Stature Prediction \& Anthropometric Hand Dimensions: A Relationship Unearthed

Khwaja Moizuddin*, Zuberi Hussain Riyaz**, Azhar Ahmed Siddiqui***

Abstract

One of the most vital and useful anthropometric parameter that determine the physical identity of a human is stature or body height. Height Estimation of an individual is important not only for anthropol ogists and forensic medicinepersonnel but al so for physical assessment of status of nutrition in an individual by nutritionists and physicians. Prediction of staturefrom incompleteand decomposing skeletal remains is one of most demanding criteria in establishing theidentity of an unknown individual. It is a useful tool in medico legal and forensic examination. Study D esign: Descriptive cross sectional study. Place of Study: Department of A natomy, MGM medical college, A urangabad. M aterial: 185 young and heal thy collegestudents aged between 18to 24 years having no diseaseor deformity wereexamined anthropometrically in respect to their height and length of right and left hand. M ethod: A fter applying exclusion criteria proper selection of subjects were made. Measurement of height, hand length, hand breadth, and middle finger length of right and left sidewas taken with a standard anthropometer and a vernier callipers using standard reference points for measurements. Result: The present study showed there exists a significant sexual dimorphism in male and female population. Males have higher values than thefemales in dimensions of hand and foot. The correl ation of stature and middlefinger length is on thehigher side ($p=0.00$). In fragmented bodies, themultivariate regression formulas used to cal culatethe stature from the hand dimensions in both sexes gives a better prediction of stature than the univariate type.

K eyw ords: A nthropometric M easurement; Skeletal Remains; Height; Stature; Hand-Length; HandWidth.

Introduction

Since many years, the dimensional relationship between body segments and stature has been the interest of artists, scientists, anatomists, anthropologists and medico legalists [1]. It al so helps in ergonomics likedesigning of machines and fashion designing.

Establishing the identity of an individual has becomean important need in mutilated, decomposed, \& amputated body fragments in recent times due to natural disasters like earthquakes, tsunamis,

[^0]cyclones, floods and man-madedisasters liketerror attacks, bomb blasts, mass accidents, wars, plane crashes etc. The determination of stature is an important step in theidentification of dismembered remains [2]. So, estimation of staturefrom extremities and their parts plays an important rolein identifying the dead in forensic examinations in establishing personal identification of the victims [3]. The body parts show biological correlation with stature. Evaluation of various anthropological parameters with proportions plays a role in sports medicine, designing of instruments and education. Height of an individual is affected by diverse factors such as race, gender and nutrition. The height achieved by theindividuals is also under the control of genes and environment. The body size such as height and weight can beassessed by growth, nutritional status, body surfacearea and pulmonary function of children [4,5]. In human evolution, one of man's greatest achievements over a long period of time is upright posture. Natural height or stature of a person is
usually taken in upright position. The hand dimensions can be used as a basis for estimating staturerelated to age[6-8].

Aim

Sexual dimorphismstudy and correlation between various dimensions of hand and stature, in 18-24age groups.

O bjectives

1. To obtain dimensions of hands (i.e. hand length, hand breadth, middlefinger length) and stature of Medical students in age group 18-24 years in MGM Medical College, Aurangabad, with documentation of gender.
2. To find out the correlation between dimensions of hands with the stature of theindividual.
3. To devise linear univariate and multiple regressionformulaeto estimatestaturefrom these dimensions

M aterials and Methods

M ethod of Collection of D ata

The study was doneafter necessary permissions from authorities and written consent from subjects. Measurements weretaken of 185 students consisting of 81 males and 104 females in the agegroup of 18-24 yearsstudying inMGM Medical College, A urangabad.

M easurements of male and female adult subjects weretaken by selecting them as below:

Inclusion Criteria

1. Healthy and normal adult subjects of agegroup 18-24years.

Exclusion Criteria

1. Subjects with musculoskeletal deformity like kyphosis, scoliosis, poliomyelitis, trauma etc, hormonal disorders likegigantism, dwarfism, etc and genetic disorders liketurners syndrome, etc which will affect the normal measurements of statureand hand dimensions.

Thefollowing instruments wereused to carry out thisstudy:

1. Anthropometer (Stadiometer).
2. Vernier (Sliding) calipers (digital type).
3. Steel tape.

M ethod of M easurements [9,10]

Stature
It is measured as vertical distancefrom vertex (the highest point on thetop of head) to thefloor in midsaggital plane with subject standing barefooted, on an even floor and the head being oriented in the Frankfurt's slane. Staturewas measured with the help of Stadiometer (Anthropometer).
H and Length
It is thestraight distance from mid-point of aline connecting the styloid processes of radius and ulna to theanterior-mostprojection of the skin of themiddle

Fig. 1:

Fig. 2:
finger. It was measured with thehelp of Digital Vernier calipers. Thehand is laid flat on a table.

H and Breadth

It isthedistance between themost prominent point on the lateral sideof head of second metacarpal and themost prominent point on themedial aspect of the head of fifth metacarpal. It was measured with the help of Digital Vernier calipers.

Total Length of M iddleFinger

It is measured from the proximal flexion creaseat thebaseof themiddlefinger to tip of the middlefinger. The wrist is neutral in position and hand is fully extended. The measurement is taken on the palmer aspect of thehand. It was measured with thehelp of Steed tape

These measurements were taken from both the hands of the body. M ale and female readings for each parameter were separated and analyzed. All the measurements were taken in a reasonably well lit room, at a fixed timebetween 3:00p.m. and 5.30p.m. to eliminatediurnal variation. It was measured and recorded only by oneperson, to avoid inter observer error in methodology. All the measurements were recorded thrice and then their mean was cal culated for accuracy.

Theheight, hand length, hand breadth and middle finger length of subjects were used to assess the
relationship between the hand dimensions and stature. For all parameters, analysis was done by calculating Mean, STD error of mean, STD deviation, Maximum, Minimum separately, Skewness and Kurtosis.

Then correlation and coefficients between these anthropometric measurements were calculated. The regression equations of statureas dependable variable were fitted with hand dimensions as independent variables. And effectiveness of these regression equations was tested. For every parameter, Stature (Height) was considered to be independent and correlation was checked between theheight and other parameters. Later on univariate and multivariate regression formulas werederived for each parameter. The data weresubjected to statistical analysis using statistical packagefor social sciences (SPSS).

O bservation

The following things were observed as shown in table1 below:

It is seen from abovetableno.1 that values hereare showing negatively skewed distribution in males and positively skewed distribution in females. It also shows platykurtic distribution.

Table 2: One way ANOVA shows F value as 170.143 with 0.00 significance suggesting statistically significant difference in male and female height as shown in table 1.

Table 1: Height (in Centimeters)

	Male	Female
Mean	171.116	157.578
Std. Error of mean	0.843	0.637
Std.deviation	7.684	6.348
Maximum	188	175
Minimum	147	141
Skewness	-0.283	0.228
Kartosis	0.660	-0.090

Table 2:

Indian Journal of A natomy / Volume 5 Number 3 / September - December 2016

It is observed from above Table 3 that the hand length is showing positively skewed distribution of values in both males and females. Kurtosis shows platykurtic distribution.

Oneway ANOVA shows F value as 197.140 and having significance of 0.0 , suggesting statistically significant differencein male and female hand.

It is seen from aboveTable5 themean hand breadth of malesis more than females with standard error of
mean being 0.054 cms in males and 0.04 cms in females. H and length is showing positively skewed distribution of values in both males and females except a minutenegatively skewed rightsidein males. It al so shows platykurtic distribution.

One way ANOVA shows F valueas 221.050 with 0.00 significance, suggesting statistically significant differencein male and femalehand breadth.

Table8

Table 4:

	One way ANOVA		Sum of Squares	DF	M ean Square	F	Sig.
$\mathrm{HL}(\mathrm{cm})$	Between Groups	(Combined)	129.375	1	129.375	197.140	0.000

Table 5: Hand Breadth (in Centimeters)

	M ale		Female	
	Right	Left	Right	Left
Mean	8.741	8.658	7.707	7.555
Std. Error of mean	0.0538	0.054	0.0422	0.038
Std.deviation	0.479	0.491	0.441	0.397
Maximum	10	9.9	9	8.5
Minimum	7.79	7.6	6.9	6.7
Skewness	-0.084	0.363	0.201	0.070
Kartosis	-0.335	-0.199	0.182	0.329

Table 6:

	One way AN OV A		Sum of Squares	DF	M ean Square	F	Sig.
HB (cms)	Between Groups	(Combined)	47.125	1	47.125	221.050	0.000

Table 7: Middle Finger Length (in Centimeters)

	Right	Left	Right	Left
Mean	8.171	8.185	7.310	7.282
Std. Error of mean	0.043	0.043	0.044	0.042
Std.deviation	0.398	0.393	0.462	0.447
Maximum	9	9	8.5	8.4
Minimum	7.3	7.3	6.2	6.2
Skewness	-0.052	-0.071	0.308	0.187
Kartosis	-0.613	-0.582	0.296	-0.048

Table 8:

	One way Anova		Sum of Squares	DF	M ean Square	F	Sig.
MFL (cm)	Between Groups	(Combined)	34.505	1	34.505	181.737	0.000

Mean middlefinger length is observed of males is 8.17 cms and that of female is 7.3 cms indicates that themean middlefinger length of males is morethan the females with a standard error of mean in males being 0.043 and females is 0.04 .

The values areslightly negatively skewed in males and positively skewed in females. Values show platykurtic distribution.

Oneway ANOVA shows F value as 181.737 with
0.000 significancesuggesting statistically significant differencein male and female middlefinger length.

Following regression formulae has been derived using SPSS of onevariableand multi-variables. They areasfollows:

UnivariateA nalysis

1. Hand Length (Equ.Uni-1)

R Value $=0.765$
F Value $=266.126$
Height $=49.398+[6.458 *($ Right H and length $)$]
2. Hand Breadth (Equ.Uni-2)

R Value $=0.644$
F Value $=134.256$
Height $=87.885+[9.266 *$ (Right H and breadth $)]$
3. MiddleFinger Length (Equ.Uni-3)

R Value $=0.720$
F Value $=203.966$
Height $=74.651+[11.544 *$ (Right M iddlefinger length)]
M ultivariateA nalysis

1. Height versus Right H and length and Right H and breadth. (Eqution. Muti-1)
R Value $=0.772$
ANOVA issignificant
Height $=48.524+[5.428 *($ Right H and length)] + [2.340*(Right H and breadth)]
2. Height versus Left H and length and Left H and breadth. . (Equation. Muti-2)
R Value $=0.778$
ANOVA issignificant
Height $=52.013+[5.1$ * (Left H and length) $]+$ [2.678*(Left H and breadth)]
3. Height versus Right H and length, Right H and breadth, Left Hand length and Left H and breadth.. (Equation. Muti-3)
R Value $=0.783$
ANOVA issignificant
Height $=50.037+[3.186 *($ Right H and length $)]+$ [2.049*(Left Hand length)]- [1.567*(RightH and breadth)] +[4.207*(Left H and breadth)]
4. Height versus Right Hand length, Right Hand breadth, Left H and length, Left H and breadth, Right Middlefinger length and LeftM iddlefinger length .(Equation. Muti-4)
R Value $=0.784$
ANOVA issignificant
Height $=51.285+[2.847 *($ Right H and length $)]+$ [1.635*(Left Hand length)]- [1.566*(RightH and breadth) $]+[3.873 *$ (Left H and breadth) $]+[0.345$

* (Right Middle finger length)] + [1.571 * (Left Middlefinger length)]

Discussion

Oneof theearliestto usesuch anthropological rules for statureprediction was ancient Egyptians (Richer and Hale, 1971). Studies by Pearson (1899), Trotter and Glesser (1952) [11,12] have reported on the prediction of stature from skeletal remains or mutilated limbs, mostly from long bones.

On the Indian side, Athwaleet al (1963), Patel et al (1964), Joshi et al (1964, 65), and Jasuja et al (1991, 1993, 1997) [13-17], also studied stature estimation by significant dimensional relationship of length of foot, hand, hand with forearm, arm, upper extremity, length of head, height of head etc. Crown to rump and rump to heel ratio etc and found that thereexists significant correlation between body segments and height.

There also exist population variations in anthropometric dimensions. Stature is partly determined by length of bones in upper limb and lower limb. It is also influenced by many other factors such as genetics, environment, gender, age and physical activity [18]. Also, till theossification being completeand skeletal maturity attained by the age of 25 years, the rate or growth in males and females varies during the course of development.

All parameters show significant sexual dimorphisminthis present study. Therewas astrong positive correlation between hand measurements (hand length, hand breadth and middlefinger length) and stature ($p<0.01$), which was highest for middle finger length. Hence these can be successfully used for estimation of stature. A natomi sts, archaeologists, anthropologists, design engineers and forensic scientists can now predict height of an individual moreaccurately by theregression equations derived in this study. The only precaution to be taken into consideration is that theseformulae are applicableto the Indian region population from which the data has been collected. It is dueto the inherent population variation in these dimensions, which may be attributed to genetic, lifestyle differences and environmental factors likenutrition, climateetc [19].

Thus, in males and females, middlefinger length is the best parameter for estimation of stature. The relatively low standard estimateof standard error of mean for the middlefinger length in males (± 0.043) and for middle finger length in females (± 0.042) ensures better accuracy in statureestimation.

The presence of a positive linearity between the anthropometric parameters and estimation of stature facilitates formulation of regression equations which can be successfully utilized for statureestimation in

Indian population. In the present study, males showed higher mean values in all parameters studied when compared with mean values of female parameters.

Studies doneto estimatestatureby Kaur [23] and OP Jasuja [6] has reported significant higher mean values for males amongst Indians, and both their study groups werefrom North India. Danborno B

Table 9: Stature

S. No	N ame of the author	Sex	Min. Stature	M ax. Stature	M ean	\pm SD	\pm SE
1.	Thakur ${ }^{19}$ (1975)	-	-	-	167.4	6.4	-
2.	Jasuja6 (2004)	Male	166.2	185.6	175.2	5.24	0.957
		Female	152	167.9	159.7	5.17	0.945
3.	Patel ${ }^{19}$ (2007)	Male	-	-	170.96	5.13	-
		Female	-	-	156.14	5.15	-
4.	Danborno B20 (2008)	Male	-	-	173.73	7.13	-
		Female	-	-	160	6.22	-
5.	Ilayperuma ${ }^{21}$ (2009)	Male	-	-	170.14	5.22	-
		Female	-	-	157.55	5.75	-
6.	Rahul ${ }^{22}$ (2013)	Male	157	192	169.97	5.71	
		Female	139	167	154.2	7.15	
7.	Kaur et al23 (2013)	Male	-	-	175.98	6.76	-
		Female	-	-	160.91	5.75	-
8.	Srivastava24 (2014)	Male	-	-	170.9	-	0.371
		Female	-	-	156.21	-	0.49
9.	Present Study (2014)	Male	147	188	171.11	7.68	0.84
		Female	141	175	157.57	6.34	0.63

Table 10: Middle Finger Length

S. No	Authors	M easurements	Sex	Side	Min	Max	M ean	$\mathbf{\pm S D}$	$\mathbf{\pm S E}$
$\mathbf{1}$	Rahul22 (2013)	MiddleFinger Length	Male	-	7.1	9.5	7.92	0.420	-
			Female	-	6	8.4	7.3	0.550	-
2	Present Study	Middle Finger Length	Male	Right	7.3	9	8.17	0.390	0.043
	(2014)			Left	7.3	9	8.18	0.390	0.043
			Female	Right	6.2	8.5	7.31	0.460	0.044
				Left	6.2	8.4	7.28	0.440	0.042

[20] also reported higher value as the study was conducted on Nigerians which belongs to different race groups. These differences of mean in stature between males and females are due to the fact that fusion of epiphysis of bones occurs earlier in females than in males. Males have about two more years of bonegrow th than females [4].

This present study was donein medical students of all India region of agegroup 18-22 years and the mean of stature came as 171.11 cms in males and 157.57 cm in females.

Rahul [22] studied themiddlefinger lengths in age groups of $16-50$ yrs of Andhra pradesh population and mean in his study was 7.92 cm for males and 7.3 cmsfor females.

This present study was done in medical students of all India region of diffused areas of agegroup 1822 years and themean of middlefinger lengths came
as 8.17 cms (right side), 8.18 cms (left side) in males and 7.31 cm (rightside), 7.28 (left side) in females.

The table shows that the mean hand lengths of males are significantly more than the females in all thestudies. Higher values al so havebeen reported by Kaur [23] for north Indian population especially in females.

Ilayperuama [21] reported higher mean hand lengths in both genders in Srilankan population. Danborno B^{20} reports higher values and his measurements of femal eis having less differenceto mal eand hisstudy group being Nigerians.

Present study shows averagevalues of mean hand length values 16.95 cms in females but average values 18.60 cms in males in scattered random group of Indian population

In the abovetable, themean values of hand breadth in thestudies of Danborno B [30], Srivastava [24] and thePresent oneis in thenearer rangesuggesting that

Table 11: Hand Length

S. No	Authors	M easur-M ents	Sex	Side	M in	Max	M ean	\pm SD	\pm SE
1	Thakur ${ }^{19}$ (1975)	Hand length	-	-	16.7	22.15	19.34	1.7	-
2	Bhatnagar25 et al	Hand length	-	Right Left	-	-	$\begin{gathered} 19.3 \\ 19.42 \end{gathered}$	$\begin{aligned} & 1.3 \\ & 1.6 \end{aligned}$	-
3	$\begin{gathered} \text { (1984) } \\ \text { Jasuja6 (2003) } \end{gathered}$	Hand length	Male Female	Right Left Right Left	$\begin{aligned} & 18.4 \\ & 18.2 \\ & 19.1 \\ & 19.1 \end{aligned}$	$\begin{aligned} & 21.3 \\ & 21.2 \\ & 19.7 \\ & 19.9 \end{aligned}$	$\begin{gathered} 19.8 \\ 19.79 \\ 17.51 \\ 17.57 \end{gathered}$	$\begin{gathered} 0.73 \\ 0.76 \\ 0.81 \\ 0.8 \end{gathered}$	$\begin{aligned} & 0.13 \\ & 0.13 \\ & 0.14 \\ & 0.14 \end{aligned}$
4	$\begin{gathered} \text { DanbornoB20 } \\ (2008) \end{gathered}$	H and length	Male Female	Right Left Right Left	-	-	$\begin{aligned} & 19.85 \\ & 19.93 \\ & 18.51 \\ & 18.52 \end{aligned}$	$\begin{aligned} & 0.86 \\ & 0.93 \\ & 0.66 \\ & 0.77 \end{aligned}$	
5	Ilayperuma ${ }^{21}$ (2009)	Hand length	Male Female				$\begin{aligned} & 19.01 \\ & 17.62 \end{aligned}$	$\begin{aligned} & 5.22 \\ & 0.93 \end{aligned}$	
5	Kaur ${ }^{23}$ et al (2013)	Hand length	Male Female	-	-	-	$\begin{gathered} 18.8 \\ 18.54 \end{gathered}$	$\begin{gathered} 1.09 \\ 10.72 \end{gathered}$	-
6	Srivastava ${ }^{24}$ (2014)	Hand length	Male Female		-		$\begin{gathered} 18.4 \\ 16.74 \end{gathered}$	-	$\begin{aligned} & 0.08 \\ & 0.11 \end{aligned}$
7	Present Study (2014)	Hand Length	Male Female	Right Left Right Left	$\begin{aligned} & 17.3 \\ & 17.3 \\ & 15.3 \\ & 15.2 \end{aligned}$	$\begin{aligned} & 20.4 \\ & 20.4 \\ & 19.9 \\ & 19.3 \end{aligned}$	$\begin{gathered} 18.6 \\ 18.63 \\ 16.95 \\ 16.85 \end{gathered}$	$\begin{aligned} & 0.74 \\ & 0.76 \\ & 0.85 \\ & 0.82 \end{aligned}$	$\begin{aligned} & 0.081 \\ & 0.084 \\ & 0.082 \\ & 0.079 \end{aligned}$

Table 12: Hand Breadth

thereis less differencebetween the hand breadths of Nigerian population studied by Danborno B [20] and theIndian one. Although still the Nigerian population the val ues areon higher side in both genders. All the mean values show significant sexual dimorphism, the female mean values being lower than the male values.

Conclusion

It is found that there exists a significant sexual dimorphism in male and femalepopulation. It is well predicted in hand dimensions. Males have higher values than the females in dimensions of hand and
foot. The correlation of stature and middle finger length is on thehigher side $(p=0.00)$.

In case of fragmented bodies, the multivariate regression formulas used to cal culatethestaturefrom the hand dimensions in both sexes gives a better prediction of staturethan the univariatetype.

This prediction values aremored oser to theactual in multivariateregression formula (equi.multi.1) with correlation coefficient (r) of 0.772:

Height $=48.524+[5.428 *($ Right H and length) $]+$ [2.340*(Right H and breadth)]

In caseof univariatetypethefollowing gives a good predictivevalue of staturethan the others. (equi.uni.1)
with correlation coefficient (r) of 0.765 and (equi.uni.3) with correlation coefficient (r) of 0.720 :
Height $=49.398+[6.458 *$ (Right Hand length) $]$ and Height $=74.651+[11.544 *$ (Right Middle finger length)]

The regression equations derived from present study givea better predictivevaluethan theformulas that have been derived by other authors as evident from the correlation coefficient. Theseformulas can be used effectively to estimate the stature of the individual in case mutilated bodies and also can be used effectively in ergonomics such as furniture designing, machine designing and sports as well as forensic cases.

References

1. MukherjeeJB. Personal identification. In: Mukherjee JB, editor. Forensic Medicine and Toxicology. 2nd Ed. New Delhi: Arnold Associates. 1994; p. 128-9.
2. Agnihotri AK, Purwar B, GoogoolyeK, Agnihotri S, Jeebun N ; Estimation of stature by foot length; J. Forensic Leg Med. 2007;14(3): 279-83.
3. Munoz, JI, Luiares-Iglesias, MJ., Suarez-Penaranda, JM., Mayo, M., Miguens, X. and Roriquez-Calvo, MS. Stature estimation from radio-graphically determined long bonelength in a Spanish population sample. Journal of Forensic Science. 2000; 46: 363366.
4. Gauld R. F. \& Rakhir S. M. The nutritional status of disabled children: a cross-sectional survey. Eur.J Clin Nutr. 2004; 53(12): 915-919.
5. Amirsheybani H. R., Crecelius G. M., Timothy N. H., Pfeiffer M., Saggers G. C., \& Manders E.K. The natural history of growth of hand. Part I: Hand area as a percentage of body surface area. Plastic and Reconstructive Surgery. 2000; 107(3): 726-73
6. Jasuja OP, Singh G. Estimation of stature from hand and phalange length. Journal of Indian Association of Forensic Medicine. 2004; 26(3): 100-106.
7. Patel SM, Shah GV, Patel SV; Estimation of height from measurements of foot length in Gujarat region.; J A nat. Soc. Ind. 2007; 56(1): 25-27.
8. Duyar I., Pelin C. and Zagyapan R. A new method of stature estimation for forensic anthropological application. A nthropological Science International. 2006; 114: 23-27.
9. Judith Hall; Handbook of Physical Measurements; By Vancouver: oxford university press 2007; p.6-17
10. A shley M ontagu MF;A handbook of anthropometry. USA; Charles C Thomas: 1960; p.3-13.
11. Pearson K. Mathematical contributions to the theory of evolution. V. On the reconstruction of the stature
of prehistoric races. Phil Trans Roy London. 1899; 192: 169-244.
12. Trotter M , Gleser GC. A re-evaluation of stature based on measurements taken during life and of long bones after death. Am J Physical Anthropology. 1958; 16: 79-123.
13. Athawale NC. Estimation of height from lengths of forearm bones; a study of one hundred Maharashtrian male adults of ages between twenty five and thirty years. Am J PhysA nthropol. 1963; 21: 105-12.
14. Patel MP, Joshi NB and Dongre AV. Regression equation of height on tibial length. Indian Journal of M edical Research. 1964; 52: 531-534.
15. Jasuja O P, Singh J, Jain M. Estimation of stature from foot and shoe measurements by multiplication factors: a revised attempt, Forensic Science International. 1991; 50: 203-215.
16. Jasuja O.P, Manjula. Estimation of stature from footstep length, Forensic Science International. 1993; 61: 1-5.
17. Jasuja OP, Harbhajan S, A nupama K. Estimation of stature from stride length while walking fast. Forensic Sci Inter. 1997 May 5; 86(3): 181-6.
18. Sanli SG, Kizilkanat ED, Boyan N, Ozasalhin ET, Bozikir M G. Soames R et al.; Statureestimation based on hand length and foot length; Clin. A nat. 2005; 18: 589-96.
19. Thakur SD and Rai KS ; Determination of Staturefrom hand measurement, MedicineScience and Law. 1987; 78: 2528.
20. Danborno B, Elukpo A.; Sexual Dimorphismin H and and Foot Length Indices. Stature-ratio and relationship to Height in Nigerians; The Internet Journal of Forensic Science 2008; 3: 1-6.
21. Ilayperuma, Nanayakkara G, Palahepitiya N.; Prediction of personal stature based on hand length; Galle Med. J. 2009; 14(1): 15-18.
22. Rahule AS, Shekhar Rao B, Mohd Saleem, M ohammed Shakeel M ohammed Bashir,Ajay Khade, MD Irfanuddin, Phani Chandra Y; A Study of Correlation between Middle Finger Length and Height in a Tribal District; J Cont Med A Dent. 2013 Sep-Dec; 1(1): 8-12.
23. Manpreet Kaur, Bikramjeet Singh, A nupama Mahajan, B.S Khurana, A nterpreet Kaur, APS Batra; Ind. J of applied biology and pharm. Technology. 2013; 1(2): 251-255.
24. Ankit Srivastava and Vijay Kumar Yadav; Reconstruction of stature using hand and foot dimensions among Indian population; International Journal of Engineering Sciences \& Emerging Technologies. 2014 Feb; 6(4): 400-404
25. Bhatnagar DP, Thapar SP, Batish MK. Identification of personal height from the sometometry of the hand in Punjabi males. For Sci Inter. 1984; 24: 137-41.

[^0]: Author's Affiliation: *A ssistant Professor **A ssociate Professor **Professor \& HOD, Dept. of A natomy, IIMSR, Warudi, Badnapur Dist. Jalna, Maharastra.

 Corresponding Author: Khwaja Moizuddin, 54, Dilrus Colony, Near Town Hall Amkhas Maidan, Aurangabad 431001, M aharastra, India.

 E-mail: drkhwaja72@yahoo.com

