison within Group A of WHOQOL Using repeated measure ANOVA

Outcome Measures		0 Week (Mean ± SD)	4 Week (Mean ± SD)	8 Week (Mean ± SD)	F - Value	p- Value
Raw Score		15.1935±2.1824	18.7097±1.50982	20.4194±1.50054	146.963	0.001
D1	Transformed Scores 4-20	8.7097±1.24348	10.7419±8.9322	11.4516±8.8840	103.406	0.001
	Transforming Score 0-100	29.4516±7.94078	42.3871±5.49350	46.7097±5.33038	107.894	0.001
	Raw Score	11.8710±1.58623	15.6452±1.53945	16.9677±1.35361	136.049	0.001
D2	Transformed Scores 4-20	8.4194±2.48696	10.2903±1.07062	11.2903±8.2436	22.236	0.001
	Transforming Score 0-100	27.7097±15.4255	39.4839±6.75214	45.4839±5.07852	22.321	0.001
	Raw Score	5.8065±.98045	8.5161±2.51490	9.4839±3.09700	40.38	0.001
D3	Transformed Scores 4-20	7.8387±1.06761	10.5484±1.65002	11.6452±2.42966	112.785	0.001
	Transforming Score 0-100	24.0000±6.49615	40.9032±10.3773	45.6774±17.92277	62.36	0.001
	Raw Score	13.6452±1.76160	18.8387±3.45540	21.6774±2.15077	128.227	0.001
D4	Transformed Scores 4-20	7.0645±.92864	10.1613±.77875	11.1290±1.05647	324.359	0.001
	Transforming Score 0-100	19.3871±5.57182	38.7419±5.02638	44.8710±6.61182	332.833	0.001

Mean Comparison of WHOQOL within the group-A

Graph 5: Comparison of Mean WHOQOL Score within Group A by repeated measure ANOVA

DISCUSSION

The aim of this review was to understand the efficacy of MET on pain, ROM, MS, JPS, Anxiety & Depression, Quality of Life and Mindfulness to understand the differences within MET protocols in DFS.

Pain:

Pain was measured by Numeric pain rating scale. To analyze the difference in the NPRS scale within groups repeated measure ANOVA test was used. The difference in NPRS scores from Baseline (0 Week), 4 week & 8 week for Group C (MET), P-value are 0.001. Our study showed statistical improvement in pain score ($P < 0.05$) at 4 week and 8 week of treatment. Muscle energy techniques originally developed by osteopaths are a class of soft tissue manipulation technique which generally involves precisely directed and controlled patient initiated isometric and/or isotonic contractions to improve musculoskeletal function or to reduce pain. (Chaitow L, 2006). MET exercises spread synovial fluid stimulate tonically depressed joint mechanoreceptors and reduced pain (Narayan, *et al.* 2014). Muscle energy technique is effective on functional ability of shoulder in Frozen shoulder (Narayana, *et al.* 2014). Stephanie D. Moore in 2011 showed that pain reduction by MET was due to centrally mediated pain inhibitory mechanism and neuronal mechanism in dorsal horn is by neurological and tissue factors such as stimulation of low threshold mechanoreceptors which leads to possible gating effects and effect of rhythmic muscular contraction on interstitial and tissue fluid flow (Stephanie D. Moore 2011). MET improve the circulation and lymphatic flow and reduce pain (Joshua A. Waxenbaum, *et al* 2020).

Range of Motion (ROM)

Range of Motion was measured by Digital Inclinometer. To analyze the difference in the Flexion, Abduction, External Rotation & Internal Rotation ROM within groups repeated measure ANOVA test was used. The difference in ROM scores from Baseline (0 Week), 4 week & 8 week for Group-C (MET), P-value are 0.001. Our study showed statistical improvement in ROM score in the Flexion, Abduction, External Rotation & Internal Rotation ROM ($P < 0.05$) at 4 week and 8 week of treatment. Ewan Thomas, *et al.* 2019 stated high intensity contraction of MET could produce post

synaptic inhibitory mechanisms, resulting in lower excitation of the cortical and α -motor neurons, thereby modulating stretch perception and increase that ROM and increased stretch tolerance. Stephanie *et al* (2011) stated muscle energy technique for the glenohumeral joint given immediate improvement in GHJ horizontal adduction and internal rotation ROM in asymptomatic collegiate baseball players. The increased active range of motion following MET may be due to various factors like neural, viscoelastic and thixotropic properties. After application of MET, musculo tendinous junction acts in a viscoelastic manner and lead to the properties of creep and stress relaxation (Geetha Mounika Rayudu *et al.* 2018). MET is effective in increasing the ROM of the glenohumeral joint. According to Chaitow L, 2006 the physiological mechanisms behind the changes in muscle extensibility produced by MET are reflex relaxation, viscoelastic or muscle property change, and changes to stretch tolerance a change to tolerance to stretching is most supported by the scientific literature (Lean Chaitow). These mechanisms bring about a change in muscle physiology and hence lead to increased ROM at the joint. (Sonakshi Sehgal, *et al.* 2016). According to Lean Chaitow the physiological mechanisms behind the changes in muscle extensibility produced by MET are reflex relaxation, viscoelastic or muscle property change, and changes to stretch tolerance a change to tolerance to stretching is most supported by the scientific literature (Lean Chaitow). These mechanisms bring about a change in muscle physiology and hence lead to increased ROM at the joint. (Sonakshi Sehgal *et al.* 2016).

Muscle Strength

Muscle Strength was measured by Lutron Force Gauge. To analyze the difference in the Flexion, Abduction, External Rotation & Internal Rotation Muscle Strength within groups repeated measure ANOVA test was used. The difference in Muscle Strength from Baseline (0 Week), 4 week & 8 week for Group C (MET), P-value are 0.001. Our study showed statistical improvement in Muscle Strength score in the Flexion, Abduction, External Rotation & Internal Rotation ($P < 0.05$) at 4 week and 8 week of treatment. MET lengthens and strengthens muscle by changing the viscoelastic property of the muscle, decreases local edema and reduces adhesions. (Ballantyne F, 2003). Roberts indicated the effects of MET as decreased pain, increased range of motion, decreased muscle tension and spasm, and increased strength. Another study by, Greenman (1989) depicts that Muscle Energy Technique helps

to regain the mobility of the hypomobile joints by restoring normal length tension relationships which are shortened and by strengthening the weakened muscles and reduce edema by pumping action for lymphatic system (B. Chakradhar Reddy, Santosh Metgud, 2014).

Joint Position Sense Score (JPS)

Joint Position Sense Score (JPS) was measured by Digital Inclinometer. To analyze the difference in the Flexion, Abduction, External Rotation & Internal Rotation JPS within groups repeated measure ANOVA test was used. The difference in JPS scores from Baseline (0 Week), 4 week & 8 week post intervention for Group C (MET), P-value are 0.001. Our study showed statistical improvement in JPS score in the Flexion, Abduction, External Rotation & Internal Rotation and decrease the error of JPS ($P < 0.05$) at 4 week and 8 week of treatment. MET may also have physiological effects & involve a variety of neurological and biomechanical mechanisms that altered proprioception, motor programming and changes in tissue fluid that decrease the error of JPS (Fryer G. *et al.*, 2003).

Quality of Life

Quality of Life was measured by WHOQOL. To analyze the difference in the QOL within groups repeated measure ANOVA test was used. The difference in QOL scores from Baseline (0 Week), 4 week & 8 week for Group C (MET), P-value are 0.001. Our study showed statistical improvement in QOL score ($P < 0.05$) at 4 week and 8 week of treatment.

The term frozen shoulder refers to a common shoulder condition characterized by the global restriction in the shoulder range of motion in a capsular pattern. The capsular pattern in the shoulder is characterized by most limitation of passive lateral rotation and abduction. Neviaser called it adhesive capsulitis, as he, under arthroscopy, observed that the capsule looked thickened and adhered to underlying bone and could be peeled off from the bone (Rizwan Haider *et al.* 2014).

In our study we used numerical pain rating scale (NPRS) for measurement of pain in Diabetic Frozen Shoulder Patients. Childs J *et al* in 2005 did study on responsiveness of the Numeric Pain Rating Scale in Patients with Low Back Pain. The NPRS shows adequate responsiveness for use both in the clinical and research settings. They found out that a two points change in NPRS represented clinically and

meaningful changes in pain levels, though there were not much statistically significant difference. (Childs J *et al*, 2005).

In this study we found that in MET there are significantly increase joint AROM of Shoulder Joint than control group. Range of motion is the capability of a joint to go through its complete spectrum of movements. Measurement of range of motion can be used to evaluate available motion, determine joint stability, and determine soft tissue elasticity as well as response to therapy over time. Sandra Hudson, (2009). In our study for measure the joint ROM of shoulder joint we used Digital Inclinometer. Digital inclinometer is used for measuring active shoulder (Morey J. Kolber, *et al.* 2012).

In this study we found that in MET there are significantly increase muscle strength of Shoulder Joint than control group. J. Sokk, H. Gapeyeva, *et al.* 2007 stated Frozen shoulder syndrome (FSS) is typically characterized by shoulder pain, a limited range of motion (ROM) and gradual loss of strength of the shoulder muscles. 4 week individualized rehabilitation on shoulder muscle function in patients with FSS. There are significant changes in shoulder muscle strength. (J. Sokk, H. Gapeyeva, *et al.* 2007).

In this study we found that in Muscle Energy Technique (MET), there are decrease of error of Shoulder Joint proprioception. Amanda L. Ager, *et al.* 2017 stated that shoulder Joint proprioception is essential for the optimization of shoulder neuromuscular control throughout the movement, yet continues to be a quantitative challenge today. Due to the lack of standardization of proprioception terminology and complexity of evaluation methods, it remains an area of psychometric contention. The purpose of this systematic review was to identify and summarize the current methods used for quantifying shoulder proprioception, specifically JPS and kinesthesia. Although shoulder proprioception impairment is very important to evaluate and treat during rehabilitation, the protocols currently being used have not been thoroughly psychometrically tested. A proprioceptive outcome that is being used in a clinic without known psychometric qualities can lead to erroneous clinical decisions and provide a false impression that an evidence based approach is being used (Amanda L. Ager, *et al.* 2017).

In our study Muscle Energy Technique (MET), Stabilization Exercise and Moist Heat Therapy (MHT) showed greater improvement pain, range of motion, muscle strength decrease error of

shoulder joint proprioception. When we compared with Mean \pm SD it was found that 0 week showed insignificant, 4 weeks showed significant and 8 weeks showed highly significant in diabetic frozen shoulder patients.

CONCLUSION

Our study concluded that Muscle Energy Technique (MET), Stabilization Exercise and Moist Heat Therapy (MHT) in Patients with Diabetic Frozen Shoulder showed significant improvement in pain, Range of motion, muscle strength and joint sense in 4th weeks & 8th weeks of treatment programme p values (<0.05).

REFERENCES

1. Amanda L. Ager, Jean-Sébastien Roy, Marianne Roos M. Mus, Amélie Fournier Belley, Ann Cools, Luc J. Hébert (2017). Shoulder proprioception: How is it measured and is it reliable? A systematic review. *Journal of Hand Therapy*. 30: 221 to 231.
2. American Academy of Orthopaedic Surgeons Rotator Cuff and Shoulder Conditioning Program Strengthening Exercise. orthoinfo.aaos.org/pdfs/2017-rehab_shoulder.pdf.
3. Brian R Mulligan. Manual of Mulligan Concept 6th Edition.
4. C. R. Kothari (2004). Research Methodology Methods and Techniques. Second Revised edition. New Age International (P) Limited, Publishers. ISBN (13): 978-81-224-2488.
5. Census and Sample Survey, Dehradun (2018).
6. Childs, J.D., Piva, S.R. and Fritz, J.M. (2005) Responsiveness in Numeric Pain Rating Scale in Patients with Low Back Pain. *Spine*. 30: 1331 to 1334. <https://doi.org/10.1097/01.brs.0000164099.92112.29>.
7. Dabholkar Ajit & Shetty Shika (2016). Effects of Mobilization with Movement (MWM) in Shoulder Impingement Syndrome Patients on Acromio-humeral Distance using Ultrasonography. *Journal of Exercise Science & Physiotherapy*. (2): 28 to 35.
8. Dhara N. Panchal & Charu Eapen (2015). Effectiveness of End-Range Mobilization and Interferential Current or Stretching Exercise and Moist Heat in Treatment of Frozen Shoulder-A Randomized Clinical Trial. *Int J Cur Res Rev*. 7 (14): 21-26.
9. Dr. Jayanta Nath (2013) Different Mobilization Technique in Management of Frozen Shoulder. *International Journal of Science and Research (IJSR)*. 4 (438): 1285 to 1290.
10. G. C. Lloyd-Roberts & P. R. French (1959). Periarthritis of the Shoulder. A Study of The Disease and Its Treatment. *British Medical Journal*. 569 to 571.
11. Hafiz Sheraz Arshad, Imtiaz Hussain Shah & Rashid Hafeez Nasir (2015). *International Journal of Science and Research (IJSR)*. 4 (4):2761 to 276. www.ijsr.net.
12. Geetha Mounika Rayudu & Nityal Kumar Alagingi (2018). Efficacy of Mulligan Technique Versus Muscle Energy Technique on Functional Ability in Subjects with Adhesive Capsulitis. *International Journal of Recent Scientific Research*. 9(4) B: 25638 to 25641.
13. J. F. Bridgman (1972). Periarthritis of the shoulder and diabetes mellitus. *Ann. rheum. Disorder*. 31: 69 to 71.
14. J. Sokk, H. Gapeyeva, J. Ereline, I. Kolts, M, Piiisuke (2007). Shoulder muscle strength and fatigability in patients with frozen shoulder syndrome: the effect of 4 week individualized rehabilitation. *Elecu on.yogx clin.Neurophltsiol*. 41: 205-213.
15. Jennifer Squires (2017). Outcomes Following Dynamic Shoulder Stabilization Interventions in Patients with Shoulder Girdle Pain: A Case Series. *International Journal of Student Scholarship in Physical Therapy*. 3: 1 to 11.
16. Juhyun Lee, Tae-ho Kim, Kyu-bong & Lim (2018). Effects of eccentric control exercise for wrist extensor and shoulder stabilization exercise on the pain and functions of tennis elbow. *J. Phys. Ther. Science*. 30: 590 to 594.
17. Kumar Neeraj & Verma Shiv (2016). To Compare the Effect of Strengthening Neck Exercise and McKenzie Neck Exercise in Neck Pain Subject. *Br J Med Health Res*. 3(10): 69 to 79. www.bjmhr.com.
18. Maddox L. Reed, Rebecca L. Begalleand Kevin G. Laudner, (2018) Acute Effects of Muscle Energy Technique and Joint Mobilization on Shoulder Tightness in Youth Throwing Athletes: A Randomized Controlled Trial. *The International Journal of Sports Physical Therapy*. 13 (6): 1024. DOI: 10.26603/ijsp/20181024.
19. Nevasier JS (1945). Adhesive capsulitis of the shoulder" study of pathological finding in periarthritis of shoulder. *J Bone joint surgery*. 27: 211-215.
20. PH Laubscher & Gauteng Rosebank (2009). Frozen shoulder: A review. *SA Orthopaedic Journal* Spring. 4 to 29.

21. Petrofsky Jerrold, Berk Lee, Bains G, Khawaled IA, Hui T, Grando M, Laymon M & Lee H (1013). Moist Heat or dry heat for delayed onset muscle soreness, *journal of Clinical Medicine Research.* 5(6): 416 to 425.
22. P. Khyathi, Vinod Babu K & Sai Kumar (2015). Comparative effect of Spencer technique versus Mulligan's Technique for subjects with frozen shoulder. *J Physiotherapy.* 2 (2). 448-458.
23. Richard Dias, Steven Cutts and Samir Massoud (2005). Frozen shoulder Richard. *BMJ.* 331 (17): 1453-1456.
24. Rita Rastogi, Kalyani *et al.* (2014). A comprehensive analysis of shoulder muscles among people with diabetes. *Lancet Diabetes Endocrinol.* 2 (10): 819-829.
25. Rizwan Haider, Ashfaq Ahmad & Saum-Re-Zahra (2014). To Compare Effects of Maitland and Mulligan's Mobilization Techniques in the Treatment of Frozen Shoulder. *Annals.* 20 (3).257-264.
26. S.B. Brotzman and Kevin E. Wilk (1996). *Clinical Orthopaedics Rehabilitation* 2nd edition. Mosby Elsevier.
27. Sandra Hudson (2009). Range of motion (ROM) exercises: designed to maintain or increase the amount of movement in a joint. *A Manual of Orthopaedic Terminology (Eighth Edition).* 1 to 5.
28. Simon Carette, Helene Moffet & Johanne Tardif (2003). Intra-articular Corticosteroids, Supervised Physiotherapy, or a Combination of the Two in the Treatment of Adhesive Capsulitis of the Shoulder. *Arthritis & Rheumatism.* 48 (3): 829 to 838.
29. Shagufta Firdous, Zankhana Mehta, Carlos Fernandez, Bertarnd Behm, Melliar & Davis Show More (2017). A comparison of Numeric Pain Rating Scale (NPRS) and the Visual Analog Scale (VAS) in patients with chronic cancer-associated pain. *Journal of Clinical Oncology* 35: 1 to 19. DOI: 10.1200/JCO.2017.35.31_suppl. 217.
30. Shoulder Strengthening Exercises (2010). *Orthopedic Surgery & Sports Medicine.* Mammoth Lakes. 1 to 5.
31. Shruti Patel, Sanket Nagrale & Rachana Dabaghav (2015). The Effect of Mulligan Mobilization with Movement Technique on Internal Rotation Range of Motion of Glenohumeral Joint in Patient with Adhesive Capsulitis. *Indian Journal of Physical Therapy.* 3 (2). 1 to 19.
32. T. M. S kirven, A. Lee Osterman & Fedorezyk (2011). Rehabilitation of the hand & upper extremity. Volume-2, 6th edition. Elsevier publication. ISBN: 978-0-323-05602-1.
33. Wikipedia contributors. (2021, September 21). Range of motion. In Wikipedia, The Free Encyclopedia. Retrieved 16:24, January 10, 2022, from https://en.wikipedia.org/w/index.php?title=Range_of_motion&oldid=1045573285.
34. Wikipedia contributors. (2020, September 21). Force gauge. In Wikipedia, from https://en.wikipedia.org/w/index.php?title=Force_gauge&oldid=979631589.

Recent Advances in Management of Lymphedema

Amrutha J S¹, Ravi Kumar Chittoria²

How to cite this article:

Amrutha J S, Ravi Kumar Chittoria/Recent Advances in Management of Lymphedema/Physiotherapy and Occupational Therapy Journal. 2023;16(3): 153-158.

ABSTRACT

Lymphedema is a chronic condition characterized by swelling, typically in the arms or legs, caused by a compromised lymphatic system. It commonly occurs after lymph node removal or damage due to cancer treatment, trauma, or genetic disorders. The impaired lymphatic drainage leads to the accumulation of fluid, causing discomfort, decreased mobility, and an increased risk of infection. Although lymphedema is incurable, it can be managed through various approaches, including compression therapy, manual lymphatic drainage, exercise, and skin care. These strategies aim to reduce swelling, improve lymphatic flow, and enhance overall quality of life for individuals living with lymphedema. Early diagnosis and comprehensive treatment play a crucial role in effectively managing this condition.

Keywords: Recent; Management; Lymphedema.

INTRODUCTION

Lymphedema is a condition characterized by accumulation of protein rich fluid in the interstitial space and consequent tissue swelling. Early stages may have physical findings and symptoms of painless pitting edema, discomfort, and heaviness of the limb, especially after

continued use.¹ However, as time passes without treatment, the condition progresses to fibrosis, thickening of the skin, and irreversible non pitting edema. The etiology of lymphedema is classified as either primary or secondary. Primary lymphedema occurs due to a congenital anomaly or absence of the lymphatic system in certain populations. Secondary lymphedema occurs due to an acquired impairment in lymphatic flow. Common etiologies include trauma, chronic infection, and malignancy.³ The most common cause, in westernized countries, is treatment of malignancy, particularly breast cancer.

Author Affiliation: ¹Senior Resident, Department of Plastic Surgery, ²Professor, Department of Plastic Surgery & Telemedicine, Jawaharlal Institute of Postgraduate Medical Education & Research, Pondicherry 605006, India.

Corresponding Author: Ravi Kumar Chittoria, Professor, Department of Plastic Surgery & Telemedicine, Jawaharlal Institute of Postgraduate Medical Education & Research, Pondicherry 605006, India.

E-mail: drchittoria@yahoo.com

Received on 03.06.2023

Accepted on 15.07.2023

First line intervention of lymphedema includes conservative measures, such as complete decongestive therapy (CDT). CDT is a multidisciplinary treatment approach involving exercise, daily bandaging, manual drainage therapy and skin care. The intervention occurs as a 2 phase approach, with phase 1 focusing on reduction of lymphedema volume, and phase 2

focusing on maintenance of the reduced volume. Surgical treatment of lymphedema is suggested when conservative management fails, particularly early following the onset of the swelling. The field of lymphedema surgery is a constantly evolving field. Early techniques in management of lymphedema include ablative procedures such as the Homans or Charles procedures, which involve excision of the subcutaneous tissue beneath the affected skin and covering the defect with skin flaps or a full or split thickness grafts.^{13,14} Advances in microsurgical techniques have allowed the advent of more physiologic and effective methods such as vascularized lymph node transplant (VLNT) or lymphovenous anastomosis (LVA).

PHYSIOLOGIC THERAPY

Surgical techniques of lymphedema management can broadly be divided into physiologic therapy and ablative therapy. Physiologic surgical techniques are microsurgical procedures that foster the physiologic drainage of lymphatic fluid through anastomosis of lymphatic vessels with the venous system, or the incorporation of a functional lymph node in the region of ablative treatment.

LVA

LVA was first described in the 1960s by Nielubowicz and Olszewski. Artificial connection between a patent lymphatic vessel and adjacent venules to redirect lymphatic flow, allowing the lymphatic fluid to bypass obstructed lymphatic vessels. The anastomosed vessels have diameters ranging from 0.1 to 0.8 mm, requiring super microsurgical technique. LVA is more effective in early stages of lymphedema, rather than at later stages when irreversible tissue fibrosis has occurred and lymphatic smooth muscle is dysfunctional. Results not as good for lower extremity lymphedema because large size and constantly dependent nature of lower extremities may make them less likely to improve in symptoms in comparison to the upper extremity. In a meta-analysis Jorgensen *et al.* (2018) found that prophylactic LVA at the time lymphadenectomy reduced the risk of lymphedema by 77% compared to no prophylactic procedure ($P<0.0001$)

VLNT

VLNT is a relatively new technique in the treatment of lymphedema. It was first clinically

described by Clodius *et al.* (1982), who transferred a pedicled groin flap with vascularized inguinal lymph nodes to the left lower extremity with partial success in reducing lymphedema. The technique involves transfer of a vascularized lymph node and surrounding tissue to a region where a lymph node has been removed or lymph flow is impaired. A microsurgical anastomosis is created between recipient site blood supply and the flap, thereby maintaining vascularization of the lymph node. Common donor sites for the lymph nodes include omental, inguinal, mesenteric, lateral thoracic, axillary, gastroepiploic, and submental nodes.^{32,33} Common recipient sites include the axilla, elbow, wrist, groin, and ankle.

Although the exact mechanism through which VLNT works is unclear, there are 2 main theories. The first is that lymph node transfer induces lymph angiogenesis at the recipient site, leading to improved lymphatic flow and alleviation of lymphedema. Lymphoscintigraphy show formation of new lymphatic channels at the recipient site following VLNT. The second proposed mechanism is that the transferred lymph node acts as a "pump", wicking lymph fluid from the surrounding interstitial space, and projecting it into the efferent venous circulation. This is based on the observation that ICG dye injected in the tissue surrounding a transferred lymph node can be found in the afferent donor and recipient venules. Lin *et al.* (2009) reasoned that the high pressure afferent arterial flow to the lymph node flap creates a local pressure gradient that transports adjacent lymphatic fluid towards the transplanted node. An advantage that VLNT has over LVA is that it can be performed in the absence of patent lymphatic vessels at the recipient site. Although the volume reduction cannot be attributed to VLNT alone, the findings suggest that VLNT can be an effective treatment in advanced lymphedema, when performed with adjunct ablative procedures. A limitation of VLNT is the risk of donor site lymphedema. Reverse lymphatic mapping prior to surgery has been proposed as a technique to prevent donor site lymphedema following VLNT.⁴¹ This method allows the surgeon to visualize the donor site lymph nodes intra-operatively and actively avoid lymph nodes that drain the extremities, thereby lowering the risk of iatrogenic donor site lymphedema.

Ablative therapy

In advanced stages of lymphedema, where extensive interstitial tissue fibrosis has occurred,

physiologic therapies may not provide sufficient volume reduction. "Rescue" procedures such as ablative surgical procedures can be used at this stage to improve aesthetic outcome, although they do not address the root cause of lymphedema. Commonly used ablative procedures include subcutaneous excisional procedures and suction assisted lipectomy.

Excisional Procedures

One of the well known procedures today is the Charles procedure, which involves radical circumferential excision of subcutaneous tissue followed by full thickness skin grafting. Modified Charles procedure negative pressure wound therapy and delayed skin grafting, in an effort to improve graft take and wound recovery.⁴² Subcutaneous excisional procedures are generally preserved only for advanced lymphedema due to its poor aesthetic outcome, risk of lymphedema recurrence, infection, wound break down, and in severe cases amputation.

All Excisional Procedures produce the following Advantages:

1. Decrease limb size
2. Reduce episodes of cellulitis, and therefore improve the quality of life of the patients. Although these surgical procedures can be immediately effective to reduce the lymphedema volume, they can carry some risks including wound complications, swelling recurrence, and the need for the patient to wear compression garments lifelong to prevent recurrence.

Table 1: Advantages of combined therapies

Technique	Advantages over isolated procedure
LVA/LNT + Liposuction	<ul style="list-style-type: none"> • Improved volume reduction • Improved aesthetic outcome • Reduced requirement of compressive garment therapy
LNT + Subcutaneous Excision (e.g., Charles, Homan Procedures)	<ul style="list-style-type: none"> • Improved volume reduction • Improved utility in end-stage lymphedema • Reduced requirement of compressive garment therapy

Preventive Procedure

Immediate lymphatic reconstruction Lymphedema is a refractory disease that is challenging to treat. Immediate lymphatic

LIPOSUCTION

Liposuction is a minimally invasive, yet effective method of lymphedema treatment. The technique involves removal of subcutaneous adipose tissue from the lymphedematous limb using a suction assisted lipectomy cannula. The target population are patients with chronic lymphedema whose pitting edema has been replaced by fatty deposits.⁴³ Patient satisfaction with the technique is high, as patients are encouraged to return to their daily routine with a short recovery time.^{44,45} Furthermore, it can be performed as an adjunctive procedure to physiologic treatments such as LVA or VLNT to improve outcomes. Decreased infection risk following combined therapy has been reported as well.^{46,47} The primary limitation of liposuction therapy is that patients must wear compressive garments indefinitely to maintain the reduced limb volume. Cosmetic and functional benefits of liposuction outweigh the burden caused by lifelong compression therapy.

Combined Surgical Therapy

Recent reports of combined surgical therapy have demonstrated that performing physiological and ablative procedures together may have benefits beyond improved volume reduction (Table 1). Performing a physiological procedure such as VLNT or LVA in addition to liposuction has been shown to reduce the need for continuous compressive therapy following liposuction. While physiological procedures are most effective in early stages of lymphedema, the addition of ablative therapy can render them effective therapeutic options for late stage lymphedema as well.

reconstruction has drawn attention as a novel preventive technique.^{17,18} After reverse mapping with ICG lymphography, surgeons connect lymphatic vessels of the upper and lower extremities to the surrounding vein. This can

improve lymphatic fluid drainage and reduce the lymphedema rate. The advantages and

disadvantages of each procedure described in table (Table 2).

Table 2: Advantages and disadvantages of various methods

Technique	Advantages	Disadvantages	Comments
Lymphovenous anastomosis	<ul style="list-style-type: none"> Minimally invasive surgery with the use of ICG Can be performed prophylactically at time of lymph node dissection 	<ul style="list-style-type: none"> Less effective for iover extremity lymphedema Requires a patent lymphatic vessel for anastomosis 	Performed in early stage lymphedema
Lymph node transfer	<ul style="list-style-type: none"> Procedure not limited by recipient site lymphatic patency Variety of donor sites available Simultaneous breast reconstruction possible 	<ul style="list-style-type: none"> Risk of donor site complications (e.g., seroma, lymphedema) 	Can be performed at all stages, but most efficacious in early stage lymphedema
Liposuction	<ul style="list-style-type: none"> Removes fibrofatty tissue unresolved by physiotherapy High patient satisfaction 	<ul style="list-style-type: none"> Requires continuous use of compressive garment therapy if performed alone. 	Performed in all stages of lymphedema
Subcutaneous excision (e.g., Charles, Homans)	<ul style="list-style-type: none"> Remove fibrofatty tissue unresolved by physiotherapy Effective for severe lower extremity lymphedema (e.g., elephantiasis) 	<ul style="list-style-type: none"> Risk of surgical site complications (e.g., infection, wound dehiscence) Poor aesthetic outcome 	Performed at end stage lymphedema

REFERENCES

1. Tiwari A, Cheng KS, Button M, *et al.* Differential diagnosis, investigation, and current treatment of lower limb lymphedema. *Arch Surg* 2003;138:152-61.
2. Grada AA, Phillips TJ. Lymphedema: Pathophysiology and clinical manifestations. *J Am Acad Dermatol* 2017;77:1009-20.
3. Catherine L, McGuinness KGB. Chapter 49 - Lymphedema. In: Hallett JLM, Earnshaw JJ, Reekers JA, *et al.* editors. *Comprehensive Vascular and Endovascular Surgery* 2ed. Mosby, 2009:862-75.
4. Smeltzer DM, Stickler GB, Schirger A. Primary lymphedema in children and adolescents: a follow-up study and review. *Pediatrics* 1985;76:206-18.
5. Grada AA, Phillips TJ. Lymphedema: Diagnostic workup and management. *J Am Acad Dermatol* 2017;77:995-1006.
6. Cormier JN, Askew RL, Mungovan KS, *et al.* Lymphedema beyond breast cancer: a systematic review and meta-analysis of cancer-related secondary lymphedema. *Cancer* 2010; 116:5138-49.
7. Ezzo J, Manheimer E, McNeely ML, *et al.* Manual lymphatic drainage for lymphedema following breast cancer treatment. *Cochrane Database Syst Rev* 2015;CD003475.
8. Melam GR, Buragadda S, Alhusaini AA, *et al.* Effect of complete decongestive therapy and home program on health-related quality of life in post mastectomy lymphedema patients. *BMC Womens Health* 2016;16:23.
9. Mondry TE, Riffenburgh RH, Johnstone PA. Prospective trial of complete decongestive therapy for upper extremity lymphedema after breast cancer therapy. *Cancer J* 2004;10:42-8; discussion 17-9.
10. Lasinski BB, McKillip Thrift K, Squire D, *et al.* A systematic review of the evidence for complete decongestive therapy in the treatment of lymphedema from 2004 to 2011. *PM R* 2012;4:580-601.
11. Shih YC, Xu Y, Cormier JN, *et al.* Incidence, treatment costs, and complications of lymphedema after breast cancer among women of working age: a 2-year follow-up study. *J Clin Oncol* 2009;27:2007-14.
12. Head LK, Momtazi M. Economics of Lymphovenous Bypass. *Plast Reconstr Surg* 2019;144:751e-9e.
13. Homans J. The treatment of elephantiasis of the legs - A preliminary report. *N Engl J Med*

1936;215:1099-104.

14. Dellen AL, Hoopes JE. Charles Procedure for Primary Lymphedema - Long-Term Clinical Results. *Plast Reconstr Surg* 1977;60:589-95.
15. Nielubowicz J, Olszewski W. Experimental lymphovenous anastomosis. *Br J Surg* 1968; 55:449-51.
16. Nielubowicz J, Olszewski W. Surgical lymphaticovenous shunts in patients with secondary lymphoedema. *Br J Surg* 1968; 55:440-2.
17. Jacobson JH, 2nd, Suarez EL. Microvascular surgery. *Dis Chest* 1962; 41:220-4.
18. Koshima I, Inagawa K, Urushibara K, et al. Supermicrosurgical Lymphaticovenular Anastomosis for the Treatment of Lymphedema in the Upper Extremities. *J Reconstr Microsurg* 2000;16:437-42.
19. Chang DW. Lymphaticovenular bypass for lymphedema management in breast cancer patients: a prospective study. *Plast Reconstr Surg* 2010;126:752-8.
20. Yamamoto T, Narushima M, Yoshimatsu H, et al. 510 Park et al. Surgical management of lymphedema© Gland Surgery. All rights reserved. *Gland Surg* 2020;9(2):503-511 | <http://dx.doi.org/10.21037/gs.2020.03.14> Minimally invasive lymphatic supermicrosurgery (MILS): indocyanine green lymphography-guided simultaneous multisite lymphaticovenular anastomoses via millimeter skin incisions. *Ann Plast Surg* 2014;72:67-70.
21. Shih HB, Shakir A, Nguyen DH. Use of Indocyanine Green-SPY Angiography for Tracking Lymphatic Recovery After Lymphaticovenous Anastomosis. *Ann Plast Surg* 2016;76 Suppl 3:S232-7.
22. Rosian K, Stanak M. Efficacy and safety assessment of lymphovenous anastomosis in patients with primary and secondary lymphoedema: A systematic review of prospective evidence. *Microsurgery* 2019; 39:763-72.
23. Tourani SS, Taylor GI, Ashton MW. Long-Term Patency of Lymphovenous Anastomoses: A Systematic Review. *Plast Reconstr Surg* 2016; 138:492-8.
24. Scaglioni MF, Fontein DBY, Arvanitakis M, et al. Systematic review of lymphovenous anastomosis (LVA) for the treatment of lymphedema. *Microsurgery* 2017;37:947-53.
25. Chang DW, Suami H, Skoracki R. A prospective analysis of 100 consecutive lymphovenous bypass cases for treatment of extremity lymphedema. *Plast Reconstr Surg* 2013;132:1305-14.
26. Boccardo FM, Casabona F, Friedman D, et al. Surgical prevention of arm lymphedema after breast cancer treatment. *Ann Surg Oncol* 2011; 18:2500-5.
27. Jørgensen MG, Toyserkani NM, Sorensen JA. The effect of prophylactic lymphovenous anastomosis and shunts for preventing cancer-related lymphedema: a systematic review and meta-analysis. *Microsurgery* 2018;38:576-85.
28. Cheng MH, Loh CYY, Lin CY. Outcomes of Vascularized Lymph Node Transfer and Lymphovenous Anastomosis for Treatment of Primary Lymphedema. *Plast Reconstr Surg Glob Open* 2018;6:e2056.
29. Winters H, Tielemans HJP, Hameeteman M, et al. The efficacy of lymphaticovenular anastomosis in breast cancer-related Breast Cancer Res Treat 2017;165:321-7.
30. Chung JH, Baek SO, Park HJ, et al. Efficacy and patient satisfaction regarding lymphovenous bypass with sleevevein anastomosis for extremity lymphedema. *Arch Plast Surg* 2019;46:46-56.
31. Clodius L, Smith PJ, Bruna J, et al. The lymphatics of the groin flap. *Ann Plast Surg* 1982;9:447-58.
32. Suami H, Chang DW. Overview of surgical treatments for breast cancer-related lymphedema. *Plast Reconstr Surg* 2010; 126:1853-63.
33. Schaverien MV, Badash I, Patel KM, et al. Vascularized Lymph Node Transfer for Lymphedema. *Semin Plast Surg* 2018;32:28-35.
34. Ito R, Suami H. Overview of lymph node transfer for lymphedema treatment. *Plast Reconstr Surg* 2014;134:548-56.
35. Liu HL, Pang SY, Lee CC, et al. Orthotopic transfer of vascularized groin lymph node flap in the treatment of breast cancer-related lymphedema: Clinical results, lymphoscintigraphy findings, and proposed mechanism. *J Plast Reconstr Aesthet Surg* 2018; 71:1033-40.
36. Suami H, Scaglioni MF, Dixon KA, et al. Interaction between vascularized lymph node transfer and recipient lymphatics after lymph node dissection-a pilot study in a canine model. *J Surg Res* 2016;204:418-27.
37. Lin CH, Ali R, Chen SC, et al. Vascularized groin lymph node transfer using the wrist as a recipient site for management of postmastectomy upper extremity lymphedema. *Plast Reconstr Surg* 2009;123:1265-75.
38. Cheng MH, Huang JJ, Nguyen DH, et al. A novel approach to the treatment of lower extremity lymphedema by transferring a vascularized submental lymph node flap to the

ankle. *Gynecol Oncol* 2012;126:93-8.

39. Cheng MH, Chen SC, Henry SL, *et al.* Vascularized groin lymph node flap transfer for postmastectomy upper limb lymphedema: flap anatomy, recipient sites, and outcomes. *Plast Reconstr Surg* 2013;131:1286-98.

40. Becker C, Assouad J, Riquet M, *et al.* Postmastectomy lymphedema: long-term results following microsurgical lymph node transplantation. *Ann Surg* 2006;243:313-5.

41. Dayan JH, Dayan E, Smith ML. Reverse lymphatic mapping: a new technique for maximizing safety in vascularized lymph node transfer. *Plast Reconstr Surg* 2015;135:277-85.

42. van der Walt JC, Perks TJ, Zeeman BJ, *et al.* Modified Charles procedure using negative pressure dressings for primary lymphedema: a functional assessment. *Ann Plast Surg* 2009; 62:669-75.

43. Greene AK, Maclellan RA. Operative Treatment of Lymphedema Using Suction-Assisted Lipectomy. *Ann Plast Surg* 2016;77:337-40.

44. Bolletta A, Di Taranto G, Chen SH, *et al.* Surgical treatment of Milroy disease. *J Surg Oncol* 2020;121:175-81.

45. Hoffner M, Bagheri S, Hansson E, *et al.* SF-36 Shows Increased Quality of Life Following Complete Reduction of Postmastectomy Lymphedema with Liposuction. *Lymphat Res Biol* 2017;15:87-98.

46. Agko M, Ciudad P, Chen HC. Staged surgical treatment of extremity lymphedema with dual gastroepiploic vascularized lymph node transfers followed by suction assisted lipectomy-A prospective study. *J Surg Oncol* 2018;117:1148-56.

47. Granzow JW, Soderberg JM, Dauphine C. A novel twostage surgical approach to treat chronic lymphedema. *Breast J* 2014;20:420-2.

Guidelines for Authors

Manuscripts must be prepared in accordance with "Uniform requirements for Manuscripts submitted to Biomedical Journal" developed by international committee of medical Journal Editors

Types of Manuscripts and Limits

Original articles: Up to 3000 words excluding references and abstract and up to 10 references.

Review articles: Up to 2500 words excluding references and abstract and up to 10 references.

Case reports: Up to 1000 words excluding references and abstract and up to 10 references.

Online Submission of the Manuscripts

Articles can also be submitted online from http://rfppl.co.in/customer_index.php.

1) First Page File: Prepare the title page, covering letter, acknowledgement, etc. using a word processor program. All information which can reveal your identity should be here. use text/rtf/doc/PDF files. Do not zip the files.

2) Article file: The main text of the article, beginning from Abstract till References (including tables) should be in this file. Do not include any information (such as acknowledgement, your name in page headers, etc.) in this file. Use text/rtf/doc/PDF files. Do not zip the files. Limit the file size to 400 Kb. Do not incorporate images in the file. If file size is large, graphs can be submitted as images separately without incorporating them in the article file to reduce the size of the file.

3) Images: Submit good quality color images. Each image should be less than 100 Kb in size. Size of the image can be reduced by decreasing the actual height and width of the images (keep up to 400 pixels or 3 inches). All image formats (jpeg, tiff, gif, bmp, png, eps etc.) are acceptable; jpeg is most suitable.

Legends: Legends for the fig.s/images should be included at the end of the article file.

If the manuscript is submitted online, the contributors' form and copyright transfer form has to be submitted in original with the signatures of all the contributors within two weeks from submission. Hard copies of the images (3 sets), for articles submitted online, should be sent to the journal office at the time of submission of a revised manuscript. Editorial office: Red Flower Publication Pvt. Ltd., 48/41-42, DSIDC, Pocket-II, Mayur Vihar Phase-I, Delhi - 110 091, India, Phone: 91-11-79695648, Cell: +91-9821671871. E-mail: author@rfppl.co.in. Submission page: http://rfppl.co.in/article_submission_system.php?mid=5.

Preparation of the Manuscript

The text of observational and experimental articles should be divided into sections with the headings: Introduction, Methods, Results, Discussion, References, Tables, Fig.s, Fig. legends, and Acknowledgment. Do not make subheadings in these sections.

Title Page

The title page should carry

- 1) Type of manuscript (e.g. Original article, Review article, Case Report)
- 2) The title of the article should be concise and informative;
- 3) Running title or short title not more than 50 characters;
- 4) The name by which each contributor is known (Last name, First name and initials of middle name), with his or her highest academic degree(s) and institutional affiliation;
- 5) The name of the department(s) and institution(s) to which the work should be attributed;
- 6) The name, address, phone numbers, facsimile numbers and e-mail address of the contributor responsible for correspondence about the manuscript; should be mentioned.
- 7) The total number of pages, total number of photographs and word counts separately for abstract and for the text (excluding the references and abstract);
- 8) Source(s) of support in the form of grants, equipment, drugs, or all of these;
- 9) Acknowledgement, if any; and
- 10) If the manuscript was presented as part at a meeting, the organization, place, and exact date on which it was read.

Abstract Page

The second page should carry the full title of the manuscript and an abstract (of no more than 150 words for case reports, brief reports and 250 words for original articles). The abstract should be structured and state the Context (Background), Aims, Settings and Design, Methods and Materials, Statistical analysis used, Results and Conclusions. Below the abstract should provide 3 to 10 keywords.

Introduction

State the background of the study and purpose of the study and summarize the rationale for the study or observation.

Methods

The methods section should include only information that was available at the time the plan or protocol for the study was written such as study approach, design, type of sample, sample size, sampling technique, setting of the study, description of data collection tools and methods; all information obtained during the conduct of the study belongs in the Results section.

Reports of randomized clinical trials should be based on the CONSORT Statement (<http://www.consort-statement.org>). When reporting experiments on human subjects, indicate whether the procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional or regional) and with the Helsinki Declaration of 1975, as revised in 2000 (available at http://www.wma.net/e/policy/17-c_e.html).

Results

Present your results in logical sequence in the text, tables, and illustrations, giving the main or most important findings first. Do not repeat in the text all the data in the tables or illustrations; emphasize or summarize only important observations. Extra or supplementary materials and technical details can be placed in an appendix where it will be accessible but will not interrupt the flow of the text; alternatively, it can be published only in the electronic version of the journal.

Discussion

Include summary of key findings (primary outcome measures, secondary outcome measures, results as they relate to a prior hypothesis); Strengths and limitations of the study (study question, study design, data collection, analysis and interpretation); Interpretation and implications in the context of the totality of evidence (is there a systematic review to refer to, if not, could one be reasonably done here and now?; What this study adds to the available evidence, effects on patient care and health policy, possible mechanisms)? Controversies raised by this study; and Future research directions (for this particular research collaboration, underlying mechanisms, clinical

research). Do not repeat in detail data or other material given in the Introduction or the Results section.

References

List references in alphabetical order. Each listed reference should be cited in text (not in alphabetic order), and each text citation should be listed in the References section. Identify references in text, tables, and legends by Arabic numerals in square bracket (e.g. [10]). Please refer to ICMJE Guidelines (<http://www.nlm.nih.gov/bsd/uniform-requirements.html>) for more examples.

Standard journal article

[1] Flink H, Tegelberg Å, Thörn M, Lagerlöf F. Effect of oral iron supplementation on unstimulated salivary flow rate: A randomized, double-blind, placebo-controlled trial. *J Oral Pathol Med* 2006; 35: 540-7.

[2] Twetman S, Axelsson S, Dahlgren H, Holm AK, Källestål C, Lagerlöf F, et al. Caries-preventive effect of fluoride toothpaste: A systematic review. *Acta Odontol Scand* 2003; 61: 347-55.

Article in supplement or special issue

[3] Fleischer W, Reimer K. Povidone-iodine antisepsis. State of the art. *Dermatology* 1997; 195 Suppl 2: 3-9.

Corporate (collective) author

[4] American Academy of Periodontology. Sonic and ultrasonic scalers in periodontics. *J Periodontol* 2000; 71: 1792-801.

Unpublished article

[5] Garoushi S, Lassila LV, Tezvergil A, Vallittu PK. Static and fatigue compression test for particulate filler composite resin with fiber-reinforced composite substructure. *Dent Mater* 2006.

Personal author(s)

[6] Hosmer D, Lemeshow S. *Applied logistic regression*, 2nd edn. New York: Wiley-Interscience; 2000.

Chapter in book

[7] Nauntofte B, Tenovuo J, Lagerlöf F. Secretion and composition of saliva. In: Fejerskov O,

Kidd EAM, editors. *Dental caries: The disease and its clinical management*. Oxford: Blackwell Munksgaard; 2003. pp 7-27.

No author given

[8] World Health Organization. *Oral health surveys - basic methods*, 4th edn. Geneva: World Health Organization; 1997.

Reference from electronic media

[9] National Statistics Online—Trends in suicide by method in England and Wales, 1979–2001. www.statistics.gov.uk/downloads/theme_health/HSQ20.pdf (accessed Jan 24, 2005): 7-18. Only verified references against the original documents should be cited. Authors are responsible for the accuracy and completeness of their references and for correct text citation. The number of reference should be kept limited to 20 in case of major communications and 10 for short communications.

More information about other reference types is available at www.nlm.nih.gov/bsd/uniform_requirements.html, but observes some minor deviations (no full stop after journal title, no issue or date after volume, etc.).

Tables

Tables should be self-explanatory and should not duplicate textual material.

Tables with more than 10 columns and 25 rows are not acceptable.

Table numbers should be in Arabic numerals, consecutively in the order of their first citation in the text and supply a brief title for each.

Explain in footnotes all non-standard abbreviations that are used in each table.

For footnotes use the following symbols, in this sequence: *, ¶, †, ‡.

Illustrations (Fig.s)

Graphics files are welcome if supplied as Tiff, EPS, or PowerPoint files of minimum 1200x1600 pixel size. The minimum line weight for line art is 0.5 point for optimal printing.

When possible, please place symbol legends below the fig. instead of the side.

Original color fig.s can be printed in color at the editor's and publisher's discretion provided the author agrees to pay.

Type or print out legends (maximum 40 words, excluding the credit line) for illustrations using double spacing, with Arabic numerals corresponding to the illustrations.

Sending a revised manuscript

While submitting a revised manuscript, contributors are requested to include, along with single copy of the final revised manuscript, a photocopy of the revised manuscript with the changes underlined in red and copy of the comments with the point-to-point clarification to each comment. The manuscript number should be written on each of these documents. If the manuscript is submitted online, the contributors' form and copyright transfer form has to be submitted in original with the signatures of all the contributors within two weeks of submission. Hard copies of images should be sent to the office of the journal. There is no need to send printed manuscript for articles submitted online.

Reprints

Journal provides no free printed, reprints, however a author copy is sent to the main author and additional copies are available on payment (ask to the journal office).

Copyrights

The whole of the literary matter in the journal is copyright and cannot be reproduced without the written permission.

Declaration

A declaration should be submitted stating that the manuscript represents valid work and that neither this manuscript nor one with substantially similar content under the present authorship has been published or is being considered for publication elsewhere and the authorship of this article will not be contested by any one whose name(s) is/are not listed here, and that the order of authorship as placed in the manuscript is final and accepted by the co-authors. Declarations should be signed by all the authors in the order in which they are mentioned in the original manuscript. Matters appearing in the Journal are covered by copyright but no objection will be made to their reproduction provided permission is obtained from the Editor prior to publication and due acknowledgment of the source is made.

Approval of Ethics Committee

We need the Ethics committee approval letter from an Institutional ethical committee (IEC) or an institutional review board (IRB) to publish your Research article or author should submit a statement that the study does not require ethics approval along with evidence. The evidence could either be consent from patients is available and there are no ethics issues in the paper or a letter from an IRB stating that the study in question does not require ethics approval.

Abbreviations

Standard abbreviations should be used and be spelt out when first used in the text. Abbreviations should not be used in the title or abstract.

Checklist

- Manuscript Title
- Covering letter: Signed by all contributors
- Previous publication/ presentations mentioned, Source of funding mentioned
- Conflicts of interest disclosed

Authors

- Middle name initials provided.
- Author for correspondence, with e-mail address provided.
- Number of contributors restricted as per the instructions.
- Identity not revealed in paper except title page (e.g. name of the institute in Methods, citing previous study as 'our study')

Presentation and Format

- Double spacing
- Margins 2.5 cm from all four sides
- Title page contains all the desired information. Running title provided (not more than 50 characters)
- Abstract page contains the full title of the manuscript
- Abstract provided: Structured abstract provided for an original article.
- Keywords provided (three or more)
- Introduction of 75-100 words

- Headings in title case (not ALL CAPITALS). References cited in square brackets
- References according to the journal's instructions

Language and grammar

- Uniformly American English
- Abbreviations spelt out in full for the first time. Numerals from 1 to 10 spelt out
- Numerals at the beginning of the sentence spelt out

Tables and fig.s

- No repetition of data in tables and graphs and in text.
- Actual numbers from which graphs drawn, provided.
- Fig.s necessary and of good quality (color)
- Table and fig. numbers in Arabic letters (not Roman).
- Labels pasted on back of the photographs (no names written)
- Fig. legends provided (not more than 40 words)
- Patients' privacy maintained, (if not permission taken)
- Credit note for borrowed fig.s/tables provided
- Manuscript provided on a CDROM (with double spacing)

Submitting the Manuscript

- Is the journal editor's contact information current?
- Is the cover letter included with the manuscript? Does the letter:
 1. Include the author's postal address, e-mail address, telephone number, and fax number for future correspondence?
 2. State that the manuscript is original, not previously published, and not under concurrent consideration elsewhere?
 3. Inform the journal editor of the existence of any similar published manuscripts written by the author?
 4. Mention any supplemental material you are submitting for the online version of your article. Contributors' Form (to be modified as applicable and one signed copy attached with the manuscript)